Analysis of three distributed continuous-time dynamical systems: application to power networks

Ashish Cherukuri Advisor: Prof. Jorge Cortés

Seminar Talk Indian Institute of Technology, Bombay Jan 8th, 2016

UC San Diego

Mechanical and Aerospace Engineering JACOBS SCHOOL OF ENGINEERING

Ashish Cherukuri (UCSD)

Analysis of distributed dynamical systems

Objectives

- Balance load and generation
- Restore nominal frequency
 - guarantee cost efficiency
 - satisfy physical constraints
 - ensure security & reliability

Electrical Power Network

Electrical Power Network

Future Power Grid: vertical to flat

How Rooftop Solar Can Stabilize the Grid

Following Germany's lead, California gives advanced inverters a bigger role in the grid 21 Jan

The Rise of the Personal Power Plant

Smart and agile power systems will let every home and business generate, store, and share electricity 28 May 2014

- Increase in Distributed Energy Resources (DERs)
 - wind turbines, solar PV, storages, microgrids etc
- Power generation decentralized
- Large scale optimization problems

Future Power Grid: vertical to flat

How Rooftop Solar Can Stabilize the Grid

Following Germany's lead, California gives advanced inverters a bigger role in the grid 21 Jan

The Rise of the Personal Power Plant

Smart and agile power systems will let every home and business generate, store, and share electricity 28 May 2014

Distributed solutions

- Robust against failures
- Cater to dynamic demands
- Preserve "privacy"
- Provide plug-and-play

1 Economic dispatch problem

- Problem statement
- Relaxed problem and centralized algorithm
- Robust distributed algorithm

2 Analysis of Saddle-point dynamics

- Convex-Concave Functions
- General Functions

3 Analysis of Primal-dual dynamics

Tertiary Control

Primary/Secondary Control

Economic Dispatch (ED) Problem

min
$$f(P) = \sum_{i=1}^{n} f_i(P_i)$$

s.t $\sum_{i=1}^{n} P_i = \mathbf{1}_n^{\top} P = P_i$
 $P_i^m \le P_i \le P_i^M, \forall i$

Ashish Cherukuri (UCSD)

Economic Dispatch (ED) Problem min f(P)s.t $\mathbf{1}_{n}^{\top}P = P_{l}$ load condition $P_{i}^{m} \leq P_{i} \leq P_{i}^{M}, \forall i$ box constraints

min f(P)s.t $\mathbf{1}_{n}^{T}P = P_{l}$ load condition $P_{i}^{m} \leq P_{i} \leq P_{i}^{M}, \forall i$ box constraints

- strongly connected weight-balanced digraphs
- generator *i* knows f_i and controls P_i
- generator i can send information to its in-neighbors

Assumptions: we do not consider

- line losses, transmission constraints
- ramp rates, valve-point effects, prohibited operating zones

Objective: design distributed algorithm that

- solves the ED problem from any initial condition
- able to handle time-varying loads
- is robust to intermittent power generation

- quadratic cost function consensus based [Zhang et al., 11; Kar&Hug, 12; Dominguez-Garcia et al., 12; Loia&Vacarro, 13; Binetti et al., 14b]
- general cost but no capacity bound [Xiao&Boyd, 06; Johansson, 09; Mudumbai et al., 12]
- regularized problem suboptimal solution [Simonetto et al., 12]
- initialization or frequency feedback dependent [Pantoja et al., 14; Zhang et al., 14]
- general (nonconvex) problem no theoretical guarantees
- distributed optimization [Nedich&Ozdaglar, 09; Johansson et al., 09; Wang&Elia, 10; Zhu&Martínez, 12; Gharesifard&Cortés 14]

Relaxed ED problem
min
$$f(P)$$

s.t $\mathbf{1}_n^\top P = P_l$

Lagrangian:

$$L(P,\nu) = f(P) + \nu(\mathbf{1}_n^\top P - P_l)$$

KKT conditions:

$$abla f(P_*) = -
u_* \mathbf{1}_n$$
 and $\mathbf{1}_n^ op P_* = P_I$

Agreement on gradients a solution!

