Networked and distributed CPS: control under network constraints and networked transportation systems

Pavankumar Tallapragada

UC San Diego Jacobs School of Engineering

IIT Bombay, Jan. 11 2016

• Hundreds of sensors, actuators and processors all communicating over a network; millions of lines computer code

• Vast geographical spread, thousands of nodes - hierarchical and distributed topologies

• Integrated approach to the design of control, communication and computing components - Cyber Physical Systems (CPS)

• Challenges: Constrained resources (energy, communication, computation), privacy and security ...

1 Opportunistic state-triggered control

- 2 Differential privacy in CPS
- **3** Networked transportation systems
- 4 Summary & future research plans

1 Opportunistic state-triggered control

2 Differential privacy in CPS

3 Networked transportation systems

Image: Summary & future research plans

• When to transmit:

Time-triggered strategies

- The traditional approach to sampling
- Usually the triggering is periodic
- Novelty of the sensor data not important in the sampling decision

• When to transmit:

State-triggered (event-triggered) strategies

- A trigger function implicitly determines transmission times
- Trigger function encodes the control goal
- Transmissions occur only when necessary
- Better use of resources than time-triggered

• When to transmit:

State-triggered (event-triggered) strategies

- A trigger function implicitly determines transmission times
- Trigger function encodes the control goal
- Transmissions occur only when necessary
- Better use of resources than time-triggered
- Need to ensure Zeno does not occur

Event-triggered control under imperfect information

Online trajectory tracking

Dynamic output feedback control

Quantization and event-triggering co-design

Decentralized control

Ph.D. work

3

Event-triggered inter-tx times t

Lower bound on inter-tx times Also has connotation of MATI

K Time-triggered inter-tx times

MATI is a lower bound on inter-transmission times for an event-triggered implementation

MATI is a lower bound on inter-transmission times for an event-triggered implementation

- But what about the distribution or the average of the inter-transmission times?
- More generally, what is the average data rate?

MATI is a lower bound on inter-transmission times for an event-triggered implementation

(日) (同) (日) (日)

7/49

- But what about the distribution or the average of the inter-transmission times?
- More generally, what is the average data rate?
- These are open questions in general

MATI is a lower bound on inter-transmission times for an event-triggered implementation

- But what about the distribution or the average of the inter-transmission times?
- More generally, what is the average data rate?
- These are open questions in general
- Can we design controllers with analytically quantifiable data rate?
- Given a bound on the channel data capacity, what should the transmission policy be?

Networked control systems - what to transmit

Information-theory based data rate theorems

- Quite successful in the discrete-time setting
- Tight necessary and sufficient data rates for stabilization

Networked control systems - what to transmit

Information-theory based data rate theorems

- Quite successful in the discrete-time setting
- Tight necessary and sufficient data rates for stabilization

What about sufficient rates for specific performance (e.g. convergence rate)?

Plant dynamics:

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) + v(t), \quad u(t) = K \hat{x}(t), \quad x(t) \in \mathbb{R}^n, \quad \|v(t)\|_2 \leq \nu, \\ \forall t \in [t_0,\infty] \end{split}$$

Plant dynamics:

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) + v(t), \quad u(t) = K \hat{x}(t), \quad x(t) \in \mathbb{R}^n, \quad \|v(t)\|_2 \leq \nu, \\ \forall t \in [t_0,\infty] \end{split}$$

Communication model:

$$\Delta_k \leq \Delta(t_k, p_k) \triangleq \frac{b_k}{R_a(t_k)} = \frac{p_k}{R(t_k)}$$
of bits transmitted at t_k is $b_k = np_k$
Can choose $\{t_k\}, \{p_k\}, \{\tilde{r}_k\}$

Plant dynamics:

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) + v(t), \quad u(t) = K \hat{x}(t), \quad x(t) \in \mathbb{R}^n, \quad \|v(t)\|_2 \leq \nu, \\ \forall t \in [t_0,\infty] \end{split}$$

Communication model:

$$\Delta_k \leq \Delta(t_k, p_k) \triangleq \frac{b_k}{R_a(t_k)} = \frac{p_k}{R(t_k)}$$
of bits transmitted at t_k is $b_k = np_k$
Can choose $\{t_k\}, \{p_k\}, \{\tilde{r}_k\}$

イロト イロト イヨト イヨト 三日

9/49

Dynamic controller flow: $\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) = \bar{A}\hat{x}(t), \quad t \in [\tilde{r}_k, \tilde{r}_{k+1})$

Plant dynamics:

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) + v(t), \quad u(t) = K \hat{x}(t), \quad x(t) \in \mathbb{R}^n, \quad \|v(t)\|_2 \leq \nu, \\ \forall t \in [t_0,\infty] \end{split}$$

Communication model:

$$\Delta_k \leq \Delta(t_k, p_k) \triangleq \frac{b_k}{R_a(t_k)} = \frac{p_k}{R(t_k)}$$
of bits transmitted at t_k is $b_k = np_k$
Can choose $\{t_k\}, \{p_k\}, \{\tilde{r}_k\}$

Dynamic controller flow: $\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) = \bar{A}\hat{x}(t), \quad t \in [\tilde{r}_k, \tilde{r}_{k+1})$

Dynamic controller jump: $\hat{x}(\tilde{r}_k) \triangleq q_k(x(t_k), \hat{x}(t_k^-))$

Encoding error: $x_e \triangleq x - \hat{x}$

Suppose $\overline{A} = A + BK$ is Hurwitz $\iff P\overline{A} + \overline{A}^T P = -Q$ Lyapunov function: $x \mapsto V(x) = x^T P x$ Suppose $\bar{A} = A + BK$ is Hurwitz $\iff P\bar{A} + \bar{A}^T P = -Q$ Lyapunov function: $x \mapsto V(x) = x^T Px$

Desired performance function: $V_d(t) = (V_d(t_0) - V_0)e^{-\beta(t-t_0)} + V_0$ Performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$ Suppose $\overline{A} = A + BK$ is Hurwitz $\iff P\overline{A} + \overline{A}^T P = -Q$ Lyapunov function: $x \mapsto V(x) = x^T Px$

Desired performance function: $V_d(t) = (V_d(t_0) - V_0)e^{-\beta(t-t_0)} + V_0$ Performance objective: ensure $h_{pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Design objective:

- Design event-triggered communication policy that is applicable to channels with time-varying rates and data capacity
- Recursively determine $\{t_k\}, \{p_k\}$ and $\{\tilde{r}_k\}$
- Ensure a uniform positive lower bound for $\{t_k t_{k-1}\}_{k \in \mathbb{Z}_{>0}}$

Necessary data rate (non-state-triggered transmissions)

Set $\mathcal{S}(t)$ must lie within the set $\mathcal{V}_d(t) \triangleq \{\xi \in \mathbb{R}^n : V(\xi) \le V_d(t)\}$ at all times.

