A variational approach to path estimation and parameter inference of hidden diffusion processes

arXiv:1508.00506

Tobias Sutter§, Arnab Ganguly* and Heinz Koeppl[‡]

[§]Automatic Control Laboratory, ETH Zurich, Switzerland *Department of Mathematics, Louisiana State University, USA *Department of Electrical Engineering, TU Darmstadt, Germany

January 11, 2016

Model setup

signal process

$$dX_t = f(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x_0, \quad 0 \le t \le T$$

observation process

$$Y_t = \int_0^t h(X_s) \mathrm{d}s + B_t$$

- assumptions
 - f and σ are globally Lipschitz
 - h is twice continuously differentiable
- smoothing density

$$\mathbb{E}[\phi(X_t)|\mathbb{F}_T^Y] = \int \phi(x) \mathbb{P}_{\mathcal{S}}(x,t) \, \mathrm{d}x \quad \text{a.s.}$$

- $\mathbb{F}_T^Y \coloneqq \sigma(Y_t : t \leq T)$
- ϕ bounded measurable function

Smoothing density

Zakai equation

$$\begin{cases} dp(x,t) = \mathscr{A}^* p(x,t) dt + p(x,t) h(x)^{\mathsf{T}} dY_t \\ p(x,0) = p_0(x). \end{cases}$$

Pardoux equation

$$\begin{cases} \mathsf{d} v(x,t) = -\mathscr{A} v(x,t) \mathsf{d} t - v(x,t) h(x)^{\mathsf{T}} \mathsf{d} Y_t \\ v(x,T) = 1. \end{cases}$$

 $\Rightarrow \text{ smoothing density } \mathbb{P}_{\mathcal{S}}(x,t) = \frac{p(x,t)v(x,t)}{\int p(x,t)v(x,t)dx}$

posterior process

$$d\bar{X}_t^T = g(\bar{X}_t^T, t)dt + \sigma(\bar{X}_t^T)d\bar{W}_t, \quad \bar{X}_0^T = x_0$$

$$g(x,t) \coloneqq f(x) + \sigma(x)\sigma(x)^{\mathsf{T}} \nabla \log v(x,t)$$

$$\mathbb{P}\left[X \in A | \mathbb{F}_{T}^{Y}\right] = \mathbb{P}\left[\bar{X}^{\mathsf{T}} \in A\right] \coloneqq \Pi_{\mathsf{post}}(A, Y_{[0,T]})$$

A variational approach to path estimation

approximation

$$\min_{Q \in \mathbb{Q}} D(Q \| \Pi_{post}(\cdot, Y_{[0,T]}))$$

1. how to choose $\mathbb{Q} \subset$ probability measures on C([0, T]) ?

- too large \rightarrow computationally demanding optimization problem
- ▶ too small → bad approximation quality
- 2. how to evaluate $D(Q||\Pi_{post}(\cdot, Y_{[0,T]}))$?
 - $\Pi_{\text{post}}(\cdot, Y_{[0,T]})$ is unknown

 \Rightarrow reformulation as an optimal control problem

A variational approach to path estimation (cont'd)

$$\min_{Q \in \mathbb{Q}} D(Q || \Pi_{\text{post}}(\cdot, Y_{[0,T]})) \quad (\bigstar)$$

• prior law
$$\Pi_{\text{prior}}(A) \coloneqq \mathbb{P}\left[X \in A\right]$$

- $H_T(X,y) \coloneqq -h(X_T)y_T + \int_0^T y_s dh(X_s) + \frac{1}{2} \int_0^T \|h(X_s)\|^2 ds$
- negative log-likelihood $I(H_T(\cdot, y)) \coloneqq -\log(\int \exp(-H_T(\cdot, y)) d\Pi_{\text{prior}})$

Lemma ([Mitter & Newton'03])

 $\mathsf{D}(Q||\Pi_{\mathsf{post}}(\cdot, y)) = -I(H_{\mathcal{T}}(\cdot, y)) + \mathsf{D}(Q||\Pi_{\mathsf{prior}}) + \mathbb{E}_{Q}[H_{\mathcal{T}}(\cdot, y)]$

• (\bigstar) is equivalent to

$$\min_{Q \in \mathbb{Q}} D(Q || \Pi_{\text{prior}}) + \mathbb{E}_{Q}[H_{T}(\cdot, y)]$$

A variational approach to path estimation (cont'd)

$$\min_{Q \in \mathbb{Q}} D(Q || \Pi_{\text{prior}}) + \mathbb{E}_{Q}[H_{T}(\cdot, y)]$$

Problem (□)

Minimize $D(Q||\Pi_{prior}) + \mathbb{E}_Q[H_T(\cdot, y)]$ subject to (i) Q is a probability distribution induced by an SDE of the form

$$dZ_t = u(Z_t, t)dt + \sigma(Z_t)dW_t, \quad Z_0 = x_0, \quad 0 \le t \le T;$$

(ii) The marginals of Q at time t, i.e., the distribution of Z_t , belong to a chosen family of distributions.

