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Electrical Power Network

Objectives

I Balance load and generation

I Restore nominal frequency

I guarantee cost efficiency

I satisfy physical constraints

I ensure security & reliability
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Future Power Grid: vertical to flat

I Increase in Distributed Energy Resources (DERs)
I wind turbines, solar PV, storages, microgrids etc

I Power generation – decentralized

I Large scale optimization problems

Distributed solutions

I Robust against failures

I Cater to dynamic demands

I Preserve “privacy”

I Provide plug-and-play
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Outline

1 Economic dispatch problem
Problem statement
Relaxed problem and centralized algorithm
Robust distributed algorithm

2 Analysis of Saddle-point dynamics
Convex-Concave Functions
General Functions

3 Analysis of Primal-dual dynamics

Tertiary Control

Primary/Secondary
Control
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Problem Statement

Economic Dispatch (ED) Problem

min f (P) =
n∑

i=1

fi (Pi )

s.t
n∑

i=1

Pi = 1>n P = Pl

load condition

Pm
i ≤ Pi ≤ PM

i , ∀i

box constraints

1

3

2

4

Objective: design distributed algorithm that
I solves the ED problem from any initial condition
I able to handle time-varying loads
I is robust to intermittent power generation
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Communication network setup
I strongly connected weight-balanced digraphs
I generator i knows fi and controls Pi

I generator i can send information to its in-neighbors

Assumptions: we do not consider
I line losses, transmission constraints
I ramp rates, valve-point effects, prohibited operating zones
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Overview of Literature

I quadratic cost function – consensus based [Zhang et al., 11; Kar&Hug, 12;
Dominguez-Garcia et al., 12; Loia&Vacarro, 13; Binetti et al., 14b ]

I general cost but no capacity bound [Xiao&Boyd, 06; Johansson, 09;
Mudumbai et al., 12 ]

I regularized problem – suboptimal solution [Simonetto et al., 12]

I initialization or frequency feedback dependent [Pantoja et al., 14; Zhang et
al., 14]

I general (nonconvex) problem - no theoretical guarantees

I distributed optimization [Nedich&Ozdaglar, 09; Johansson et al., 09;
Wang&Elia, 10; Zhu&Mart́ınez, 12; Gharesifard&Cortés 14]
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Relaxed ED Problem: a motivation

Relaxed ED problem

min f (P)

s.t 1>n P = Pl

I Lagrangian:

L(P, ν) = f (P) + ν(1>n P − Pl)

I KKT conditions:

∇f (P∗) = −ν∗1n and 1>n P∗ = Pl

Agreement on gradients a solution!
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Laplacian-gradient dynamics

Relaxed ED problem

min f (P)

s.t 1>n P = Pl

Laplacian-gradient dynamics

Ṗ = −L∇f (P)

I distributed implementation:

Ṗi = −
∑

j∈Ni
aij(∇fi (Pi )−∇fj(Pj))

I load condition conserved:

d
dt (1>n P) = −1>n L∇f (P) = 0

I f nonincreasing:

〈∇f , Ṗ〉 = −∇f (P)>L∇f (P) ≤ 0

Theorem (Convergence of Laplacian-gradient dynamics)

The feasibility set is positively invariant and trajectories starting from a
feasible point converge to the set of solutions of the relaxed ED problem
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〈∇f , Ṗ〉 = −∇f (P)>L∇f (P) ≤ 0

Theorem (Convergence of Laplacian-gradient dynamics)

The feasibility set is positively invariant and trajectories starting from a
feasible point converge to the set of solutions of the relaxed ED problem

Ashish Cherukuri (UCSD) Analysis of distributed dynamical systems 9/38



Laplacian-gradient dynamics: example

Anytime nature of dynamics
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I How to incorporate box constraints? – Exact penalty functions

I How to make it initialization-free? – Dynamic average consensus
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Reformulation using Exact Penalty Functions

ED Problem

min f (P)

s.t 1>n P = Pl

Pm
i ≤ Pi ≤ PM

i , ∀i

Modified ED Problem

min f ε(P) =
n∑

i=1

f εi (Pi )

s.t 1>n P = Pl

f εi (Pi ) = fi (Pi ) + 1
ε ([Pi − PM

i ]+ + [Pm
i − Pi ]