Necessary data rate (non-state-triggered transmissions)

Set S(t) must lie within the set $\mathcal{V}_d(t) \triangleq \{\xi \in \mathbb{R}^n : V(\xi) \le V_d(t)\}$ at all times.

Number of bits necessary to be transmitted between t_0 and t to meet the control goal:

$$\mathcal{B}(t,t_0) \ge \left(\operatorname{tr}(A) + \frac{n\beta}{2}\right) \log_2(e)(t-t_0) + \log_2\left(\frac{\operatorname{vol}(\mathcal{S}(t_0))}{c_P(V_d(t_0))^{\frac{n}{2}}}\right)$$

$$R_{\rm as} \triangleq \lim_{t \to \infty} \frac{\mathcal{B}(t, t_0)}{t - t_0} \ge \left(\operatorname{tr}(A) + \frac{n\beta}{2}\right) \log_2(e)$$

Assuming all eigenvalues of A have real parts greater than $-\beta$.

• If the decoder knows $d_e(t_0)$ s.t. $||x_e(t_0)||_{\infty} \leq d_e(t_0)$

- If the decoder knows $d_e(t_0)$ s.t. $||x_e(t_0)||_{\infty} \le d_e(t_0)$
- Both encoder and decoder compute recursively:

$$d_e(t) \triangleq \|e^{A(t-t_k)}\|_{\infty} \delta_k, \ t \in [\tilde{r}_k, \tilde{r}_{k+1}), \ k \in \mathbb{Z}_{\geq 0}$$
$$\delta_{k+1} = \frac{1}{2^{p_{k+1}}} d_e(t_{k+1}).$$

- If the decoder knows $d_e(t_0)$ s.t. $||x_e(t_0)||_{\infty} \le d_e(t_0)$
- Both encoder and decoder compute recursively:

$$d_e(t) \triangleq \|e^{A(t-t_k)}\|_{\infty} \delta_k, \ t \in [\tilde{r}_k, \tilde{r}_{k+1}), \ k \in \mathbb{Z}_{\ge 0}$$
$$\delta_{k+1} = \frac{1}{2^{p_{k+1}}} d_e(t_{k+1}).$$

12/49

• Then, $||x_e(t)||_{\infty} \le d_e(t)$, for all $t \ge t_0$

Control under bounded rate and capacity

Theorem

If

- \bar{p} is max. packet size
- $R(t) \ge \frac{p}{T_M}, \ \forall t$

Theorem

If

- \bar{p} is max. packet size
- $R(t) \ge \frac{p}{T_M}, \ \forall t$

Then

- Can design event-triggered $\{t_k\}, \{p_k\}, \{\tilde{r}_k\}$
- inter-transmission times have uniform positive lower bound
- $V(x(t)) \leq V_d(t)$ for $t \geq t_0$ (origin is exponentially practically stable if there is disturbance)

Upper bound on the sufficient data rate

Corollary (With disturbance)

Let
$$\bar{\theta} = ||A||_{\infty} + \frac{\beta}{2}$$
. For any $k \in \mathbb{Z}_{>0}$,
 $\underline{p_k} \le \log_2 \left(\frac{e^{\bar{\theta}T_M}}{\rho_T(\bar{b}(T_M, b(t_k^-), \epsilon(t_k^-)) - \alpha(T_M)} \right) + 1 + \log_2 \left(\frac{e^{\bar{\theta}(t_k - t_0)}}{\prod_{j=1}^{k-1} 2^{p_j}} \epsilon(t_0) + \sum_{i=0}^{k-1} \prod_{j=i+1}^{k-1} \frac{e^{\bar{\theta}T_j}}{2^{p_j}} \alpha(T_i) \right).$

Corollary (No disturbance)

Let
$$\bar{\theta} = ||A||_{\infty} + \frac{\beta}{2}$$
. For any $k \in \mathbb{Z}_{>0}$,
 $n\left(\underline{p_k} + \sum_{i=1}^{k-1} p_i\right) \le n\left[\log_2\left(\frac{e^{\bar{\theta}T_M}}{\rho_T(\bar{b}(T_M, b(t_k^-), \epsilon(t_k^-)))}\right) + 1 + \bar{\theta}\log_2(e)(t_k - t_0) + \log_2(\epsilon(t_0))\right].$

- In the general case, only an implicit characterization
- Effect of non-instant communication (through T_M) has only a "transient" effect on sufficient data rate
- In the scalar case, if no disturbance then necessary and sufficient asymptotic data rates are same

Shared communication resource

- Time-varying communication rates
- Channel may not be available during some intervals (blackouts)
- Time-triggered strategies would be very conservative
- Event-triggered controllers typically assume *on-demand* availability of channel

Shared communication resource

- Time-varying communication rates
- Channel may not be available during some intervals (blackouts)
- Time-triggered strategies would be very conservative
- Event-triggered controllers typically assume *on-demand* availability of channel

Key to online state based transmission policy: data capacity
Time-slotted channel model

- j^{th} time-slot is of length $T_j = \theta_{j+1} \theta_j$
- Channel is not available when $\bar{p} = 0$ (*channel blackout*)
- Channel evolution is known a priori

Time-slotted channel model

 $egin{aligned} R(t) &= R_j, \ \ orall t \in (heta_j, heta_{j+1}], \ \ extbf{min comm. rate:} \ rac{p_k}{\Delta(t_k, p_k)} \geq R(t_k) \ ar{p}(t) &= ar{\pi}_j, \ \ \ orall t \in (heta_j, heta_{j+1}], \ \ extbf{max packet size:} \ p_k \leq ar{p}(t_k) \end{aligned}$

- j^{th} time-slot is of length $T_j = \theta_{j+1} \theta_j$
- Channel is not available when $\bar{p} = 0$ (*channel blackout*)
- Channel evolution is known a priori

Main idea of solution: make sure the encoding error is sufficiently small at the beginning of a channel blackout

Time-slotted channel model

- j^{th} time-slot is of length $T_j = \theta_{j+1} \theta_j$
- Channel is not available when $\bar{p} = 0$ (*channel blackout*)
- Channel evolution is known a priori

Main idea of solution: make sure the encoding error is sufficiently small at the beginning of a channel blackout