Ashish Cherukuri (UCSD)

Laplacian-gradient dynamics

$$\dot{P} = -L\nabla f(P)$$

Laplacian-gradient dynamics

 $\dot{P} = -L\nabla f(P)$

- Relaxed ED problem min f(P)s.t $\mathbf{1}_n^\top P = P_l$
- distributed implementation: $\dot{P}_i = -\sum_{i \in N_i} a_{ij} (\nabla f_i(P_i) - \nabla f_j(P_j))$
- load condition conserved:

$$\frac{d}{dt}(\mathbf{1}_n^{\top}P) = -\mathbf{1}_n^{\top}\mathsf{L}\nabla f(P) = 0$$

► f nonincreasing:

 $\langle \nabla f, \dot{P} \rangle = - \nabla f(P)^{\top} \mathsf{L} \nabla f(P) \leq 0$

Laplacian-gradient dynamics

 $\dot{P} = -L\nabla f(P)$

- Relaxed ED problem min f(P)s.t $\mathbf{1}_n^\top P = P_l$
- distributed implementation:

$$\dot{P}_i = -\sum_{j \in \mathcal{N}_i} a_{ij} (\nabla f_i(P_i) - \nabla f_j(P_j))$$

load condition conserved:

$$\frac{d}{dt}(\mathbf{1}_n^{\top}P) = -\mathbf{1}_n^{\top}\mathsf{L}\nabla f(P) = 0$$

► *f* nonincreasing:

 $\langle \nabla f, \dot{P} \rangle = - \nabla f(P)^{\top} \mathsf{L} \nabla f(P) \leq 0$

Theorem (Convergence of Laplacian-gradient dynamics)

The feasibility set is positively invariant and trajectories starting from a feasible point converge to the set of solutions of the relaxed ED problem

Laplacian-gradient dynamics: example

Anytime nature of dynamics

Ashish Cherukuri (UCSD)

Analysis of distributed dynamical systems

Laplacian-gradient dynamics: example

Anytime nature of dynamics

- ► How to incorporate box constraints? *Exact penalty functions*
- How to make it initialization-free? Dynamic average consensus

ED Problem	Modified ED Problem
min $f(P)$ s.t $1_{n}^{\top}P = P_{i}$ $P_{i}^{m} \leq P_{i} \leq P_{i}^{M}, \forall i$	min $f^{\epsilon}(P) = \sum_{i=1}^{n} f_{i}^{\epsilon}(P_{i})$ s.t $1_{n}^{\top}P = P_{i}$

$$f_i^{\epsilon}(P_i) = f_i(P_i) + \frac{1}{\epsilon}([P_i - P_i^M]^+ + [P_i^m - P_i]^+)$$

where

$$[u]^+ = \begin{cases} 0 & \text{if } u \le 0 \\ u & \text{if } u > 0 \end{cases}$$

ED Problem	Modified ED Problem
$ \begin{array}{ll} \min & f(P) \\ \text{s.t} & 1_n^\top P = P_l \\ & P_i^m \leq P_i \leq P_i^M, \forall i \end{array} $	$\begin{array}{ll} \min & f^{\epsilon}(P) \\ \text{s.t} & 1_{n}^{\top}P = P_{l} \end{array}$

$$f_i^{\epsilon}(P_i) = f_i(P_i) + \frac{1}{\epsilon}([P_i - P_i^M]^+ + [P_i^m - P_i]^+)$$

Ashish Cherukuri (UCSD)

Analysis of distributed dynamical systems

11/38

ED Problem	Modified ED Problem
min $f(P)$ s.t $1_{n}^{\top}P = P_{l}$ $P_{i}^{m} \leq P_{i} \leq P_{i}^{M}, \forall i$	$\begin{array}{ll} \min & f^{\epsilon}(P) \\ \text{s.t} & 1_{n}^{\top}P = P_{l} \end{array}$

$$f_i^{\epsilon}(P_i) = f_i(P_i) + \frac{1}{\epsilon}([P_i - P_i^M]^+ + [P_i^m - P_i]^+)$$

Proposition (Equivalence between optimizations)

The solutions of above problems coincide for $\epsilon \in \mathbb{R}_{>0}$ such that

$$\epsilon < rac{1}{2 \max_{P \in \mathcal{F}_{ ext{ED}}} \|
abla f(P) \|_{\infty}}$$

ED Problem	Modified ED Problem
$ \begin{array}{ll} \min & f(P) \\ \text{s.t} & 1_n^\top P = P_l \\ & P_i^m \leq P_i \leq P_i^M, \forall i \end{array} $	$\begin{array}{ll} \min & f^{\epsilon}(P) \\ \text{s.t} & 1_{n}^{\top}P = P_{l} \end{array}$
$f_i^{\epsilon}(P_i) = f_i(P_i) + \frac{1}{\epsilon}([P_i - P_i^M]^+ + [P_i^m - P_i]^+)$	
$\partial f_i^{\epsilon}(P_i) = \begin{cases} \{\nabla f_i(P_i) - \frac{1}{\epsilon}\} & P_i < P_i^m, \\ [\nabla f_i(P_i) - \frac{1}{\epsilon}, \nabla f_i(P_i)] & P_i = P_i^m, \\ \{\nabla f_i(P_i)\} & P_i^m < P_i < P_i^M, \\ [\nabla f_i(P_i), \nabla f_i(P_i) + \frac{1}{\epsilon}] & P_i = P_i^M, \\ \{\nabla f_i(P_i) + \frac{1}{\epsilon}\} & P_i > P_i^M. \end{cases}$	