+)

where

[u]+ =

{
0 if u ≤ 0

u if u > 0

−2 −1 0 1 2
0

0.5

1

1.5

2

[u]+
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fi + Penalty function = f εi
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Reformulation using Exact Penalty Functions

ED Problem

min f (P)

s.t 1>n P = Pl

Pm
i ≤ Pi ≤ PM

i , ∀i

Modified ED Problem

min f ε(P)

s.t 1>n P = Pl

f εi (Pi ) = fi (Pi ) + 1
ε ([Pi − PM

i ]+ + [Pm
i − Pi ]

+)

Proposition (Equivalence between optimizations)

The solutions of above problems coincide for ε ∈ R>0 such that

ε <
1

2 maxP∈FED ‖∇f (P)‖∞
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Reformulation using Exact Penalty Functions

ED Problem

min f (P)

s.t 1>n P = Pl

Pm
i ≤ Pi ≤ PM

i , ∀i

Modified ED Problem

min f ε(P)

s.t 1>n P = Pl

f εi (Pi ) = fi (Pi ) + 1
ε ([Pi − PM

i ]+ + [Pm
i − Pi ]

+)

∂f εi (Pi ) =



{∇fi (Pi )− 1
ε} Pi < Pm

i ,

[∇fi (Pi )− 1
ε ,∇fi (Pi )] Pi = Pm

i ,

{∇fi (Pi )} Pm
i < Pi < PM

i ,

[∇fi (Pi ),∇fi (Pi ) + 1
ε ] Pi = PM

i ,

{∇fi (Pi ) + 1
ε} Pi > PM

i .
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Reformulation using Exact Penalty Functions

ED Problem

min f (P)

s.t 1>n P = Pl

Pm
i ≤ Pi ≤ PM

i , ∀i

Modified ED Problem

min f ε(P)

s.t 1>n P = Pl

f εi (Pi ) = fi (Pi ) + 1
ε ([Pi − PM

i ]+ + [Pm
i − Pi ]

+)

−ν∗1n ∈ ∂f ε(P∗) and 1>n P∗ = Pl
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Laplacian-nonsmooth-gradient dynamics

Relaxed ED problem

min f (P)

s.t 1>n P = Pl

Modified ED Problem

min f ε(P)

s.t 1>n P = Pl

Laplacian-gradient dynamics

Ṗ = −L∇f (P)

Laplacian-nonsmooth-gradient dynamics

Ṗ ∈ −L∂f ε(P)

where ∂f ε(P) = ∂f ε1 (P1)× · · · × ∂f εn (Pn)
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Laplacian-nonsmooth-gradient dynamics: analysis

Ṗ ∈ −L∂f ε(P)

Theorem (Convergence of L∂ dynamics)

The feasibility set {P ∈ Rn | 1>n P = Pl and Pm
i ≤ Pi ≤ PM

i ,∀i} is strongly
positively invariant under the L∂ dynamics. Starting from a feasible point
the trajectories converge to the solutions of the ED problem.

I f ε is monotonically nonincreasing – Anytime nature!

[A. Cherukuri & S. Mart́ınez & J. Cortés, ACC 2014]

[A. Cherukuri & J. Cortés, TCNS 2015]
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How to handle initialization?
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I How to incorporate box constraints? – Exact penalty functions

I How to make it initialization-free? – Dynamic average consensus
I Laplacian-nonsmooth-gradient + dac dynamics

Ashish Cherukuri (UCSD) Analysis of distributed dynamical systems 14/38



Centralized Global (Asymptotic) Solution

Laplacian-nonsmooth-gradient + lm dynamics

Ṗ ∈ −L∂f ε(P)+
1

n
(Pl − 1>n P)1n

I Mismatch between load and total generation decreases exponentially

d

dt
(Pl − 1>n P) = −(Pl − 1>n P)

I On load satisfaction, it reduces to Laplacian-nonsmooth-gradient

Theorem (Convergence of L∂+lm dynamics)

Trajectory of L∂+lm dynamics starting from any point in Rn converge to
the solutions of the ED problem
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Technical Analysis of L∂+lm dynamics

Using refined LaSalle invariance principle for differential inclusions

Theorem (refined LaSalle , Arsie & Ebenbauer (2010))