Need to quantify *data capacity*

max # of bits that can be *communicated* during the time interval $[\tau_1, \tau_2]$, overall all possible $\{t_k\}$ and $\{p_k\}$

$$\mathcal{D}(\tau_1, \tau_2) \triangleq \max_{\substack{\{t_k\}, \{p_k\}\\ \text{s.t.} \dots}} n \sum_{\substack{k=\underline{k}_{\tau_1}}}^{k_{\tau_2}} p_k$$

$$\frac{r_3}{\tau_1 t_3} \cdots \frac{r_7}{t_7} \frac{r_8}{t_8 \tau_2}$$
$$\underline{k}_{\tau_1} = 3, \ \overline{k}_{\tau_2} = 7$$

max # of bits that can be *communicated* during the time interval $[\tau_1, \tau_2]$, overall all possible $\{t_k\}$ and $\{p_k\}$

$$\mathcal{D}(\tau_1, \tau_2) \triangleq \max_{\substack{\{t_k\}, \{p_k\}\\ \text{s.t. ...}}} n \sum_{k=\underline{k}_{\tau_1}}^{\overline{k}_{\tau_2}} p_k \qquad \qquad \begin{array}{c} \tau_3 & \tau_7 & \tau_8 \\ \tau_1 t_3 & \cdots & t_7 & t_8 \tau_2 \\ \hline t_1 t_3 & \cdots & t_7 & t_8 \tau_2 \end{array}$$

Equivalent to optimal allocation of $discrete \ \#$ bits to be transmitted in each time slot

Data capacity as allocation problem

Max # bits that may be transmitted in slot j $n\phi_j \le \begin{cases} nR_jT_j + n\bar{\pi}_j, & \text{if } \bar{\pi}_j > 0\\ 0, & \text{if } \bar{\pi}_j = 0 \end{cases}$

Available time in slot i is affected by prior transmissions $n\phi_j \le \begin{cases} nR_j \bar{T}_j(\phi_{j_0}^{j_f}) + n\bar{\pi}_j, & \text{if } \bar{T}_j(\phi_{j_0}^{j_f}) > 0\\ 0 & \text{otherwise} \end{cases}$

Count only the bits also received $\frac{\phi_j}{R_j} \le \begin{cases} \bar{T}_j(\phi_{j_0}^{j_f}) + \theta_{j_f} - \theta_{j+1}, & \text{if } \bar{T}_j(\phi_{j_0}^{j_f}) > 0 \\ 0, & \text{otherwise.} \end{cases}$

 $i \epsilon - 1$

◆□> ◆□> ◆□> ◆□> ●□

18/49

$$\mathcal{D}(\theta_{j_0}, \theta_{j_f}) = \max_{\substack{\phi_j \in \mathbb{Z}_{\ge 0} \\ \text{s.t. ...}}} n \sum_{j=j_0}^{j_f} \phi_j.$$

A suboptimal solution for "slowly varying channels"

Proposition

Assume $\frac{\bar{\pi}_j}{R_j} < T_{j+1}, \forall j \in \mathcal{N}_{j_0}^{j_f}$ (any bits transmitted in slot j are

received before the end of slot j + 1).

A suboptimal solution for "slowly varying channels"

Proposition

Assume $\frac{\bar{\pi}_j}{R_j} < T_{j+1}, \forall j \in \mathcal{N}_{j_0}^{j_f}$ (any bits transmitted in slot j are received before the end of slot j + 1). Let $\phi^r = \underset{\substack{\phi_j \in \mathbb{R}_{\geq 0}\\s.t. \dots}}{\operatorname{argmax}} \sum_{j=j_0}^{j_f-1} \phi_j$ (LP). Let

$$\phi^N \triangleq \lfloor \phi^r \rfloor \triangleq (\lfloor \phi_{j_0}^r \rfloor, \dots, \lfloor \phi_{j_f-1}^r \rfloor), \quad \mathcal{D}_s(\theta_{j_0}, \theta_{j_f}) \triangleq n \sum_{j=j_0}^{j_f-1} \phi_j^N.$$

<ロト < 部ト < 言ト < 言ト 言 のへで 19/49

A suboptimal solution for "slowly varying channels"

Proposition

Assume
$$\frac{\pi_j}{R_j} < T_{j+1}, \forall j \in \mathcal{N}_{j_0}^{j_f}$$
 (any bits transmitted in slot j are
received before the end of slot $j + 1$). Let $\phi^r = \underset{\substack{\phi_j \in \mathbb{R}_{\geq 0} \\ s.t. \dots}}{\operatorname{argmax}} \sum_{j=j_0}^{j_f-1} \phi_j$ (LP).
Let

$$\phi^N \triangleq \lfloor \phi^r \rfloor \triangleq (\lfloor \phi_{j_0}^r \rfloor, \dots, \lfloor \phi_{j_f-1}^r \rfloor), \quad \mathcal{D}_s(\theta_{j_0}, \theta_{j_f}) \triangleq n \sum_{j=j_0}^{j_f-1} \phi_j^N.$$

Then

æ

イロト イロト イヨト イヨト

Real time computation of data capacity

Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $\mathcal{D}(\theta_{j_0}, \theta_{j_f})$ (or $\mathcal{D}_s(\theta_{j_0}, \theta_{j_f})$).

Real time computation of data capacity

Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $\mathcal{D}(\theta_{j_0}, \theta_{j_f})$ (or $\mathcal{D}_s(\theta_{j_0}, \theta_{j_f})$). For any $t \in [\theta_{j_0}, \theta_{j_0+1})$ (any t in j_0 slot)

$$\hat{\mathcal{D}}(t,\theta_{j_f}) \triangleq \left[n \left[\phi_{j_0}^* - R_{j_0}(t-\theta_{j_0}) \right] \right]_+ + n \sum_{\substack{j=j_0+1\\ j=j_0+1}}^{j_f-1} \phi_j^* \\ \hat{\mathcal{D}}_s(t,\theta_{j_f}) \triangleq \left[n \left[\phi_{j_0}^N - R_{j_0}(t-\theta_{j_0}) \right] \right]_+ + n \sum_{\substack{j=j_0+1\\ j=j_0+1}}^{j_f-1} \phi_j^N,$$