ED Problem	Modified ED Problem	
min $f(P)$ s.t $1_n^\top P = P_l$ $P_n^m < P_i < P_i^M \forall i$	$\begin{array}{ll} \min & f^{\epsilon}(P) \\ \text{s.t} & 1_{n}^{\top}P = P_{l} \end{array}$	
$F_i \geq F_i \geq F_i, \forall i$ $f_i^{\epsilon}(P_i) = f_i(P_i) + \frac{1}{\epsilon}([P_i - P_i^M]^+ + [P_i^m - P_i]^+)$		

 $-\nu_* \mathbf{1}_n \in \partial f^{\epsilon}(P_*)$ and $\mathbf{1}_n^{\top} P_* = P_I$

$$\dot{P} = -\mathsf{L}
abla f(P)$$

$$\begin{array}{ll} Modified \ ED \ Problem \\\\ \mathsf{min} \quad f^{\epsilon}(P) \\\\ \mathsf{s.t} \quad \mathbf{1}_n^{\top} P = P_l \end{array}$$

Laplacian-nonsmooth-gradient dynamics $\dot{P} \in -L\partial f^{\epsilon}(P)$ where $\partial f^{\epsilon}(P) = \partial f_{1}^{\epsilon}(P_{1}) \times \cdots \times \partial f_{n}^{\epsilon}(P_{n})$

$$\dot{P} \in -\mathsf{L}\partial f^{\epsilon}(P)$$

Theorem (Convergence of $L\partial$ dynamics)

The feasibility set $\{P \in \mathbb{R}^n \mid \mathbf{1}_n^\top P = P_i \text{ and } P_i^m \leq P_i \leq P_i^M, \forall i\}$ is strongly positively invariant under the L ∂ dynamics. Starting from a feasible point the trajectories converge to the solutions of the ED problem.

f^ε is monotonically nonincreasing – *Anytime nature!*

[A. Cherukuri & S. Martínez & J. Cortés, ACC 2014]
[A. Cherukuri & J. Cortés, TCNS 2015]

How to handle initialization?

How to incorporate box constraints? – Exact penalty functions

- How to make it initialization-free? Dynamic average consensus
 - Laplacian-nonsmooth-gradient + dac dynamics

Centralized Global (Asymptotic) Solution

Laplacian-nonsmooth-gradient + lm dynamics

$$\dot{P} \in -L\partial f^{\epsilon}(P) + \frac{1}{n}(P_{l} - \mathbf{1}_{n}^{\top}P)\mathbf{1}_{n}$$

Mismatch between load and total generation decreases exponentially

$$\frac{d}{dt}(P_l - \mathbf{1}_n^\top P) = -(P_l - \mathbf{1}_n^\top P)$$

> On load satisfaction, it reduces to Laplacian-nonsmooth-gradient

Theorem (Convergence of $L\partial + lm$ dynamics)

Trajectory of L ∂ +1m dynamics starting from any point in \mathbb{R}^n converge to the solutions of the ED problem

Using *refined LaSalle* invariance principle for *differential inclusions*

Theorem (refined LaSalle, Arsie & Ebenbauer (2010))

For $f : \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, $S \subset \mathbb{R}^n$ closed embedded submanifold of \mathbb{R}^n , let $t \mapsto \varphi(t)$ be bounded solution of $\dot{x} = f(x)$ with omega-limit set $\Omega(\varphi)$. If $\blacktriangleright \Omega(\varphi) \subset S$

• $W : \mathcal{O} \to \mathbb{R}$ continuously differentiable on open neighborhood \mathcal{O} of S such that $\mathcal{L}_f W \leq 0$ on S

•
$$\mathcal{E} = \{x \in \mathcal{S} \mid 0 = \mathcal{L}_f W(x)\}$$
 belongs to a level set of W

then $\Omega(arphi) \subset \mathcal{E}$

Two LaSalle functions for L $\partial + \texttt{lm}$ dynamics

►
$$V_1(P) = (P_I - \mathbf{1}_n^\top P)^2$$

$$\blacktriangleright V_2(P) = f^{\epsilon}(P)$$

► Each unit *i* has estimator $z_i \in \mathbb{R}$ tracking average signal $t \mapsto \frac{1}{n}(P_i - \mathbf{1}_n^\top P(t))$

