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Cyber physical systems

• Hundreds of sensors, actuators and processors all communicating
over a network; millions of lines computer code
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Cyber physical systems

• Vast geographical spread, thousands of nodes - hierarchical and
distributed topologies
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Cyber physical systems

• Integrated approach to the design of control, communication and
computing components - Cyber Physical Systems (CPS)
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Cyber physical systems

• Challenges: Constrained resources (energy, communication,
computation), privacy and security . . .
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Networked control systems
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Networked control systems

• When to transmit:
Time-triggered strategies

• The traditional approach to sampling
• Usually the triggering is periodic
• Novelty of the sensor data not important in

the sampling decision
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Networked control systems

• When to transmit:
State-triggered (event-triggered) strategies

• A trigger function implicitly determines
transmission times

• Trigger function encodes the control goal
• Transmissions occur only when necessary
• Better use of resources than time-triggered

• Need to ensure Zeno does not occur
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Event-triggered control under imperfect information

Online trajectory tracking

Dynamic output feedback control
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Quantization and event-triggering co-design

Decentralized control

Ph.D. work
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What is the case for event-triggered control?

MATI is a lower bound on inter-transmission times for an
event-triggered implementation

• But what about the distribution or the average of the
inter-transmission times?

• More generally, what is the average data rate?

• These are open questions in general

• Can we design controllers with analytically quantifiable data rate?

• Given a bound on the channel data capacity, what should the
transmission policy be?
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Networked control systems - what to transmit

Information-theory based data rate theorems

• Quite successful in the discrete-time setting

• Tight necessary and sufficient data rates for
stabilization

What about sufficient rates for specific performance (e.g. convergence rate)?
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System description

Plant dynamics:
ẋ(t) = Ax(t) +Bu(t) + v(t), u(t) = Kx̂(t), x(t) ∈ Rn, ‖v(t)‖2 ≤ ν,
∀t ∈ [t0,∞]

Communication model:

∆k ≤ ∆(tk, pk) ,
bk

Ra(tk)
= pk

R(tk)

# of bits transmitted at tk is bk = npk

Can choose {tk}, {pk}, {r̃k}

Dynamic controller flow:
˙̂x(t) = Ax̂(t) +Bu(t) = Āx̂(t), t ∈ [r̃k, r̃k+1)

Dynamic controller jump: x̂(r̃k) , qk(x(tk), x̂(t−k ))

Encoding error: xe , x− x̂
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Objective

Suppose Ā = A+BK is Hurwitz ⇐⇒ PĀ+ ĀTP = −Q

Lyapunov function: x 7→ V (x) = xTPx

Desired performance function: Vd(t) = (Vd(t0)− V0)e−β(t−t0) + V0

Performance objective: ensure hpf(t) ,
V (x(t))
Vd(t)

≤ 1, for all t ≥ t0

Design objective:

• Design event-triggered communication policy that is applicable to
channels with time-varying rates and data capacity

• Recursively determine {tk}, {pk} and {r̃k}

• Ensure a uniform positive lower bound for {tk − tk−1}k∈Z>0
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Necessary data rate (non-state-triggered transmissions)

Set S(t) must lie within the set
Vd(t) , {ξ ∈ Rn : V (ξ) ≤ Vd(t)} at all times.

Number of bits necessary to be transmitted between t0 and t to meet
the control goal:

B(t, t0) ≥
(

tr(A) +
nβ

2

)
log2(e)(t− t0) + log2

(
vol(S(t0))

cP (Vd(t0))
n
2

)

Ras , lim
t→∞

B(t, t0)

t− t0
≥
(

tr(A) +
nβ

2

)
log2(e)

Assuming all eigenvalues of A have real parts greater than −β.
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Quantization

Can design consistent algorithms for the encoder and decoder to
implement quantizer qk so that:

• If the decoder knows de(t0) s.t. ‖xe(t0)‖∞ ≤ de(t0)

• Both encoder and decoder compute recursively:

de(t) , ‖eA(t−tk)‖∞δk, t ∈ [r̃k, r̃k+1), k ∈ Z≥0

δk+1 =
1

2pk+1
de(tk+1).