 \Rightarrow Problem (\Box) can be recast as an optimal control problem

 constant diffusion term & Gaussian distribution [Archambeau & Opper'11]

SDE with prescribed marginal law

exponential family

$$\mathsf{EM} \coloneqq \{ p(\cdot, \Theta), \Theta \in \Lambda \}, \quad p(x, \Theta) \coloneqq \exp(\langle \Theta, c(x) \rangle - \psi(\Theta) \rangle$$

Let be given an exponential family EM, an initial density p_0 contained in EM and a diffusion term σ . Consider an SDE

$$dX_t = u(X_t, t)dt + \sigma(X_t)dW_t, \quad X_0 = x_0 \quad (\star)$$

Problem $(\Box\Box)$

Given a curve $t \mapsto p(\cdot, \Theta_t)$ in EM, find a drift in u whose related SDE (*) has a solution with marginal density $p(\cdot, \Theta_t)$.

• example: normal density and constant diffusion term \rightarrow linear drift $u(x, t) = A_t + B_t x$

SDE with prescribed marginal law (cont'd)

Theorem

Consider an SDE (\star) with drift term

$$u_{i}(x,t) = \frac{1}{2} \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} a_{ij}(x) + \frac{1}{2} \sum_{j=1}^{n} a_{ij}(x) \left\{ \Theta_{t}, \frac{\partial c(x)}{\partial x_{j}} \right\}$$
$$- \left\{ \dot{\Theta}_{t}, \int_{-\infty}^{x_{i}} \varphi_{i}((x_{-i},\xi_{i}),\Theta_{t}) \exp\left[\left\{ \Theta_{t}, c(x_{-i},\xi_{i}) - c(x) \right\} \right] d\xi_{i} \right\},$$

where the functions φ_i satisfy

$$\sum_{i=1}^{n} \left\langle \dot{\Theta}_{t}, \varphi_{i}\left((x_{-i}, \xi_{i}), \Theta_{t} \right) \right\rangle \Big|_{\xi_{i} = x_{i}} = \left\langle \dot{\Theta}_{t}, c(x) - \nabla_{\Theta} \psi(\Theta_{t}) \right\rangle.$$

This solves Problem $(\Box\Box)$.

- extension to mixture of exponential families possible (\rightarrow arXiv:1508.00506)
- one-dimensional non-mixture case [Brigo'00]

SDE with prescribed marginal law (Gaussian density)

• normal density
$$\Theta = (\eta, \theta) \coloneqq (S^{-1}m, -\frac{1}{2}S^{-1})$$

Corollary (Gaussian density)

$$u(x,t) = \frac{1}{2} \operatorname{div} a(x) + \frac{1}{4} \theta_t^{-1} \dot{\theta}_t \theta_t^{-1} \eta_t - \frac{1}{2} \theta_t^{-1} \dot{\eta}_t - \frac{1}{2} \theta_t^{-1} \dot{\theta}_t x + a(x) \left(\frac{1}{2} \eta_t + \theta_t x\right)$$

- example: constant diffusion term
 - \rightarrow linear drift $u(x,t) = A_t + B_t x$
- ansatz: $u(x,t) = \frac{1}{2} \operatorname{div} a(x) + A_t + B_t x + a(x) (C_t + D_t x)$

$$\frac{\mathrm{d}C_t}{\mathrm{d}t} = -D_t A_t - B_t^{\mathsf{T}} C_t, \qquad \frac{\mathrm{d}D_t}{\mathrm{d}t} = -2D_t B_t \quad (\star\star)$$