Interconnected systems

- bottom component estimates evolving load mismatch given generation
- top component adjusts generation levels based on optimization of objective & estimate of load mismatch

Let $x_1 = \mathbf{1}_n^\top P - P_I$ be the mismatch, $x_2 = \dot{x}_1$

Because of dynamic average consensus we get

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\nu_1\nu_2 & -\alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Second-order *exponentially* stable linear system – hence ISS

Theorem (Convergence of $L\partial + dac$ dynamics)

For $\alpha, \beta, \nu_1, \nu_2 > 0$ with

$$\frac{\nu_1}{\beta \nu_2 \lambda_2 (\mathsf{L} + \mathsf{L}^{\top})} + \frac{\nu_2^2 \lambda_{\max} (\mathsf{L}^{\top} \mathsf{L})}{2\alpha} < \lambda_2 (\mathsf{L} + \mathsf{L}^{\top})$$

trajectories of L ∂ +dac dynamics starting with $\mathbf{1}_n^\top v = 0$ converge to $\{(P, z, v) \mid P \text{ solution of ED problem}, z = 0, v = \nu_2(P_I e_r - P)\}$

[A. Cherukuri & J. Cortés, Allerton 2014]

[A. Cherukuri & J. Cortés, Automatica, submitted 2014]

Proof via refined LaSalle Invariance Principle for differential inclusions

$$V_1(P, z, v) = \nu_1 \nu_2 (P_l - \mathbf{1}_n^\top P)^2 + \nu_1^2 (\mathbf{1}_n^\top z)^2$$

$$V_2(P, z, v) = f^{\epsilon}(P) + \frac{1}{2} \Big(\nu_1 \nu_2 \|z\|^2 + \|v + \alpha z - \nu_2 (P_l e_r - P)\|^2 \Big)$$

Proof via refined LaSalle Invariance Principle for differential inclusions

$$V_1(P, z, v) = \nu_1 \nu_2 (P_l - \mathbf{1}_n^\top P)^2 + \nu_1^2 (\mathbf{1}_n^\top z)^2$$

$$V_2(P, z, v) = f^{\epsilon}(P) + \frac{1}{2} \left(\nu_1 \nu_2 ||z||^2 + ||v + \alpha z - \nu_2 (P_l e_r - P)||^2 \right)$$

Performance guarantees (L∂+dac dynamics)

- global convergence
- load mismatch dynamics is ISS
- dynamic loads tracked with ultimate bound
- robust to intermittent generation

Illustration of Algorithm Performance

IEEE 118 bus example with 54 generators *Quadratic cost*: $f_i(P_i) = a_i + b_iP_i + c_iP_i^2$ $a_i \in [6.88, 74.33], b_i \in [8.3391, 37.6968]$, and $c_i \in [0.0024, 0.0697]$ Communication topology is ring digraph with few additional edges

Illustration of Algorithm Performance

IEEE 118 bus example with 54 generators *Quadratic cost*: $f_i(P_i) = a_i + b_iP_i + c_iP_i^2$ $a_i \in [6.88, 74.33], b_i \in [8.3391, 37.6968]$, and $c_i \in [0.0024, 0.0697]$ Communication topology is ring digraph with few additional edges

Illustration of Algorithm Performance

IEEE 118 bus example with 54 generators Quadratic cost: $f_i(P_i) = a_i + b_i P_i + c_i P_i^2$ $a_i \in [6.88, 74.33], b_i \in [8.3391, 37.6968], and <math>c_i \in [0.0024, 0.0697]$ Communication topology is ring digraph with few additional edges

Ashish Cherukuri (UCSD)

Analysis of distributed dynamical systems

Summary

Conclusions

- distributed algorithm for global constraint problem
- exact penalty functions, dac, refined LaSalle
- switching communication topologies possible
- robustness to *intermittent* generation

Future work

- Stochastic dispatch
 - load, costs, min-(max-)capacities are random variables
 - robust or stochastic optimization
- Learning in electricity markets
 - generators are *strategic*
 - selfish learning by repeated play

Economic dispatch problem

- Problem statement
- Relaxed problem and centralized algorithm
- Robust distributed algorithm

2 Analysis of Saddle-point dynamics

- Convex-Concave Functions
- General Functions

3 Analysis of Primal-dual dynamics

Basic question

Gradient descent	Gradient ascent
Let $f:\mathbb{R}^n ightarrow\mathbb{R}$ be \mathcal{C}^1 & convex	Let $f:\mathbb{R}^n ightarrow\mathbb{R}$ be \mathcal{C}^1 & concave
$\dot{x} = -\nabla f(x)$	$\dot{x} = abla f(x)$
bdd trajectories converge to minimizers	bdd trajectories converge to maximizers