• Then, ‖xe(t)‖∞ ≤ de(t), for all t ≥ t0
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Control under bounded rate and capacity

Theorem

If

• p̄ is max. packet size

• R(t) ≥ p
TM

, ∀t

Then

• Can design event-triggered {tk}, {pk}, {r̃k}
• inter-transmission times have uniform positive lower bound

• V (x(t)) ≤ Vd(t) for t ≥ t0
(origin is exponentially practically stable if there is disturbance)
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Upper bound on the sufficient data rate

Corollary (With disturbance)

Let θ̄ = ‖A‖∞ + β
2 . For any k ∈ Z>0,

pk ≤ log2

(
eθ̄TM

ρT (b̃(TM ,b(t
−
k ),ε(t−k ))−α(TM )

)
+ 1 + log2

(
eθ̄(tk−t0)∏k−1
j=1 2pj

ε(t0) +
∑k−1

i=0

∏k−1
j=i+1

eθ̄Tj

2pj
α(Ti)

)
.

Corollary (No disturbance)

Let θ̄ = ‖A‖∞ + β
2 . For any k ∈ Z>0,

n
(
pk +

∑k−1
i=1 pi

)
≤ n

[
log2

(
eθ̄TM

ρT (b̃(TM ,b(t
−
k ),ε(t−k ))

)
+ 1 + θ̄ log2(e)(tk − t0) + log2(ε(t0))

]
.

• In the general case, only an implicit characterization

• Effect of non-instant communication (through TM ) has only a
“transient” effect on sufficient data rate

• In the scalar case, if no disturbance then necessary and sufficient
asymptotic data rates are same
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Shared communication resource

• Time-varying communication rates

• Channel may not be available during some intervals (blackouts)

• Time-triggered strategies would be very conservative

• Event-triggered controllers typically assume on-demand
availability of channel

Key to online state based transmission policy: data capacity
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Time-slotted channel model

0 2 4 6 8 10

0

2

4

6

8

10

p̄

t
0 2 4 6 8 10

2000

2500

3000

3500

R

t

R(t) = Rj , ∀t ∈ (θj , θj+1], min comm. rate:
pk

∆(tk, pk)
≥ R(tk)

p̄(t) = π̄j , ∀t ∈ (θj , θj+1], max packet size: pk ≤ p̄(tk)

• jth time-slot is of length Tj = θj+1 − θj
• Channel is not available when p̄ = 0 (channel blackout)
• Channel evolution is known a priori

Main idea of solution: make sure the encoding error is sufficiently
small at the beginning of a channel blackout

Need to quantify data capacity
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Data capacity

max # of bits that can be communicated during the time interval
[τ1, τ2], overall all possible {tk} and {pk}

D(τ1, τ2) , max
{tk},{pk}
s.t. . . .

n

kτ2∑
k=kτ1

pk

kτ1 = 3, kτ2 = 7

Equivalent to optimal allocation of discrete # bits to be transmitted in
each time slot
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Data capacity as allocation problem

Max # bits that may be transmitted in slot j

nφj ≤

{
nRjTj + nπ̄j , if π̄j > 0

0, if π̄j = 0

Available time in slot j is affected by prior transmissions

nφj ≤

{
nRj T̄j(φ

jf
j0

) + nπ̄j , if T̄j(φ
jf
j0

) > 0

0 otherwise

Count only the bits also received

φj
Rj
≤

{
T̄j(φ

jf
j0

) + θjf − θj+1, if T̄j(φ
jf
j0

) > 0

0, otherwise.
0 2 4 6 8 10

0
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t

D(θj0 , θjf ) = max
φj∈Z≥0
s.t. . . .

n

jf−1∑
j=j0

φj .
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A suboptimal solution for “slowly varying channels”

Proposition

Assume
π̄j
Rj

< Tj+1, ∀j ∈ N jf
j0

(any bits transmitted in slot j are

received before the end of slot j + 1).