For f : Rn → Rn locally Lipschitz, S ⊂ Rn closed embedded submanifold of Rn,
let t 7→ ϕ(t) be bounded solution of ẋ = f (x) with omega-limit set Ω(ϕ). If

I Ω(ϕ) ⊂ S
I W : O → R continuously differentiable on open neighborhood O of S such

that Lf W ≤ 0 on S
I E = {x ∈ S | 0 = Lf W (x)} belongs to a level set of W

then Ω(ϕ) ⊂ E

Two LaSalle functions for L∂+lm dynamics

I V1(P) = (Pl − 1>n P)2

I V2(P) = f ε(P)

Ashish Cherukuri (UCSD) Analysis of distributed dynamical systems 16/38



How to make L∂+lm distributed?

Laplacian-nonsmooth-gradient dynamics

Ṗi ∈
∑
j∈Ni

aij(∂f ε
j (Pj)− ∂f ε

i (Pi )) + ν1zi

dynamic average consensus (dac)

żi = −αzi + β
∑
j∈Ni

(zj − zi )− vi + ν2(Pleri − Pi )

v̇i = αβ
∑
j∈Ni

(zi − zj)

I Each unit i has estimator
zi ∈ R tracking average
signal t 7→ 1

n (Pl − 1>n P(t))

Interconnected systems

I bottom component
estimates evolving load
mismatch given generation

I top component adjusts
generation levels based on
optimization of objective &
estimate of load mismatch

Load mismatch
estimate

z1, z2, . . . , zn

Generation
levels

P1, . . . ,Pn
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Load Mismatch along L∂+dac dynamics

Let x1 = 1>n P − Pl be the mismatch, x2 = ẋ1

Because of dynamic average consensus we get[
ẋ1

ẋ2

]
=

[
0 1

−ν1ν2 −α

] [
x1

x2

]
Second-order exponentially stable linear system – hence ISS
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Correctness Guarantees

Theorem (Convergence of L∂+dac dynamics)

For α, β, ν1, ν2 > 0 with

ν1

βν2λ2(L + L>)
+
ν2

2λmax(L>L)

2α
< λ2(L + L>)

trajectories of L∂+dac dynamics starting with 1>n v = 0 converge to
{(P, z , v) | P solution of ED problem, z = 0, v = ν2(Pler − P)}

[A. Cherukuri & J. Cortés, Allerton 2014]

[A. Cherukuri & J. Cortés, Automatica, submitted 2014]
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Technical and Robustness Analysis

Proof via refined LaSalle Invariance Principle for differential inclusions

V1(P, z , v) = ν1ν2(Pl − 1>n P)2 + ν2
1 (1>n z)2

V2(P, z , v) = f ε(P) +
1

2

(
ν1ν2‖z‖2 + ‖v + αz − ν2(Pler − P)‖2

)

Performance guarantees (L∂+dac dynamics)

I global convergence

I load mismatch dynamics is ISS

I dynamic loads tracked with ultimate bound

I robust to intermittent generation
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Illustration of Algorithm Performance

IEEE 118 bus example with 54 generators
Quadratic cost: fi (Pi ) = ai + biPi + ciP

2
i

ai ∈ [6.88, 74.33], bi ∈ [8.3391, 37.6968], and ci ∈ [0.0024, 0.0697]
Communication topology is ring digraph with few additional edges

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
4000

4200

4400

4600

 

 

total generation
total load

0 50 100 150 200 250 300
6

6.5

7

7.5

8 x 104

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
3200
3400
3600
3800
4000
4200
4400
4600
4800

 

 
total generation
total load

0 50 100 150 200 250 300
4.5

5
5.5

6
6.5

7
7.5

8 x 104

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
4000

4200

4400

4600

4800

 

 
total generation
total load

0 50 100 150 200 250 300
6

6.5

7

7.5

8 x 104

Power allocation Load mismatch Total cost

Ashish Cherukuri (UCSD) Analysis of distributed dynamical systems 21/38



Illustration of Algorithm Performance

IEEE 118 bus example with 54 generators
Quadratic cost: fi (Pi ) = ai + biPi + ciP

2
i

ai ∈ [6.88, 74.33], bi ∈ [8.3391, 37.6968], and ci ∈ [0.0024, 0.0697]
Communication topology is ring digraph with few additional edges

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
4000

4200

4400

4600

 