Basic question

Gradient descent	Gradient ascent
Let $f:\mathbb{R}^n ightarrow\mathbb{R}$ be \mathcal{C}^1 & convex	Let $f: \mathbb{R}^n \to \mathbb{R}$ be \mathcal{C}^1 & concave
$\dot{x} = -\nabla f(x)$	$\dot{x} = abla f(x)$
bdd trajectories converge to minimizers	bdd trajectories converge to maximizers

Gradient descent + Gradient ascent Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be C^1 & convex-concave (for any $(\bar{x}, \bar{z}), x \mapsto F(x, \bar{z})$ is convex & $z \mapsto F(\bar{x}, z)$ concave)

> $\dot{x} = -\nabla_x F(x, z)$ $\dot{z} = \nabla_z F(x, z)$

Do bdd trajectories converge to (min-max) saddle points?

 $\text{Saddle point:} \ F(x_*,z) \leq F(x_*,z_*) \leq F(x,z_*) \quad \text{ for all } x \in \mathbb{R}^n \text{ and } z \in \mathbb{R}^m$

A picture is worth a thousand words

9

F(x, z) = xz & (0, 0) is a saddle pt.

 $\dot{x} = -z$ $\dot{z} = x$

Ashish Cherukuri (UCSD)

Analysis of distributed dynamical systems

Motivation

Distributed convex optimization

minimize f(x)subject to g(x) = 0 • aggregate cost: $f(x) = \sum_{i=1}^{n} f_i(x_i)$

▶ local constraints: g_i only depends on
 x_i and {x_j}_{j∈N(i)}

• Lagrangian:
$$L(x,\lambda) = f(x) + \lambda^{\top}g(x)$$
, convex-concave in (x,λ)

- Primal-dual optimizers \Leftrightarrow saddle points of L
- "gradient descent + gradient ascent" on L is distributed!

Convergence to saddle points of L?

Ashish Cherukuri (UCSD)

Analysis of distributed dynamical systems

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be \mathcal{C}^1 , write saddle-point dynamics X_{sp} ,

```
\dot{x} = -\nabla_x F(x, z)
\dot{z} = \nabla_z F(x, z)
```

When do trajectories of X_{sp} converge to Saddle $(F) \subset \mathbb{R}^n \times \mathbb{R}^m$?

What is already there

- ► Arrow & Hurwitz & Uzawa (1959): F convex-concave & strict in either
- ▶ Wang & Elia (2011): Lagrangian strictly convex in primal
- ► Fiejer & Paganini (2010): Projection in *z*-dynamics
- ▶ Ratliff & Burden & Sastry (2013): (Pos., Neg.) definite Hessian at NE

Let $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be \mathcal{C}^1 , write saddle-point dynamics X_{sp} ,

```
\dot{x} = -\nabla_x F(x, z)
\dot{z} = \nabla_z F(x, z)
```

When do trajectories of X_{sp} converge to Saddle(F) $\subset \mathbb{R}^n \times \mathbb{R}^m$?

Our focus

- 1. beyond strict convexity-concavity
- 2. beyond convexity-concavity
- 3. local vs global convergence
- 4. continuum of saddle points + convergence to a point
- 5. complementary conditions

Proposition (Local asymptotic stability via strict convexity-concavity)

If F is locally strictly convex-concave on Saddle(F) then, Saddle(F) is locally asymptotically stable under X_{sp} and convergence is to a point.

Proof sketch:

- LaSalle function: $V(x,z) = \frac{1}{2}(||x x_*||^2 + ||z z_*||^2)$
- Lie derivative:

$$\begin{aligned} \mathcal{L}_{X_{\text{sp}}} V(x,z) &= -(x-x_*)^\top \nabla_x F(x,z) + (z-z_*)^\top \nabla_z F(x,z) \\ &\leq 0 \end{aligned}$$

► Stable equilibrium ⇒ convergence to a point

Proposition (Local asymptotic stability via strict convexity-concavity)

If F is locally strictly convex-concave on Saddle(F) then, Saddle(F) is locally asymptotically stable under X_{sp} and convergence is to a point.

Proposition (Local asymptotic stability via convexity-linearity)

If F is locally convex-concave on Saddle(F), linear in z, and

▶ for each $(x_*, z_*) \in \text{Saddle}(F)$, there exists a neighborhood $\mathcal{U}_{x_*} \subset \mathbb{R}^n$ of x_* where, if $F(x, z_*) = F(x_*, z_*)$ with $x \in \mathcal{U}_{x_*}$, then $(x, z_*) \in \text{Saddle}(F)$,

then Saddle(F) is locally asymptotically stable under X_{sp} and convergence is to a point.