・ロ ・ ・ 一 ・ ・ 注 ・ ・ 注 ・ う へ で
20 / 49

Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $\mathcal{D}(\theta_{j_0}, \theta_{j_f})$ (or $\mathcal{D}_s(\theta_{j_0}, \theta_{j_f})$). For any $t \in [\theta_{j_0}, \theta_{j_0+1})$ (any t in j_0 slot)

$$\hat{\mathcal{D}}(t,\theta_{j_{f}}) \triangleq \left[n \left[\phi_{j_{0}}^{*} - R_{j_{0}}(t-\theta_{j_{0}}) \right] \right]_{+} + n \sum_{j=j_{0}+1}^{j_{f}-1} \phi_{j}^{*}$$
$$\hat{\mathcal{D}}_{s}(t,\theta_{j_{f}}) \triangleq \left[n \left[\phi_{j_{0}}^{N} - R_{j_{0}}(t-\theta_{j_{0}}) \right] \right]_{+} + n \sum_{j=j_{0}+1}^{j_{f}-1} \phi_{j}^{N},$$

Then, $0 \leq \mathcal{D}(t, \theta_{j_f}) - \hat{\mathcal{D}}(t, \theta_{j_f}) \leq n \text{ and } 0 \leq \mathcal{D}_s(t, \theta_{j_f}) - \hat{\mathcal{D}}_s(t, \theta_{j_f}) \leq n.$

Proposition

Let ϕ^* (or ϕ^N) be any optimizing solution to $\mathcal{D}(\theta_{j_0}, \theta_{j_f})$ (or $\mathcal{D}_s(\theta_{j_0}, \theta_{j_f})$). For any $t \in [\theta_{j_0}, \theta_{j_0+1})$ (any t in j_0 slot)

$$\hat{\mathcal{D}}(t,\theta_{j_f}) \triangleq \left[n \left[\phi_{j_0}^* - R_{j_0}(t-\theta_{j_0}) \right] \right]_+ + n \sum_{\substack{j=j_0+1\\ j=j_0+1}}^{j_f-1} \phi_j^*$$
$$\hat{\mathcal{D}}_s(t,\theta_{j_f}) \triangleq \left[n \left[\phi_{j_0}^N - R_{j_0}(t-\theta_{j_0}) \right] \right]_+ + n \sum_{\substack{j=j_0+1\\ j=j_0+1}}^{j_f-1} \phi_j^N,$$

Then, $0 \leq \mathcal{D}(t, \theta_{j_f}) - \hat{\mathcal{D}}(t, \theta_{j_f}) \leq n \text{ and } 0 \leq \mathcal{D}_s(t, \theta_{j_f}) - \hat{\mathcal{D}}_s(t, \theta_{j_f}) \leq n.$

Significance: Sufficient to solve the data capacity problem for intervals $[\theta_{j_0}, \theta_{j_f}]$ of interest.

Recall performance objective: ensure $h_{\rm pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Recall performance objective: ensure $h_{\rm pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function:
$$h_{\rm ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{\rm pf}(t))}, \quad \epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$$

Recall performance objective: ensure $h_{\rm pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function:
$$h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))}, \quad \epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$$

Lemma

If $h_{\rm pf}(t) \leq 1$ and $h_{\rm ch}(t) \leq 1$

Recall performance objective: ensure $h_{\rm pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function:
$$h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))}, \quad \epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$$

Lemma

If $h_{\rm pf}(t) \leq 1$ and $h_{\rm ch}(t) \leq 1$ then $h_{\rm pf}(s) \leq 1$, $\forall s \in [t, t + T']$.

Recall performance objective: ensure $h_{\rm pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function:
$$h_{ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{pf}(t))}, \quad \epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$$

Lemma

If $h_{\rm pf}(t) \le 1$ and $h_{\rm ch}(t) \le 1$ then $h_{\rm pf}(s) \le 1$, $\forall s \in [t, t + T']$.

Idea for triggering:

• Make sure
$$h_{pf}(t) \le 1, \forall t \in [t_k, \tilde{r}_k]$$

Recall performance objective: ensure $h_{\rm pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function:
$$h_{\rm ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{\rm pf}(t))}, \quad \epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$$

Lemma

If $h_{\rm pf}(t) \le 1$ and $h_{\rm ch}(t) \le 1$ then $h_{\rm pf}(s) \le 1$, $\forall s \in [t, t + T']$.

Idea for triggering:

- Make sure $h_{pf}(t) \leq 1, \forall t \in [t_k, \tilde{r}_k]$
- Make sure $h_{ch}(\tilde{r}_k) \leq 1$ so that future ability to control is not lost

Recall performance objective: ensure $h_{\rm pf}(t) \triangleq \frac{V(x(t))}{V_d(t)} \leq 1$, for all $t \geq t_0$

Channel trigger function:
$$h_{\rm ch}(t) \triangleq \frac{\epsilon(t)}{\rho_T(h_{\rm pf}(t))}, \quad \epsilon(t) \triangleq \frac{d_e(t)}{c\sqrt{V_d(t)}}$$

Lemma

If $h_{\rm pf}(t) \le 1$ and $h_{\rm ch}(t) \le 1$ then $h_{\rm pf}(s) \le 1$, $\forall s \in [t, t + T']$.

Idea for triggering:

• Make sure
$$h_{pf}(t) \le 1, \forall t \in [t_k, \tilde{r}_k]$$

• Make sure $h_{ch}(\tilde{r}_k) \leq 1$ so that future ability to control is not lost

$$\tilde{\mathcal{L}}_{1}(t) \triangleq \bar{h}_{\rm pf}\left(\mathcal{T}(t), h_{\rm pf}(t), \epsilon(t)\right)$$

$$\tilde{\mathcal{L}}_{2}(t) \triangleq \bar{h}_{\rm ch}\left(\mathcal{T}(t), h_{\rm pf}(t), \epsilon(t), \psi^{\tau_{l}}(t)\right)$$

$$\mathcal{T}(t) \triangleq$$

$$\begin{cases} T_{M}(\psi^{\tau_{l}}(t)), & \text{if } \psi^{\tau_{l}}(t) \geq 1 \\ \frac{2}{R(t)}, & \text{if } \psi^{\tau_{l}}(t) = 0. \end{cases}$$

21/49

Transmission policy should be in tune with the optimal allocation

Transmission policy should be in tune with the optimal allocation $\Phi^{\tau_l}(t) \triangleq [[\mathcal{P}_j - R_j(t - \theta_j)]]_+, t \in (\theta_j, \theta_{j+1}] \text{ (optim. alloc. in } (t, \theta_{j+1}])$

Transmission policy should be in tune with the optimal allocation $\Phi^{\tau_l}(t) \triangleq [[\mathcal{P}_j - R_j(t - \theta_j)]]_+, t \in (\theta_j, \theta_{j+1}] \text{ (optim. alloc. in } (t, \theta_{j+1}])$ Artificial bound on packet size: $\psi^{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi^{\tau_l}(t)\}$