Let φr = argmax
φj∈R≥0
s.t. . . .

jf−1∑
j=j0

φj (LP).

Let

φN , bφrc , (bφrj0c, . . . , bφ
r
jf−1c), Ds(θj0 , θjf ) , n

jf−1∑
j=j0

φNj .

Then

• φN is a sub-optimal solution

• D(θj0 , θjf )−Ds(θj0 , θjf ) ≤ n(jf − 1− j0).
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Real time computation of data capacity

Proposition

Let φ∗ (or φN ) be any optimizing solution to D(θj0 , θjf ) (or
Ds(θj0 , θjf )).

For any t ∈ [θj0 , θj0+1) (any t in j0 slot)

D̂(t, θjf ) ,
[
n
⌊
φ∗j0 −Rj0(t− θj0)

⌋]
+

+ n

jf−1∑
j=j0+1

φ∗j

D̂s(t, θjf ) ,
[
n
⌊
φNj0 −Rj0(t− θj0)

⌋]
+

+ n

jf−1∑
j=j0+1

φNj ,

Then, 0 ≤ D(t, θjf )− D̂(t, θjf ) ≤ n and 0 ≤ Ds(t, θjf )− D̂s(t, θjf ) ≤ n.

Significance: Sufficient to solve the data capacity problem for intervals
[θj0 , θjf ] of interest.
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Elements of the event-trigger

Recall performance objective: ensure hpf(t) ,
V (x(t))
Vd(t)

≤ 1, for all t ≥ t0

Lemma

If hpf(t) ≤ 1 and hch(t) ≤ 1 then hpf(s) ≤ 1, ∀s ∈ [t, t+ T
′
].

Idea for triggering:

• Make sure hpf(t) ≤ 1, ∀t ∈ [tk, r̃k]

• Make sure hch(r̃k) ≤ 1 so that future ability to control is not lost

L̃1(t) , h̄pf (T (t), hpf(t), ε(t))

L̃2(t) , h̄ch (T (t), hpf(t), ε(t), ψ
τl(t))

T (t) ,{
TM (ψτl(t)), if ψτl(t) ≥ 1
2

R(t) , if ψτl(t) = 0.
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Role of data capacity in control

L̃3(t) , n log2

(
eµ̄(τl(t)−t)ε(t)

εr(t)

)
− σ1D̂s(t, τl(t))

Transmission policy should be in tune with the optimal allocation

Φτl(t) , [bPj −Rj(t− θj)c]+ , t ∈ (θj , θj+1] (optim. alloc. in (t, θj+1])

Artificial bound on packet size: ψτl(t) , min{p̄(t),Φτl(t)}

If L̃3(tk) ≤ 0 and pk ≤ ψτl(tk)

then L̃3(rk) ≤ 0

If data capacity was “sufficient” at tk and pk
respects artificial bound

then data capacity is
“sufficient” at rk

But ψτl(t) can be 0
when p̄(t) > 0
(artificial blackouts)
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Control policy in the presence of blackouts

tk+1 = min
{
t ≥ r̃k : ψτl(t) ≥ 1 ∧(
max{L̃1(t), L̃1(t+), L̃2(t), L̃2(t+)} ≥ 1

∨max{L̃3(t), L̃3(t+)} ≥ 0
)}
,

pk ∈ Z>0 ∩[pk, ψ
τl(tk)]

pk , min{p ∈ Z>0 : h̄ch (TM (p), hpf(tk), ε(tk), p) ≤ 1}.

r̃k = min{t ≥ rk : ψτl(t) ≥ 1 ∨ p̄(t) = 0}.
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Control policy in the presence of blackouts

Theorem

If

• R(t) ≥ (p+2)
TM (p) , ∀p ∈ {1, . . . , p

Max}, ∀t

• L̃1(t0) ≤ 1, L̃2(t0) ≤ 1 and L̃3(t0) ≤ 0 (initial feasibility)