Convexity-linearity: example

Constrained optimization on \mathbb{R}^3

minimize
$$(x_1 + x_2 + x_3)^2$$

subject to $x_1 = x_2$

- Optimizers: $\mathcal{X}^* = \{x \in \mathbb{R}^3 \mid 2x_1 + x_3 = 0, x_2 = x_1\}$
- Lagrangian: $L(x, z) = (x_1 + x_2 + x_3)^2 + z(x_1 x_2)$

29/38

Convexity-linearity: example

Constrained optimization on \mathbb{R}^3

minimize $(x_1 + x_2 + x_3)^2$ subject to $x_1 = x_2$

- Optimizers: $\mathcal{X}^* = \{x \in \mathbb{R}^3 \mid 2x_1 + x_3 = 0, x_2 = x_1\}$
- Lagrangian: $L(x,z) = (x_1 + x_2 + x_3)^2 + z(x_1 x_2)$
- Saddle(L) = $\mathcal{X}^* \times \{0\}$
- Augmented Lagrangian: $\tilde{L}(x,z) = L(x,z) + (x_1 x_2)^2$
- \tilde{L} globally convex-concave, linear in z, and meets the third criteria
- \tilde{L} is *NOT* strictly convex-concave

Convexity-linearity: example

Constrained optimization on \mathbb{R}^3

minimize
$$(x_1 + x_2 + x_3)^2$$

subject to $x_1 = x_2$

• X_{sp} for Augmented Lagrangian $\tilde{L}(x,z) = L(x,z) + (x_1 - x_2)^2$

Ashish Cherukuri (UCSD)

Proposition (Local asymptotic stability via linearization)

For F being C^3 , let Saddle(F) be a p-dimensional manifold. Assume that DX_{sp} at each point in Saddle(F) has no eigenvalues in the imaginary axis other than 0, which is semisimple with multiplicity p. Then, Saddle(F) is locally asymptotically stable under X_{sp} and convergence is to a point.

Proposition (Local asymptotic stability via linearization)

For F being C^3 , let Saddle(F) be a p-dimensional manifold. Assume that DX_{sp} at each point in Saddle(F) has no eigenvalues in the imaginary axis other than 0, which is semisimple with multiplicity p. Then, Saddle(F) is locally asymptotically stable under X_{sp} and convergence is to a point.

Proof sketch:

$$DX_{sp} = \begin{bmatrix} -\nabla_{xx}F & -\nabla_{xz}F \\ \nabla_{zx}F & \nabla_{zz}F \end{bmatrix}_{(x_*,z_*)}$$

- Saddle point property $\Rightarrow DX_{sp} + DX_{sp}^{\top} \preceq 0$
- ► $\operatorname{Re}(\lambda_i(DX_{sp})) \le \lambda_{\max}(\frac{1}{2}(DX_{sp} + DX_{sp}^{\top})) \le 0$
- Now apply center manifold theory

Constrained optimization on \mathbb{R}^3

minimize $(||x|| - 1)^2$ subject to $x_3 = 0.5$

- Optimizers: $\mathcal{X}^* = \{x \in \mathbb{R}^3 \mid x_3 = 0.5, x_1^2 + x_2^2 = 0.75\}$
- Lagrangian: $L(x, z) = (||x|| 1)^2 + z(x_3 0.5)$
- Saddle(L) = $\mathcal{X}^* \times \{0\}$
- The Jacobian of X_{sp} satisfies the hypotheses

Linearization: example

Constrained optimization on \mathbb{R}^3

minimize $(||x|| - 1)^2$ subject to $x_3 = 0.5$

• X_{sp} for Lagrangian $L(x, z) = (||x|| - 1)^2 + z(x_3 - 0.5)$

Ashish Cherukuri (UCSD)

Yet more to explore ...

Consider $F : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$,

$$F(x,z) = (||x|| - 1)^4 - z^2 ||x||^2$$

• Saddle(
$$F$$
) = {(x, z) | $||x|| = 1, z = 0$ } 1-d manifold

• Jacobian of X_{sp} has 0 eigenvalue with *multiplicty* 2

Ashish Cherukuri (UCSD)

Yet more to explore ...