Transmission policy should be in tune with the optimal allocation $\Phi^{\tau_l}(t) \triangleq [[\mathcal{P}_j - R_j(t - \theta_j)]]_+, t \in (\theta_j, \theta_{j+1}] \text{ (optim. alloc. in } (t, \theta_{j+1}])$ Artificial bound on packet size: $\psi^{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi^{\tau_l}(t)\}$

If $\tilde{\mathcal{L}}_3(t_k) \leq 0$ and $p_k \leq \psi^{\tau_l}(t_k)$ If data capacity was "sufficient" at t_k and p_k respects artificial bound

22/49

Transmission policy should be in tune with the optimal allocation $\Phi^{\tau_l}(t) \triangleq [[\mathcal{P}_j - R_j(t - \theta_j)]]_+, t \in (\theta_j, \theta_{j+1}] \text{ (optim. alloc. in } (t, \theta_{j+1}])$ Artificial bound on packet size: $\psi^{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi^{\tau_l}(t)\}$

If
$$\tilde{\mathcal{L}}_3(t_k) \leq 0$$
 and $p_k \leq \psi^{\tau_l}(t_k)$ then $\tilde{\mathcal{L}}_3(r_k) \leq 0$
If data capacity was "sufficient" at t_k and p_k
respects artificial bound then data capacity is
"sufficient" at r_k

22/49

A 3 A 3

Transmission policy should be in tune with the optimal allocation $\Phi^{\tau_l}(t) \triangleq [[\mathcal{P}_j - R_j(t - \theta_j)]]_+, t \in (\theta_j, \theta_{j+1}] \text{ (optim. alloc. in } (t, \theta_{j+1}])$ Artificial bound on packet size: $\psi^{\tau_l}(t) \triangleq \min\{\bar{p}(t), \Phi^{\tau_l}(t)\}$

If $\tilde{\mathcal{L}}_3(t_k) \leq 0$ and $p_k \leq \psi^{\tau_l}(t_k)$ then $\tilde{\mathcal{L}}_3(r_k) \leq 0$ If data capacity was "sufficient" at t_k and p_k respects artificial bound then data capacity is "sufficient" at r_k

But $\psi^{\tau_l}(t)$ can be 0 when $\bar{p}(t) > 0$ (artificial blackouts)

$$t_{k+1} = \min\left\{t \ge \tilde{r}_k: \ \psi^{\tau_l}(t) \ge 1 \land \\ \left(\max\{\tilde{\mathcal{L}}_1(t), \tilde{\mathcal{L}}_1(t^+), \tilde{\mathcal{L}}_2(t), \tilde{\mathcal{L}}_2(t^+)\} \ge 1 \\ \lor \max\{\tilde{\mathcal{L}}_3(t), \tilde{\mathcal{L}}_3(t^+)\} \ge 0\right)\right\},$$

$$t_{k+1} = \min\left\{t \ge \tilde{r}_k: \ \psi^{\tau_l}(t) \ge 1 \land \\ \left(\max\{\tilde{\mathcal{L}}_1(t), \tilde{\mathcal{L}}_1(t^+), \tilde{\mathcal{L}}_2(t), \tilde{\mathcal{L}}_2(t^+)\} \ge 1 \\ \lor \max\{\tilde{\mathcal{L}}_3(t), \tilde{\mathcal{L}}_3(t^+)\} \ge 0\right)\right\},$$

$$p_k \in \mathbb{Z}_{>0} \cap [\underline{p_k}, \psi^{\tau_l}(t_k)]$$

$$\underline{p_k} \triangleq \min\{p \in \mathbb{Z}_{>0} : \bar{h}_{ch}(T_M(p), h_{pf}(t_k), \epsilon(t_k), p) \le 1\}.$$

23/49

$$t_{k+1} = \min \left\{ t \ge \tilde{r}_k : \psi^{\tau_l}(t) \ge 1 \land \\ \left(\max\{ \tilde{\mathcal{L}}_1(t), \tilde{\mathcal{L}}_1(t^+), \tilde{\mathcal{L}}_2(t), \tilde{\mathcal{L}}_2(t^+) \} \ge 1 \\ \lor \max\{ \tilde{\mathcal{L}}_3(t), \tilde{\mathcal{L}}_3(t^+) \} \ge 0 \right) \right\},$$

$$p_k \in \mathbb{Z}_{>0} \cap [\underline{p_k}, \psi^{\tau_l}(t_k)]$$

$$\underline{p_k} \triangleq \min\{p \in \mathbb{Z}_{>0} : \bar{h}_{ch}(T_M(p), h_{pf}(t_k), \epsilon(t_k), p) \le 1\}.$$

 $\tilde{r}_k = \min\{t \ge r_k : \psi^{\tau_l}(t) \ge 1 \ \lor \ \bar{p}(t) = 0\}.$

Theorem

If

- $R(t) \ge \frac{(p+2)}{T_M(p)}, \ \forall p \in \{1, \dots, p^{Max}\}, \ \forall t$
- $\tilde{\mathcal{L}}_1(t_0) \leq 1$, $\tilde{\mathcal{L}}_2(t_0) \leq 1$ and $\tilde{\mathcal{L}}_3(t_0) \leq 0$ (initial feasibility)

• Conditions on blackout lengths

Theorem

If

- $R(t) \ge \frac{(p+2)}{T_M(p)}, \ \forall p \in \{1, \dots, p^{Max}\}, \ \forall t$
- $\tilde{\mathcal{L}}_1(t_0) \leq 1$, $\tilde{\mathcal{L}}_2(t_0) \leq 1$ and $\tilde{\mathcal{L}}_3(t_0) \leq 0$ (initial feasibility)
- Conditions on blackout lengths

Then

- $\{t_k\}, \{p_k\}, \{\tilde{r}_k\}$ well defined
- inter-transmission times have uniform positive lower bound
- $V(x(t)) \leq V_d(t_0)e^{-\beta(t-t_0)}$ for $t \geq t_0$ (origin is exponentially stable)

Simulation results: 2D linear system

25/49

1 Opportunistic state-triggered control

2 Differential privacy in CPS

3 Networked transportation systems

4 Summary & future research plans

Privacy and security in CPS

• Malicious attacks can have catastrophic physical consequences - industrial plants, cars and traffic, medical devices
Privacy and security in CPS

- Malicious attacks can have catastrophic physical consequences industrial plants, cars and traffic, medical devices
- Large scale collection of user data in many domains many benefits but loss of individuals' privacy
- Encryption not sufficient need a multi-layered approach

Differential privacy

Definition (Differential privacy)

Given $\delta, \epsilon \in \mathbb{R}^n_{\geq 0}$, the mechanism \mathcal{M} is ϵ -differentially private if, for any two δ -adjacent data $X^{(1)}$ and $X^{(2)}$ and any observation set \mathcal{O} , one has