 

total generation
total load

0 50 100 150 200 250 300
6

6.5

7

7.5

8 x 104

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
3200
3400
3600
3800
4000
4200
4400
4600
4800

 

 
total generation
total load

0 50 100 150 200 250 300
4.5

5
5.5

6
6.5

7
7.5

8 x 104

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
4000

4200

4400

4600

4800

 

 
total generation
total load

0 50 100 150 200 250 300
6

6.5

7

7.5

8 x 104

Power allocation Load mismatch Total cost

Ashish Cherukuri (UCSD) Analysis of distributed dynamical systems 21/38



Illustration of Algorithm Performance

IEEE 118 bus example with 54 generators
Quadratic cost: fi (Pi ) = ai + biPi + ciP

2
i

ai ∈ [6.88, 74.33], bi ∈ [8.3391, 37.6968], and ci ∈ [0.0024, 0.0697]
Communication topology is ring digraph with few additional edges

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
4000

4200

4400

4600

 

 

total generation
total load

0 50 100 150 200 250 300
6

6.5

7

7.5

8 x 104

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
3200
3400
3600
3800
4000
4200
4400
4600
4800

 

 
total generation
total load

0 50 100 150 200 250 300
4.5

5
5.5

6
6.5

7
7.5

8 x 104

0 50 100 150 200 250 300
0

100

200

300

400

500

0 50 100 150 200 250 300
4000

4200

4400

4600

4800

 

 
total generation
total load

0 50 100 150 200 250 300
6

6.5

7

7.5

8 x 104

Power allocation Load mismatch Total cost

Ashish Cherukuri (UCSD) Analysis of distributed dynamical systems 21/38



Summary

Conclusions

I distributed algorithm for global constraint problem

I exact penalty functions, dac, refined LaSalle

I switching communication topologies possible

I robustness to intermittent generation

Future work

I Stochastic dispatch
I load, costs, min-(max-)capacities are random variables
I robust or stochastic optimization

I Learning in electricity markets
I generators are strategic
I selfish learning by repeated play

Ashish Cherukuri (UCSD) Analysis of distributed dynamical systems 22/38



Outline

1 Economic dispatch problem
Problem statement
Relaxed problem and centralized algorithm
Robust distributed algorithm

2 Analysis of Saddle-point dynamics
Convex-Concave Functions
General Functions

3 Analysis of Primal-dual dynamics
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Basic question

Gradient descent

Let f : Rn → R be C1 & convex

ẋ = −∇f (x)

bdd trajectories converge to minimizers

Gradient ascent

Let f : Rn → R be C1 & concave

ẋ = ∇f (x)

bdd trajectories converge to maximizers

Gradient descent + Gradient ascent
Let F : Rn × Rm → R be C1 & convex-concave
(for any (x̄ , z̄), x 7→ F (x , z̄) is convex & z 7→ F (x̄ , z) concave)

ẋ = −∇xF (x , z)

ż = ∇zF (x , z)

Do bdd trajectories converge to (min-max) saddle points?

Saddle point: F (x∗, z) ≤ F (x∗, z∗) ≤ F (x , z∗) for all x ∈ Rn and z ∈ Rm
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A picture is worth a thousand words
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F (x , z) = xz & (0, 0) is a saddle pt.

ẋ = −z
ż = x
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Motivation

Distributed convex optimization

minimize f (x)

subject to g(x) = 0

I aggregate cost: f (x) =
∑n

i=1 fi (xi )

I local constraints: gi only depends on

xi and {xj}j∈N(i)

I Lagrangian: L(x , λ) = f (x) + λ>g(x), convex-concave in (x , λ)

I Primal-dual optimizers ⇔ saddle points of L

I “gradient descent + gradient ascent” on L is distributed!

Convergence to saddle points of L?
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Problem statement

Let F : Rn × Rm → R be C1, write saddle-point dynamics Xsp,

ẋ = −∇xF (x , z)

ż = ∇zF (x , z)

When do trajectories of Xsp converge to Saddle(F ) ⊂ Rn × Rm?

What is already there

I Arrow & Hurwitz & Uzawa (1959): F convex-concave & strict in either

I Wang & Elia (2011): Lagrangian strictly convex in primal

I Fiejer & Paganini (2010): Projection in z-dynamics

I Ratliff & Burden & Sastry (2013): (Pos., Neg.) definite Hessian at NE
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Problem statement

Let F : Rn × Rm → R be C1, write saddle-point dynamics Xsp,

ẋ = −∇xF (x , z)

ż = ∇zF (x , z)

When do trajectories of Xsp converge to Saddle(F ) ⊂ Rn × Rm?