Consider $F : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$,

$$F(x,z) = (||x|| - 1)^4 - z^2 ||x||^2$$

• Saddle(
$$F$$
) = {(x, z) | $||x|| = 1, z = 0$ } 1-d manifold

Jacobian of X_{sp} has 0 eigenvalue with multiplicty 2

Ashish Cherukuri (UCSD)

32/38

Proximal calculus

V might not be decreasing but d_S is!

$$d_{\mathcal{S}}(x,z) = \min_{(x_*,z_*)\in\mathcal{S}} \|(x,z) - (x_*,z_*)\|$$

$$\operatorname{proj}_{\mathcal{S}}(x,z) = \{(x_*,z_*)\in\mathcal{S} \mid \|(x,z) - (x_*,z_*)\| = d_{\mathcal{S}}(x,z)\}$$

Proximal calculus

V might not be decreasing but d_S is!

$$d_{\mathcal{S}}(x,z) = \min_{(x_*,z_*)\in\mathcal{S}} \|(x,z) - (x_*,z_*)\|$$

$$\operatorname{proj}_{\mathcal{S}}(x,z) = \{(x_*,z_*)\in\mathcal{S} \mid \|(x,z) - (x_*,z_*)\| = d_{\mathcal{S}}(x,z)\}$$

d_S is locally Lipschitz and regular

$$\partial d_{\mathcal{S}}^2(x,z) = \operatorname{co}\{2(x-x_*;z-z_*) \mid (x_*,z_*) \in \operatorname{proj}_{\mathcal{S}}(x,z)\}$$

Does convexity-concavity along proximal normal to Saddle(F) help?

Proposition (Asymptotic stability via proximal normals)

For F being C^2 , assume that for every (x_*, z_*) and every proximal normal $\eta = (\eta_x, \eta_z)$ at (x_*, z_*) with $\|\eta\| = 1$, it holds that $\lambda \mapsto F(x_* + \lambda \eta_x, z_*)$ is convex and $\lambda \mapsto F(x_*, z_* + \lambda \eta_z)$ is concave with

$$F(x_* + \lambda \eta_x, z_*) - F(x_*, z_*) \ge k_1 \|\lambda \eta_x\|^{\alpha_1}$$

$$F(x_*, z_* + \lambda \eta_z) - F(x_*, z_*) \le -k_2 \|\lambda \eta_z\|^{\beta_1}$$

Proposition (Asymptotic stability via proximal normals)

For F being C^2 , assume that for every (x_*, z_*) and every proximal normal $\eta = (\eta_x, \eta_z)$ at (x_*, z_*) with $\|\eta\| = 1$, it holds that $\lambda \mapsto F(x_* + \lambda \eta_x, z_*)$ is convex and $\lambda \mapsto F(x_*, z_* + \lambda \eta_z)$ is concave with

$$F(x_{*} + \lambda \eta_{x}, z_{*}) - F(x_{*}, z_{*}) \ge k_{1} \|\lambda \eta_{x}\|^{\alpha_{1}}$$

$$F(x_{*}, z_{*} + \lambda \eta_{z}) - F(x_{*}, z_{*}) \le -k_{2} \|\lambda \eta_{z}\|^{\beta_{1}}$$

and, for all $t \in [0, 1]$,

$$\begin{aligned} \|\nabla_{xz}F(x_*+t\lambda\eta_x,z_*+\lambda\eta_z)-\nabla_{xz}F(x_*+\lambda\eta_x,z_*+t\lambda\eta_z)\| \\ &\leq L_x\|\lambda\eta_x\|^{\alpha_2}+L_z\|\lambda\eta_z\|^{\beta_2} \end{aligned}$$

Proposition (Asymptotic stability via proximal normals)

For F being C^2 , assume that for every (x_*, z_*) and every proximal normal $\eta = (\eta_x, \eta_z)$ at (x_*, z_*) with $\|\eta\| = 1$, it holds that $\lambda \mapsto F(x_* + \lambda \eta_x, z_*)$ is convex and $\lambda \mapsto F(x_*, z_* + \lambda \eta_z)$ is concave with

$$F(x_{*} + \lambda \eta_{x}, z_{*}) - F(x_{*}, z_{*}) \ge k_{1} \|\lambda \eta_{x}\|^{\alpha_{1}}$$

$$F(x_{*}, z_{*} + \lambda \eta_{z}) - F(x_{*}, z_{*}) \le -k_{2} \|\lambda \eta_{z}\|^{\beta_{1}}$$

and, for all $t \in [0, 1]$,

$$\begin{aligned} \|\nabla_{xz}F(x_*+t\lambda\eta_x,z_*+\lambda\eta_z)-\nabla_{xz}F(x_*+\lambda\eta_x,z_*+t\lambda\eta_z)\| \\ &\leq L_x\|\lambda\eta_x\|^{\alpha_2}+L_z\|\lambda\eta_z\|^{\beta_2} \end{aligned}$$

Then, Saddle(F) is locally asymptotically stable under X_{sp} if

(either $L_x = 0$ or $\alpha_1 \le \alpha_2 + 1$) AND (either $L_z = 0$ or $\beta_1 \le \beta_2 + 1$).