• Conditions on blackout lengths

Then

• {tk}, {pk}, {r̃k} well defined

• inter-transmission times have uniform positive lower bound

• V (x(t)) ≤ Vd(t0)e−β(t−t0) for t ≥ t0 (origin is exponentially stable)
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Simulation results: 2D linear system
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Outline

1 Opportunistic state-triggered control

2 Differential privacy in CPS

3 Networked transportation systems

4 Summary & future research plans
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Privacy and security in CPS

• Malicious attacks can have catastrophic physical consequences -
industrial plants, cars and traffic, medical devices

• Large scale collection of user data in many domains - many
benefits but loss of individuals’ privacy

• Encryption not sufficient - need a multi-layered approach
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Differential privacy
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Definition (Differential privacy)

Given δ, ε ∈ Rn≥0, the mechanism M is ε-differentially private if, for any

two δ-adjacent data X(1) and X(2) and any observation set O, one has

P{M(X(2)) ∈ O} ≤ eεP{M(X(1)) ∈ O}
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Differentially private average consensus

Agents’ dynamics: θ(k + 1) = θ(k)− hLx(k) + Sη(k), θ ∈ Rn

Messages: x(k) = θ(k) + η(k)

h is step size, S is a diagonal matrix with diagonal (s1, . . . , sn)

ηi(k) ∈ R is the noise added by agent i on time step k

Objective:

• Design the distribution of the noise sequences η

• Want asymptotic average consensus and ε-differential privacy of
the initial condition,

• ε as small as possible, and maximize algorithms accuracy
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An impossibility result

Theorem

For any δ, ε > 0, agents cannot simultaneously converge to the average
of their initial states in distribution and preserve ε-differential privacy
of their initial states.
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Differentially private average consensus

Theorem

If

• ηi(k) ∼ Lap(bi(k)) (Laplace distribution)
bi(k) = ciq

k
i , ci ∈ R>0, qi ∈ (|si − 1|, 1), si ∈ (0, 2)

Then

• For all i ∈ {1, . . . , n}, θi(k)→ θ∞ almost surely, where
θ∞ = Ave(θ(0)) +

∑n
i=1

si
n

∑∞
j=0 ηi(j)

• E{θ∞} = Ave(θ(0)), var {θ∞} = 2
n2

∑n
i=1

s2i c
2
i

1−q2
i

• εi-differential privacy of agent i’s initial condition, with
εi = δ qi

ci(qi+si−1) .

Optimal selection of noise parameters by minimizing var {θ∞}
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Networked transportation systems

• Collision avoidance, cruise control, trip planning, traffic
coordination, on-demand public transport, multi-modal
coordination . . .
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Intersection traffic coordination

Source: CAR 2 CAR communication consortium

• Vehicle-to-vehicle and vehicle-to-infrastructure communication can
be used to coordinate traffic - no traffic lights

• Individual vehicles can use fore-knowledge of the schedule to
optimize their travel much before they reach the intersection

• Potential to significantly improve safety, travel ease, travel times,
energy consumption
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Problem statement

• Assumptions: (i) Single lane in each direction, (ii) all vehicles are
identical with length L, (iii) no turning at the intersection, (iv) no
sources or sinks for vehicles along the branches.

• Vehicle dynamics:

ẋvj (t) = vvj (t),
v̇vj (t) = uvj (t),

Bounded control: uvj (t) ∈ [um, uM ]

Speed limit: vvj (t) must be in [0, vM ]

• Cost function: C ,
∑

j

∫ T exit
j

tspawn
j

(WT + |uvj |)dt

• Objective: Design a traffic coordination mechanism for networked
and automated vehicles that seeks to minimize the cost function

• Challenges: Problem is combinatorial. Solving it at the level of
individual cars is computationally expensive and not scalable.
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A scalable solution

• Black dots are individual vehicles

• Vehicles are clustered into bubbles
represented by the grey boxes

• Vehicles of a bubble platoon (rigid
cohesive group) when crossing the
intersection