Optimal control problem reformulation of Problem (\Box)

const functional

$$D(Q||\Pi_{\text{prior}}) + \mathbb{E}_{Q}[H_{T}(\cdot, y)]$$

= $\int_{0}^{T} \mathbb{E}_{Q}\left[\frac{1}{2}\|u(X_{t}, t) - f(X_{t})\|_{a(X_{t})}^{2} + y_{t}\left(u(X_{t}, t)^{\top} \nabla h(X_{t}) + \frac{1}{2}\sigma(X_{t})^{\top} \nabla^{2}h(X_{t})\sigma(X_{t})\right) + \frac{1}{2}\|h(X_{t})\|^{2}\right] dt - y_{T} \mathbb{E}_{Q}[h(X_{T})]$

- states: m_t, S_t, C_t, D_t
 ODEs for m_t, S_t from (*), ODEs for C_t, D_t from (**)
- ▶ control input (decision variables): A_t, B_t
- motivation
 - necessary conditions via Pontryagin's maximum principle
 - semidefinite programming approach for certain problem classes
 - infinite dimensional linear programming approach

Parameter inference

signal process

 $dX_t^{\kappa} = f(X_t^{\kappa}, \kappa)dt + \sigma(X_t^{\kappa}, \kappa)dW_t, \quad X_0^{\kappa} = x_0, \quad 0 \le t \le T$

non-negativity of relative entropy

$$\underbrace{I(H_T^{\kappa}(\cdot, y))}_{\leq \mathsf{D}(Q||\Pi_{\mathsf{prior}}^{\kappa}) + \mathbb{E}_Q[H_T^{\kappa}(\cdot, y)]$$

negative log-likelihood =: $F(Q_i, \kappa)$ objective function

EM-type algorithm

initialize	$i = 0, \ \kappa_i \coloneqq \hat{\kappa}_0$
while	i ≤ M
Step 1:	compute Q_i by solving Problem (\Box) with parameter κ_i
Step 2:	update parameter as $\kappa_{i+1} \in \arg\min_{\kappa} F(Q_i, \kappa)$
Step 3:	set $i \rightarrow i + 1$

Example 1: Geometric Brownian motion

- ▶ signal process $dX_t = \kappa X_t dt + \lambda X_t dW_t$, $X_0 = x_0 \sim \log N(\mu, \sigma)$
- discrete observations $Y_k = X_{t_k} + \rho_k$, $k = 1, \dots, N$, $\rho_k \sim N(1, R)$
- values: $\kappa = 1$, $\lambda = 0.1$, R = 0.15, T = 0.2s, $\mu = 0$, $\sigma = 0.25$, N = 4, $t_1 = T/4$, $t_2 = T/2$, $t_3 = 3T/4$ and $t_4 = T$

variational approximation

• drift function $u(x, t) = A_t + (\lambda^2 + B_t)x + \lambda^2 x^2 (C_t + D_t x)$

Figure: Smoothing density (PDE vs variational approx.)

Figure: Parameter inference, $\hat{\kappa} = 1.18$

Example 2: Cox-Ingersoll-Ross

signal process

 $dX_t = \kappa (b - X_t) dt + \lambda \sqrt{X_t} dW_t, \quad X_0 = x_0 \sim N(\mu, \sigma)$

• discrete observations $Y_k = X_{t_k} + \rho_k$, $k = 1, \dots, N$, $\rho_k \sim N(1, R)$

• values:
$$\lambda = 0.2$$
, $\kappa = 1$, $b = 0.3$, $\mu = 1$, $\sigma = 0.1$, $R = 0.1$
 $T = 0.3$ s, $N = 2$, $t_1 = T/2$ and $t_2 = T$

variational approximation

Figure: Smoothing density (PDE vs variational approx.)

Figure: Parameter inference, $\hat{\kappa} = 1.44$

Conclusion and Outlook

- Conclusion
 - variational approximation to the smoothing density
 - requires solving an optimal control problem
 - parameter inference via maximum likelihood method
- Outlook
 - solve the underlying optimal control problem
 - necessary conditions via PMP (shooting method)
 - semidefinite programming approach for certain problem classes
 - infinite dimensional linear programming approach
 - guarantees for the EM-alogrithm

Acknowledgements and References

Special thanks to

- Debasish Chatterjee
- John Lygeros
- Peyman Mohajerin Esfahani

References

- Sutter, Ganguly & Koeppl, A variational approach to path estimation and parameter inference of hidden diffusion processes, arXiv-1508.00506, 2015
- Archambeau & Opper, Approximate inference for continuous-time Markov processes, Bayesian Time Series Models, Cambridge University Press, 2011, pp. 125-140