Proximal normal: example

$$F(x,z) = (||x|| - 1)^4 - z^2 ||x||^2$$

• Saddle(
$$F$$
) = {(x, z) | $||x|| = 1, z = 0$ }

•
$$(x_*, z_*) = (\cos \theta, \sin \theta, 0)$$
, where $\theta \in [0, 2\pi)$

►
$$\eta = (\eta_x, \eta_z) = ((a_1 \cos \theta, a_1 \sin \theta), a_2), \quad a_1^2 + a_2^2 = 1$$

Proximal normal: example

$$F(x,z) = (||x|| - 1)^4 - z^2 ||x||^2$$

- Saddle(F) = {(x, z) | ||x|| = 1, z = 0}
- $(x_*, z_*) = (\cos \theta, \sin \theta, 0)$, where $\theta \in [0, 2\pi)$
- ► $\eta = (\eta_x, \eta_z) = ((a_1 \cos \theta, a_1 \sin \theta), a_2), \quad a_1^2 + a_2^2 = 1$

- λ → F(x_{*} + λη_x, z_{*}) = (λa₁)⁴ is convex with α₁ = 4
- λ → F(x_{*}, z_{*} + λη_z) = −(λa₂)² is concave with β₁ = 2

•
$$L_x = 0$$
, $L_z \neq 0$ and $\beta_2 = 1$

Summary

The story doesn't end here but the time does! [Cherukuri & Gharesifard & Cortés, SICON, submitted 2015]

Conclusions

- convexity-concavity
- convexity-linearity
- linearization
- proximal normal

$$V(x,z) = \frac{1}{2}(||x - x_*||^2 + ||z - z_*||^2)$$

$$d_{\mathcal{S}}^{2}(x,z) = \min_{(x_{*},z_{*})\in\mathcal{S}}(\|x-x_{*}\|^{2} + \|z-z_{*}\|^{2})$$

Summary

The story doesn't end here but the time does! [Cherukuri & Gharesifard & Cortés, SICON, submitted 2015]

Conclusions

- convexity-concavity
- convexity-linearity
- linearization
- proximal normal

$$V(x,z) = \frac{1}{2}(\|x - x_*\|^2 + \|z - z_*\|^2)$$

$$d_{\mathcal{S}}^{2}(x,z) = \min_{(x_{*},z_{*})\in\mathcal{S}}(\|x-x_{*}\|^{2} + \|z-z_{*}\|^{2})$$

Future work

- other asymptotic behaviors
- matrix flows
- robustness analysis
- finite-length trajectories
- gradient conjecture of René Thom for saddle-point dynamics

[Holding & Lestas, CDC 2014] [Helmke & Moore, "Opt. & Dyn. Systems"]

Primal-dual dynamics

For inequalities, dual optima are nonnegative:

$$\begin{split} \dot{x} &= -\nabla_x F(x,z) \\ \dot{z} &= [\nabla_z F(x,z)]_z^+ \end{split} \qquad \qquad [a]_b^+ = \begin{cases} a & \text{if } a \geq 0 \text{ or } b > 0 \\ 0 & \text{otherwise} \end{cases}$$

Existing results on convergence:

- Arrow & Hurwitz & Uzawa (1959): Direct method with Taylor approximation – *limits further analysis*
- Fiejer & Paganini (2010): Indirect method using hybrid automata theory continuity not satisfied

Primal-dual dynamics

For inequalities, dual optima are nonnegative:

$$\begin{split} \dot{x} &= -\nabla_x F(x,z) \\ \dot{z} &= [\nabla_z F(x,z)]_z^+ \end{split} \qquad \qquad [a]_b^+ = \begin{cases} a & \text{if } a \geq 0 \text{ or } b > 0 \\ 0 & \text{otherwise} \end{cases}$$

Existing results on convergence:

- Arrow & Hurwitz & Uzawa (1959): Direct method with Taylor approximation – *limits further analysis*
- Fiejer & Paganini (2010): Indirect method using hybrid automata theory continuity not satisfied

Our *contribution* is a *novel proof* methodology:

- consider solutions in Caratheodory sense
- model as a projected dynamical system
- use LaSalle Invariance Principle for Caratheodory systems

[A. Cherukuri & E. Mallada & J. Cortés, SIAM CT 2015]

[A. Cherukuri & E. Mallada & J. Cortés, SCL, 2015]

Ashish Cherukuri (UCSD)

Analysis of distributed dynamical systems

Thank you. Comments or questions?

Jorge Cortés

Bahman Gharesifard

Enrique Mallada