Our focus

1. beyond strict convexity-concavity

2. beyond convexity-concavity

3. local vs global convergence

4. continuum of saddle points + convergence to a point

5. complementary conditions
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Convexity-concavity-based convergence

Proposition (Local asymptotic stability via strict convexity-concavity)

If F is locally strictly convex-concave on Saddle(F ) then, Saddle(F ) is locally
asymptotically stable under Xsp and convergence is to a point.

Proof sketch:

I LaSalle function: V (x , z) = 1
2 (‖x − x∗‖2 + ‖z − z∗‖2)

I Lie derivative:

LXsp V (x , z) = −(x − x∗)
>∇xF (x , z) + (z − z∗)

>∇zF (x , z)

≤ 0

I Stable equilibrium =⇒ convergence to a point
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asymptotically stable under Xsp and convergence is to a point.

Proposition (Local asymptotic stability via convexity-linearity)

If F is locally convex-concave on Saddle(F ), linear in z, and

I for each (x∗, z∗) ∈ Saddle(F ), there exists a neighborhood Ux∗ ⊂ Rn of x∗
where, if F (x , z∗) = F (x∗, z∗) with x ∈ Ux∗ , then (x , z∗) ∈ Saddle(F ),

then Saddle(F ) is locally asymptotically stable under Xsp and convergence is to
a point.
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Convexity-linearity: example

Constrained optimization on R3

minimize (x1 + x2 + x3)2

subject to x1 = x2

X ∗

x2

x1

x3

I Optimizers: X ∗ = {x ∈ R3 | 2x1 + x3 = 0, x2 = x1}

I Lagrangian: L(x , z) = (x1 + x2 + x3)2 + z(x1 − x2)

I Saddle(L) = X ∗ × {0}

I Augmented Lagrangian: L̃(x , z) = L(x , z) + (x1 − x2)2

I L̃ globally convex-concave, linear in z , and meets the third criteria

I L̃ is NOT strictly convex-concave
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Convexity-linearity: example

Constrained optimization on R3

minimize (x1 + x2 + x3)2

subject to x1 = x2

I Xsp for Augmented Lagrangian L̃(x , z) = L(x , z) + (x1 − x2)2
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Linearization-based convergence

Proposition (Local asymptotic stability via linearization)

For F being C3, let Saddle(F ) be a p-dimensional manifold. Assume that DXsp

at each point in Saddle(F ) has no eigenvalues in the imaginary axis other than
0, which is semisimple with multiplicity p. Then, Saddle(F ) is locally
asymptotically stable under Xsp and convergence is to a point.

Proof sketch:

DXsp =

[
−∇xxF −∇xzF
∇zxF ∇zzF

]
(x∗,z∗)

I Saddle point property ⇒ DXsp + DX>sp � 0

I Re(λi (DXsp)) ≤ λmax( 1
2 (DXsp + DX>sp )) ≤ 0

I Now apply center manifold theory
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Linearization: example

Constrained optimization on R3

minimize (‖x‖ − 1)2

subject to x3 = 0.5

I Optimizers: X ∗ = {x ∈ R3 | x3 = 0.5, x2
1 + x2

2 = 0.75}

I Lagrangian: L(x , z) = (‖x‖ − 1)2 + z(x3 − 0.5)

I Saddle(L) = X ∗ × {0}

I The Jacobian of Xsp satisfies the hypotheses

X ∗
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Linearization: example

Constrained optimization on R3

minimize (‖x‖ − 1)2

subject to x3 = 0.5

I Xsp for Lagrangian L(x , z) = (‖x‖ − 1)2 + z(x3 − 0.5)
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Yet more to explore . . .