 $\mathbb{P}\{\mathcal{M}(X^{(2)}) \in \mathcal{O}\} \le e^{\epsilon} \mathbb{P}\{\mathcal{M}(X^{(1)}) \in \mathcal{O}\}$

Agents' dynamics: $\theta(k+1) = \theta(k) - hLx(k) + S\eta(k), \quad \theta \in \mathbb{R}^n$ Messages: $x(k) = \theta(k) + \eta(k)$

h is step size, S is a diagonal matrix with diagonal (s_1, \ldots, s_n)

 $\eta_i(k) \in \mathbb{R}$ is the noise added by agent *i* on time step *k*

Agents' dynamics: $\theta(k+1) = \theta(k) - hLx(k) + S\eta(k), \quad \theta \in \mathbb{R}^n$ Messages: $x(k) = \theta(k) + \eta(k)$

h is step size, S is a diagonal matrix with diagonal (s_1, \ldots, s_n)

 $\eta_i(k) \in \mathbb{R}$ is the noise added by agent i on time step k

Objective:

- Design the distribution of the noise sequences η
- Want asymptotic average consensus and $\epsilon\text{-differential}$ privacy of the initial condition,
- ϵ as small as possible, and maximize algorithms accuracy

Theorem

For any $\delta, \epsilon > 0$, agents cannot simultaneously converge to the average of their initial states in distribution and preserve ϵ -differential privacy of their initial states.

Differentially private average consensus

If

Theorem • $\eta_i(k) \sim Lap(b_i(k))$ (Laplace distribution) $b_i(k) = c_i q_i^k, \ c_i \in \mathbb{R}_{>0}, \ q_i \in (|s_i - 1|, 1), \ s_i \in (0, 2)$

Differentially private average consensus

Theorem

If

• $\eta_i(k) \sim Lap(b_i(k))$ (Laplace distribution) $b_i(k) = c_i q_i^k, \ c_i \in \mathbb{R}_{>0}, \ q_i \in (|s_i - 1|, 1), \ s_i \in (0, 2)$

Then

- For all $i \in \{1, ..., n\}$, $\theta_i(k) \to \theta_\infty$ almost surely, where $\theta_\infty = \operatorname{Ave}(\theta(0)) + \sum_{i=1}^n \frac{s_i}{n} \sum_{j=0}^\infty \eta_i(j)$
- $\mathbb{E}\{\theta_{\infty}\} = \operatorname{Ave}(\theta(0)), \quad var\{\theta_{\infty}\} = \frac{2}{n^2} \sum_{i=1}^{n} \frac{s_i^2 c_i^2}{1-q_i^2}$
- ϵ_i -differential privacy of agent *i*'s initial condition, with $\epsilon_i = \delta \frac{q_i}{c_i(q_i+s_i-1)}$.

Differentially private average consensus

Theorem

If

• $\eta_i(k) \sim Lap(b_i(k))$ (Laplace distribution) $b_i(k) = c_i q_i^k, \ c_i \in \mathbb{R}_{>0}, \ q_i \in (|s_i - 1|, 1), \ s_i \in (0, 2)$

Then

- For all $i \in \{1, ..., n\}$, $\theta_i(k) \to \theta_\infty$ almost surely, where $\theta_\infty = \operatorname{Ave}(\theta(0)) + \sum_{i=1}^n \frac{s_i}{n} \sum_{j=0}^\infty \eta_i(j)$
- $\mathbb{E}\{\theta_{\infty}\} = \operatorname{Ave}(\theta(0)), \quad var\{\theta_{\infty}\} = \frac{2}{n^2} \sum_{i=1}^{n} \frac{s_i^2 c_i^2}{1-q_i^2}$
- ϵ_i -differential privacy of agent *i*'s initial condition, with $\epsilon_i = \delta \frac{q_i}{c_i(q_i+s_i-1)}$.

Optimal selection of noise parameters by minimizing var $\{\theta_{\infty}\}$

3 Networked transportation systems

4 Summary & future research plans

Networked transportation systems

• Collision avoidance, cruise control, trip planning, traffic coordination, on-demand public transport, multi-modal coordination . . .

Intersection traffic coordination

Source: CAR 2 CAR communication consortium

- Vehicle-to-vehicle and vehicle-to-infrastructure communication can be used to coordinate traffic - no traffic lights
- Individual vehicles can use fore-knowledge of the schedule to optimize their travel much before they reach the intersection
- Potential to significantly improve safety, travel ease, travel times, energy consumption

Problem statement

• Assumptions: (i) Single lane in each direction, (ii) all vehicles are identical with length L, (iii) no turning at the intersection, (iv) no sources or sinks for vehicles along the branches.

Problem statement

- Assumptions: (i) Single lane in each direction, (ii) all vehicles are identical with length L, (iii) no turning at the intersection, (iv) no sources or sinks for vehicles along the branches.
- Vehicle dynamics:

 $\begin{aligned} \dot{x}_j^v(t) &= v_j^v(t), & \text{Bounded control: } u_j^v(t) \in [u_m, u_M] \\ \dot{v}_j^v(t) &= u_j^v(t), & \text{Speed limit: } v_j^v(t) \text{ must be in } [0, v^M] \end{aligned}$

• Cost function: $C \triangleq \sum_{j} \int_{t_{j}^{\text{spawn}}}^{T_{j}^{\text{exit}}} (W_{T} + |u_{j}^{v}|) \mathrm{d}t$

Problem statement

- Assumptions: (i) Single lane in each direction, (ii) all vehicles are identical with length L, (iii) no turning at the intersection, (iv) no sources or sinks for vehicles along the branches.
- Vehicle dynamics:

 $\begin{aligned} \dot{x}_j^v(t) &= v_j^v(t), & \text{Bounded control: } u_j^v(t) \in [u_m, u_M] \\ \dot{v}_j^v(t) &= u_j^v(t), & \text{Speed limit: } v_j^v(t) \text{ must be in } [0, v^M] \end{aligned}$

• Cost function:
$$C \triangleq \sum_{j} \int_{t_{j}^{\text{spawn}}}^{T_{j}^{\text{stit}}} (W_{T} + |u_{j}^{v}|) \mathrm{d}t$$

- Objective: Design a traffic coordination mechanism for networked and automated vehicles that seeks to minimize the cost function
- Challenges: Problem is combinatorial. Solving it at the level of individual cars is computationally expensive and not scalable.