• xi is the position of the lead
vehicle in the bubble

• ∆ is the length of the intersection
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Overview of hierarchical solution

State of bubble i:
(xi, vi,mi, τ̄

occ
i , Ii) ∈ R4 × {1, 2, 3, 4},

xi: position of the lead vehicle

vi: velocity of the lead vehicle

mi: number of vehicles in the bubble

τ̄occi : guaranteed upper-bound on τocci

Ii: branch label that the bubble is on

τi: scheduled time of approach at the beginning of the intersection
for the lead vehicle in bubble i

τocci : occupancy time - time for which bubble i occupies the
intersection
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Scheduling of bubbles

Constraints:

τi ∈ [max{τmin, τ ei }, τ li ], interval determined by initial conditions

τj ≥ τi + τ̄occi , if bubbles i and j on same branch and j follows i

τi ≥ τj + τ̄occj OR τj ≥ τi + τ̄occi , if Ii 6= Ij ,

Simplified cost function for scheduling:

CL ,
∑
i∈L

mi(WT (τi − ts) + Fi(v̄i)) =
∑
i∈L

mi

(
WT
−xi
v̄i

+ Fi(v̄i)
)

v̄i: average velocity of the lead vehicle in bubble i for t ∈ [ts, ts + τi].

Assumption: Fi : [0, vM ] 7→ R>0 is a monotonically decreasing

Schedule optimization using branch
and bound.

Tree of possible bubble passage orders.

38 / 49



Scheduling of bubbles

Constraints:

τi ∈ [max{τmin, τ ei }, τ li ], interval determined by initial conditions

τj ≥ τi + τ̄occi , if bubbles i and j on same branch and j follows i

τi ≥ τj + τ̄occj OR τj ≥ τi + τ̄occi , if Ii 6= Ij ,

Simplified cost function for scheduling:

CL ,
∑
i∈L

mi(WT (τi − ts) + Fi(v̄i)) =
∑
i∈L

mi

(
WT
−xi
v̄i

+ Fi(v̄i)
)

v̄i: average velocity of the lead vehicle in bubble i for t ∈ [ts, ts + τi].

Assumption: Fi : [0, vM ] 7→ R>0 is a monotonically decreasing

Schedule optimization using branch
and bound.

Tree of possible bubble passage orders.

38 / 49



Scheduling of bubbles

Constraints:

τi ∈ [max{τmin, τ ei }, τ li ], interval determined by initial conditions

τj ≥ τi + τ̄occi , if bubbles i and j on same branch and j follows i

τi ≥ τj + τ̄occj OR τj ≥ τi + τ̄occi , if Ii 6= Ij ,

Simplified cost function for scheduling:

CL ,
∑
i∈L

mi(WT (τi − ts) + Fi(v̄i)) =
∑
i∈L

mi

(
WT
−xi
v̄i

+ Fi(v̄i)
)

v̄i: average velocity of the lead vehicle in bubble i for t ∈ [ts, ts + τi].

Assumption: Fi : [0, vM ] 7→ R>0 is a monotonically decreasing

Schedule optimization using branch
and bound.

Tree of possible bubble passage orders.

38 / 49



Scheduling of bubbles

Constraints:

τi ∈ [max{τmin, τ ei }, τ li ], interval determined by initial conditions

τj ≥ τi + τ̄occi , if bubbles i and j on same branch and j follows i

τi ≥ τj + τ̄occj OR τj ≥ τi + τ̄occi , if Ii 6= Ij ,

Simplified cost function for scheduling:

CL ,
∑
i∈L

mi(WT (τi − ts) + Fi(v̄i)) =
∑
i∈L

mi

(
WT
−xi
v̄i

+ Fi(v̄i)
)

v̄i: average velocity of the lead vehicle in bubble i for t ∈ [ts, ts + τi].

Assumption: Fi : [0, vM ] 7→ R>0 is a monotonically decreasing

Schedule optimization using branch
and bound.

Tree of possible bubble passage orders.