Consider F : R2 × R→ R,

F (x , z) = (‖x‖ − 1)4 − z2‖x‖2

I Saddle(F ) = {(x , z) | ‖x‖ = 1, z = 0} 1-d manifold

I Jacobian of Xsp has 0 eigenvalue with multiplicty 2

x1

x2

z

Saddle(F )
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Proximal calculus

V might not be decreasing but dS is!

dS(x , z) = min
(x∗,z∗)∈S

‖(x , z)− (x∗, z∗)‖

projS(x , z) = {(x∗, z∗) ∈ S | ‖(x , z)− (x∗, z∗)‖ = dS(x , z)}

(x , z)

S projS(x , z)

(x , z)
S

η

(x∗, z∗)
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dS(x , z) = min
(x∗,z∗)∈S

‖(x , z)− (x∗, z∗)‖

projS(x , z) = {(x∗, z∗) ∈ S | ‖(x , z)− (x∗, z∗)‖ = dS(x , z)}

(x , z)

S projS(x , z)

(x , z)
S

η

(x∗, z∗)

dS is locally Lipschitz and regular

∂d2
S(x , z) = co{2(x − x∗; z − z∗) | (x∗, z∗) ∈ projS(x , z)}

Does convexity-concavity along proximal normal to Saddle(F ) help?
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Proximal normal-based convergence

Proposition (Asymptotic stability via proximal normals)

For F being C2, assume that for every (x∗, z∗) and every proximal normal
η = (ηx , ηz) at (x∗, z∗) with ‖η‖ = 1, it holds that λ 7→ F (x∗ + ληx , z∗) is
convex and λ 7→ F (x∗, z∗ + ληz) is concave with

F (x∗ + ληx , z∗)− F (x∗, z∗) ≥ k1‖ληx‖α1

F (x∗, z∗ + ληz)− F (x∗, z∗) ≤ −k2‖ληz‖β1

and, for all t ∈ [0, 1],

‖∇xzF (x∗ + tληx , z∗ + ληz)−∇xzF (x∗ + ληx , z∗ + tληz)‖
≤ Lx‖ληx‖α2 + Lz‖ληz‖β2

Then, Saddle(F ) is locally asymptotically stable under Xsp if

(either Lx = 0 or α1 ≤ α2 + 1) AND (either Lz = 0 or β1 ≤ β2 + 1).
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Proximal normal: example

F (x , z) = (‖x‖ − 1)4 − z2‖x‖2

I Saddle(F ) = {(x , z) | ‖x‖ = 1, z = 0}
I (x∗, z∗) = (cos θ, sin θ, 0), where θ ∈ [0, 2π)

I η = (ηx , ηz) = ((a1 cos θ, a1 sin θ), a2), a2
1 + a2

2 = 1

x1

x2

z

I λ 7→ F (x∗ + ληx , z∗) = (λa1)4 is

convex with α1 = 4

I λ 7→ F (x∗, z∗ + ληz) = −(λa2)2 is

concave with β1 = 2

I Lx = 0, Lz 6= 0 and β2 = 1
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Summary

The story doesn’t end here but the time does!
[Cherukuri & Gharesifard & Cortés, SICON, submitted 2015]

Conclusions

I convexity-concavity

I convexity-linearity

I linearization

I proximal normal

Future work

I other asymptotic behaviors [Holding & Lestas, CDC 2014]

I matrix flows [Helmke & Moore, “Opt. & Dyn. Systems”]

I robustness analysis

I finite-length trajectories

I gradient conjecture of René Thom for saddle-point dynamics

V (x , z) = 1
2 (‖x − x∗‖2 + ‖z − z∗‖2)

d2
S(x , z) = min(x∗,z∗)∈S(‖x − x∗‖2 + ‖z − z∗‖2)
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Primal-dual dynamics

For inequalities, dual optima are nonnegative:

ẋ = −∇xF (x , z)

ż = [∇zF (x , z)]+
z

[a]+
b =

{
a if a ≥ 0 or b > 0

0 otherwise

Existing results on convergence:
I Arrow & Hurwitz & Uzawa (1959): Direct method with Taylor

approximation – limits further analysis
I Fiejer & Paganini (2010): Indirect method using hybrid automata theory –

continuity not satisfied

Our contribution is a novel proof methodology:
I consider solutions in Caratheodory sense
I model as a projected dynamical system
I use LaSalle Invariance Principle for Caratheodory systems

[A. Cherukuri & E. Mallada & J. Cortés, SIAM CT 2015]

[A. Cherukuri & E. Mallada & J. Cortés, SCL, 2015]
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Thank you. Comments or questions?

Jorge Cortés Bahman Gharesifard Enrique Mallada
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