A scalable solution

- Black dots are individual vehicles
- Vehicles are clustered into *bubbles* represented by the grey boxes
- Vehicles of a bubble *platoon (rigid cohesive group)* when crossing the intersection
- x_i is the position of the lead vehicle in the bubble
- Δ is the length of the intersection

A scalable solution

- Black dots are individual vehicles
- Vehicles are clustered into *bubbles* represented by the grey boxes
- Vehicles of a bubble *platoon (rigid cohesive group)* when crossing the intersection
- x_i is the position of the lead vehicle in the bubble
- Δ is the length of the intersection

State of bubble i:

$$\begin{split} & (x_i, v_i, m_i, \bar{\tau}_i^{\mathrm{occ}}, \mathcal{I}_i) \in \mathbb{R}^4 \times \{1, 2, 3, 4\}, \\ & x_i \text{: position of the lead vehicle} \\ & v_i \text{: velocity of the lead vehicle} \\ & m_i \text{: number of vehicles in the bubble} \\ & \bar{\tau}_i^{\mathrm{occ}} \text{: guaranteed upper-bound on } \tau_i^{\mathrm{occ}} \\ & \mathcal{I}_i \text{: branch label that the bubble is on} \end{split}$$

 τ_i : scheduled time of approach at the beginning of the intersection for the lead vehicle in bubble *i*

 $\tau_i^{\mathrm{occ}}:$ occupancy time - time for which bubble i occupies the intersection

Constraints:

 $\begin{aligned} &\tau_i \in [\max\{\tau^{\min}, \tau_i^e\}, \tau_i^l], \text{ interval determined by initial conditions} \\ &\tau_j \geq \tau_i + \bar{\tau}_i^{\text{occ}}, \text{ if bubbles } i \text{ and } j \text{ on same branch and } j \text{ follows } i \\ &\tau_i \geq \tau_j + \bar{\tau}_j^{\text{occ}} \text{ OR } \tau_j \geq \tau_i + \bar{\tau}_i^{\text{occ}}, \text{ if } \mathcal{I}_i \neq \mathcal{I}_j, \end{aligned}$

Constraints:

 $\begin{aligned} &\tau_i \in [\max\{\tau^{\min}, \tau_i^e\}, \tau_i^l], \text{ interval determined by initial conditions} \\ &\tau_j \geq \tau_i + \bar{\tau}_i^{\text{occ}}, \text{ if bubbles } i \text{ and } j \text{ on same branch and } j \text{ follows } i \\ &\tau_i \geq \tau_j + \bar{\tau}_j^{\text{occ}} \text{ OR } \tau_j \geq \tau_i + \bar{\tau}_i^{\text{occ}}, \text{ if } \mathcal{I}_i \neq \mathcal{I}_j, \end{aligned}$

Simplified cost function for scheduling:

$$\mathcal{C}_{\mathcal{L}} \triangleq \sum_{i \in \mathcal{L}} m_i (W_T(\tau_i - t_s) + F_i(\bar{v}_i)) = \sum_{i \in \mathcal{L}} m_i \left(W_T \frac{-x_i}{\bar{v}_i} + F_i(\bar{v}_i) \right)$$

 \bar{v}_i : average velocity of the lead vehicle in bubble *i* for $t \in [t_s, t_s + \tau_i]$.

Constraints:

 $\begin{aligned} &\tau_i \in [\max\{\tau^{\min}, \tau_i^e\}, \tau_i^l], \text{ interval determined by initial conditions} \\ &\tau_j \geq \tau_i + \bar{\tau}_i^{\text{occ}}, \text{ if bubbles } i \text{ and } j \text{ on same branch and } j \text{ follows } i \\ &\tau_i \geq \tau_j + \bar{\tau}_j^{\text{occ}} \text{ OR } \tau_j \geq \tau_i + \bar{\tau}_i^{\text{occ}}, \text{ if } \mathcal{I}_i \neq \mathcal{I}_j, \end{aligned}$

Simplified cost function for scheduling:

$$\mathcal{C}_{\mathcal{L}} \triangleq \sum_{i \in \mathcal{L}} m_i (W_T(\tau_i - t_s) + F_i(\bar{v}_i)) = \sum_{i \in \mathcal{L}} m_i \left(W_T \frac{-x_i}{\bar{v}_i} + F_i(\bar{v}_i) \right)$$

 \bar{v}_i : average velocity of the lead vehicle in bubble *i* for $t \in [t_s, t_s + \tau_i]$.

Assumption: $F_i: [0, v^M] \mapsto \mathbb{R}_{>0}$ is a monotonically decreasing

Constraints:

 $\tau_i \in [\max\{\tau^{\min}, \tau_i^e\}, \tau_i^l],$ interval determined by initial conditions $\tau_i \geq \tau_i + \overline{\tau}_i^{\text{occ}}$, if bubbles *i* and *j* on same branch and *j* follows *i* $\tau_i \geq \tau_i + \bar{\tau}_i^{\text{occ}} \text{ OR } \tau_i \geq \tau_i + \bar{\tau}_i^{\text{occ}}, \quad \text{if } \mathcal{I}_i \neq \mathcal{I}_i,$

Simplified cost function for scheduling:

$$\mathcal{C}_{\mathcal{L}} \triangleq \sum_{i \in \mathcal{L}} m_i (W_T(\tau_i - t_s) + F_i(\bar{v}_i)) = \sum_{i \in \mathcal{L}} m_i \left(W_T \frac{-x_i}{\bar{v}_i} + F_i(\bar{v}_i) \right)$$

 \bar{v}_i : average velocity of the lead vehicle in bubble *i* for $t \in [t_s, t_s + \tau_i]$.

Assumption: $F_i: [0, v^M] \mapsto \mathbb{R}_{>0}$ is a monotonically decreasing

Schedule optimization using *branch* and bound.

Tree of possible bubble passage orders. イロト イボト イヨト イヨト

3

Safe-following distance

Definition (Safe-following distance)

We say a quantity $\mathcal{D}(v_{j-1}^v(t), v_j^v(t))$ is a safe-following distance at time t for the pair of vehicles j-1 and j if

- $x_{j-1}^v(t) x_j^v(t) \ge \mathcal{D}(v_{j-1}^v(t), v_j^v(t))$
- both the vehicles were to perform the maximum braking maneuver then the two vehicles would be safely separated, $x_{j-1}^v - L \ge x_j^v$ until they come to a complete stop.

Safe-following distance

Definition (Safe-following distance)

We say a quantity $\mathcal{D}(v_{j-1}^v(t), v_j^v(t))$ is a safe-following distance at time t for the pair of vehicles j-1 and j if

- $x_{j-1}^v(t) x_j^v(t) \ge \mathcal{D}(v_{j-1}^v(t), v_j^v(t))$
- both the vehicles were to perform the maximum braking maneuver

then the two vehicles would be safely separated, $x_{j-1}^v - L \ge x_j^v$ until they come to a complete stop.