38 / 49



Safe-following distance

Definition (Safe-following distance)

We say a quantity D(vvj−1(t), v
v
j (t)) is a safe-following distance at

time t for the pair of vehicles j − 1 and j if

• xvj−1(t)− xvj (t) ≥ D(vvj−1(t), v
v
j (t))

• both the vehicles were to perform the maximum braking maneuver

then the two vehicles would be safely separated, xvj−1 − L ≥ xvj until
they come to a complete stop.

Lemma

D(vvj−1(t), v
v
j (t)) = L+ max

{
0, −12um

(
(vvj (t))2 − (vvj−1(t))

2
)}

is a

safe-following distance for a vehicle j following j − 1.

Safety ratio: σj(t) ,
xvj−1(t)− xvj (t)
D(vvj−1(t), v

v
j (t))
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Distributed vehicular control

Consists of two parts
• an uncoupled optimal feedback controller for reaching the

intersection at a nominal deadline with a nominal speed: guc
• a controller for safe following: gsf , min{guc, gus},

gus(ζj , u
v
j−1) ,

u
v
j−1, if vvj = 0,(
vvj−1

vvj

(
1 + σj

uvj−1

−um

)
− 1
)(
−um
σj

)
, if vvj > 0.

Control law: uvj (t) =


guc, if ζj /∈ Cs, vvj < vM ,

[guc]
0
um , if ζj /∈ Cs, vvj = vM ,

gsf , if ζj ∈ Cs, vvj < vM ,

[gsf ]0um , if ζj ∈ Cs, vvj = vM .

Coupling set: Cs , {(v1, v2, σ) : v2 ≥ v1 and σ ∈ [1, σ0]}
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Provably safe traffic coordination

Theorem

If

• Exit zone length Le ≥ −
(vM )2

2um
+

(νnom)2

2uM
• New vehicles arrive at a safe following distance

Then

• Each vehicle belongs to some bubble

• Each bubble scheduled at least once

• Feasible schedule always exists

• Inter-vehicle safety is ensured for all vehicles at all times

• Distributed vehicular control respects the prescribed occupancy
schedule
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Videos
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Simulations
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Outline

1 Opportunistic state-triggered control

2 Differential privacy in CPS

3 Networked transportation systems

4 Summary & future research plans
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Opportunistic state-triggered control

• Fusion of event-triggered control and information-theoretic control

• Control under bounded and specified channel capacity

• Stabilization with prescribed convergence rate

• Analysis of average data rate

• Control under time-varying channels (including blackouts)

Future plans:

• Fusion of event-triggered control and information-theoretic control
for nonlinear systems and distributed control

• Stochastic channel models

• More realistic scheduling constraints

• Open problem: analytical quantification of the average data rate
for an arbitrary event based controller
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Differential privacy in CPS

• Differentially private average consensus

• Fundamental trade-off between accuracy and privacy

• Convergence in the mean to the average of the initial states

• Optimal selection of noise parameters

• Differentially private distributed convex optimization via
functional perturbation

Future plans:

• Fundamental data rate theorems under privacy requirements

• State-triggered control works by encoding the control goal in the
event-trigger and the aperiodic transmission instants carry
information - what are the implications for privacy?
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Networked transportation systems

• A scalable hierarchical-distributed solution to coordination of
intersection traffic applicable to a wide range of traffic densities

• A provably safe online coordination of traffic

• Framework has the potential to significantly improve safety, travel
ease, travel time and energy consumption

Future plans:

• Incorporate statistical and real-time data of incoming traffic

• Extend to a network of intersections

• Multiple temporal and spatial refinements of data and control

• Privacy, security and resilience

• On-demand routing and scheduling of bus services

• Experiments and implementation in lab
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Teaching plans

• UG courses: Control systems, signal processing, linear systems,
linear algebra, circuit theory and dynamics

• PG courses: Linear systems theory, random processes, nonlinear
systems, hybrid systems, distributed control, networked control
systems

• Course on CPS & CPS applications - possibly collaborate with
other departments, encourage students to do multi-disciplinary,
multi-domain projects
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