Lemma

$$\mathcal{D}(v_{j-1}^v(t), v_j^v(t)) = L + \max\left\{0, \frac{-1}{2u_m}\left((v_j^v(t))^2 - (v_{j-1}^v(t))^2\right)\right\} \text{ is a}$$

safe-following distance for a vehicle j following $j-1$.

Safety ratio:
$$\sigma_j(t) \triangleq \frac{x_{j-1}^v(t) - x_j^v(t)}{\mathcal{D}(v_{j-1}^v(t), v_j^v(t))}$$

39/49

< ロ > (四 > (三 > (三 > (三 >)))) (三 >)))

Distributed vehicular control

Consists of two parts

- an *uncoupled optimal feedback controller* for reaching the intersection at a nominal deadline with a nominal speed: g_{uc}
- a controller for safe following: $g_{sf} \triangleq \min\{g_{uc}, g_{us}\},\$

$$g_{us}(\zeta_j, u_{j-1}^v) \triangleq \begin{cases} u_{j-1}^v, & \text{if } v_j^v = 0, \\ \left(\frac{v_{j-1}^v}{v_j^v} \left(1 + \sigma_j \frac{u_{j-1}^v}{-u_m}\right) - 1\right) \left(\frac{-u_m}{\sigma_j}\right), & \text{if } v_j^v > 0. \end{cases}$$

Distributed vehicular control

Consists of two parts

- an *uncoupled optimal feedback controller* for reaching the intersection at a nominal deadline with a nominal speed: g_{uc}
- a controller for safe following: $g_{sf} \triangleq \min\{g_{uc}, g_{us}\},\$

$$g_{us}(\zeta_j, u_{j-1}^v) \triangleq \begin{cases} u_{j-1}^v, & \text{if } v_j^v = 0, \\ \left(\frac{v_{j-1}^v}{v_j^v} \left(1 + \sigma_j \frac{u_{j-1}^v}{-u_m}\right) - 1\right) \left(\frac{-u_m}{\sigma_j}\right), & \text{if } v_j^v > 0. \end{cases}$$

$$\begin{array}{lll} \text{Control law:} \quad u_j^v(t) = \begin{cases} g_{uc}, & \text{if } \zeta_j \notin \mathcal{C}_s, \; v_j^v < v^M, \\ [g_{uc}]_{u_m}^0, & \text{if } \zeta_j \notin \mathcal{C}_s, \; v_j^v = v^M, \\ g_{sf}, & \text{if } \zeta_j \in \mathcal{C}_s, \; v_j^v < v^M, \\ [g_{sf}]_{u_m}^0, & \text{if } \zeta_j \in \mathcal{C}_s, \; v_j^v = v^M. \end{cases} \end{array}$$

Coupling set: $C_s \triangleq \{(v_1, v_2, \sigma) : v_2 \ge v_1 \text{ and } \sigma \in [1, \sigma_0]\}$

40/49

Provably safe traffic coordination

Theorem

If

- Exit zone length $L_e \ge -\frac{(\nu^M)^2}{2u_m} + \frac{(\nu^{nom})^2}{2u_M}$
- New vehicles arrive at a safe following distance

Provably safe traffic coordination

Theorem

If

- Exit zone length $L_e \ge -\frac{(\nu^M)^2}{2u_m} + \frac{(\nu^{nom})^2}{2u_M}$
- New vehicles arrive at a safe following distance

Then

- Each vehicle belongs to some bubble
- Each bubble scheduled at least once
- Feasible schedule always exists
- Inter-vehicle safety is ensured for all vehicles at all times
- Distributed vehicular control respects the prescribed occupancy schedule

Videos

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 < 42 / 49

- 2 Differential privacy in CPS
- **3** Networked transportation systems
- 4 Summary & future research plans

- Fusion of event-triggered control and information-theoretic control
- Control under bounded and specified channel capacity
- Stabilization with prescribed convergence rate
- Analysis of average data rate
- Control under time-varying channels (including blackouts)

- Fusion of event-triggered control and information-theoretic control
- Control under bounded and specified channel capacity
- Stabilization with prescribed convergence rate
- Analysis of average data rate
- Control under time-varying channels (including blackouts)

Future plans:

- Fusion of event-triggered control and information-theoretic control for nonlinear systems and distributed control
- Stochastic channel models
- More realistic scheduling constraints
- Open problem: analytical quantification of the average data rate for an arbitrary event based controller

Differential privacy in CPS

- Differentially private average consensus
- Fundamental trade-off between accuracy and privacy
- Convergence in the mean to the average of the initial states
- Optimal selection of noise parameters

Differential privacy in CPS

- Differentially private average consensus
- Fundamental trade-off between accuracy and privacy
- Convergence in the mean to the average of the initial states
- Optimal selection of noise parameters
- Differentially private distributed convex optimization via functional perturbation

Differential privacy in CPS

- Differentially private average consensus
- Fundamental trade-off between accuracy and privacy
- Convergence in the mean to the average of the initial states
- Optimal selection of noise parameters
- Differentially private distributed convex optimization via functional perturbation

Future plans:

- Fundamental data rate theorems under privacy requirements
- State-triggered control works by encoding the control goal in the event-trigger and the aperiodic transmission instants carry information what are the implications for privacy?

Networked transportation systems

- A scalable hierarchical-distributed solution to coordination of intersection traffic applicable to a wide range of traffic densities
- A provably safe online coordination of traffic
- Framework has the potential to significantly improve safety, travel ease, travel time and energy consumption
Networked transportation systems

- A scalable hierarchical-distributed solution to coordination of intersection traffic applicable to a wide range of traffic densities
- A provably safe online coordination of traffic
- Framework has the potential to significantly improve safety, travel ease, travel time and energy consumption

Future plans:

- Incorporate statistical and real-time data of incoming traffic
- Extend to a network of intersections
- Multiple temporal and spatial refinements of data and control
- Privacy, security and resilience
- On-demand routing and scheduling of bus services
- Experiments and implementation in lab

- UG courses: Control systems, signal processing, linear systems, linear algebra, circuit theory and dynamics
- PG courses: Linear systems theory, random processes, nonlinear systems, hybrid systems, distributed control, networked control systems
- Course on CPS & CPS applications possibly collaborate with other departments, encourage students to do multi-disciplinary, multi-domain projects

Acknowledgements

Funding from National Science Foundation