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Model setup

▸ signal process

dXt = f (Xt)dt + σ(Xt)dWt , X0 = x0, 0 ≤ t ≤ T

▸ observation process

Yt = ∫

t

0
h(Xs)ds +Bt

▸ assumptions
▸ f and σ are globally Lipschitz
▸ h is twice continuously differentiable

▸ smoothing density

E[φ(Xt)∣F
Y
T ] = ∫ φ(x)PS(x , t) dx a.s.

▸ FY
T ∶= σ(Yt ∶ t ≤ T )

▸ φ bounded measurable function
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Smoothing density

▸ Zakai equation

{
dp(x , t) = A ∗p(x , t)dt + p(x , t)h(x)⊺dYt

p(x ,0) = p0(x).

▸ Pardoux equation

{
dv(x , t) = −A v(x , t)dt − v(x , t)h(x)⊺dYt

v(x ,T ) = 1.

⇒ smoothing density PS(x , t) =
p(x ,t)v(x ,t)

∫ p(x ,t)v(x ,t)dx

▸ posterior process

dX̄T
t = g(X̄T

t , t)dt + σ(X̄
T
t )dW̄t , X̄T

0 = x0

g(x , t) ∶= f (x) + σ(x)σ(x)⊺∇ log v(x , t)

▸ P [X ∈ A∣FY
T ] = P [X̄T ∈ A] =∶ Πpost(A,Y[0,T ])
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A variational approach to path estimation

approximation min
Q∈Q

D(Q ∣∣Πpost(⋅,Y[0,T ]))

1. how to choose Q ⊂ probability measures on C([0,T ]) ?
▸ too large → computationally demanding optimization problem
▸ too small → bad approximation quality

2. how to evaluate D(Q ∣∣Πpost(⋅,Y[0,T ])) ?
▸ Πpost(⋅,Y[0,T ]) is unknown

⇒ reformulation as an optimal control problem
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A variational approach to path estimation (cont’d)

min
Q∈Q

D(Q ∣∣Πpost(⋅,Y[0,T ])) (☀)

▸ prior law Πprior(A) ∶= P [X ∈ A]

▸ HT (X , y) ∶= −h(XT )yT + ∫
T

0 ysdh(Xs) +
1
2 ∫

T
0 ∥h(Xs)∥

2ds

▸ negative log-likelihood
I (HT (⋅, y)) ∶= − log (∫ exp (−HT (⋅, y))dΠprior)

Lemma ([Mitter & Newton’03])

D(Q ∣∣Πpost(⋅, y)) = −I (HT (⋅, y)) +D(Q ∣∣Πprior) +EQ[HT (⋅, y)]

▸ (☀) is equivalent to

min
Q∈Q

D(Q ∣∣Πprior) +EQ[HT (⋅, y)]
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A variational approach to path estimation (cont’d)

min
Q∈Q

D(Q ∣∣Πprior) +EQ[HT (⋅, y)]

Problem (◻)

Minimize D(Q ∣∣Πprior) +EQ[HT (⋅, y)] subject to

(i) Q is a probability distribution induced by an SDE of the form

dZt = u(Zt , t)dt + σ(Zt)dWt , Z0 = x0, 0 ≤ t ≤ T ;

(ii) The marginals of Q at time t, i.e., the distribution of Zt ,
belong to a chosen family of distributions.

⇒ Problem (◻) can be recast as an optimal control problem

▸ constant diffusion term & Gaussian distribution
[Archambeau & Opper’11]
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SDE with prescribed marginal law

exponential family

EM ∶= {p(⋅,Θ),Θ ∈ Λ}, p(x ,Θ) ∶= exp (⟨Θ, c(x)⟩ − ψ(Θ))

Let be given an exponential family EM, an initial density p0

contained in EM and a diffusion term σ. Consider an SDE

dXt = u(Xt , t)dt + σ(Xt)dWt , X0 = x0 (⋆)

Problem (◻◻)

Given a curve t ↦ p(⋅,Θt) in EM, find a drift in u whose related
SDE (⋆) has a solution with marginal density p(⋅,Θt).

▸ example: normal density and constant diffusion term
→ linear drift u(x , t) = At +Btx
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SDE with prescribed marginal law (cont’d)
Theorem

Consider an SDE (⋆) with drift term

ui(x , t) =
1

2

n

∑
j=1

∂

∂xj
aij(x) +

1

2

n

∑
j=1

aij(x) ⟨Θt ,
∂c(x)

∂xj
⟩

− ⟨Θ̇t ,∫
xi

−∞

ϕi((x−i , ξi),Θt) exp [⟨Θt , c(x−i , ξi) − c(x)⟩]dξi⟩ ,

where the functions ϕi satisfy

n

∑
i=1

⟨Θ̇t , ϕi ((x−i , ξi),Θt)⟩∣ξi=xi
= ⟨Θ̇t , c(x) −∇Θψ(Θt)⟩ .

This solves Problem (◻◻).

▸ extension to mixture of exponential families possible
(→ arXiv:1508.00506)

▸ one-dimensional non-mixture case [Brigo’00]
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SDE with prescribed marginal law (Gaussian density)

▸ normal density Θ = (η, θ) ∶= (S−1m,−1
2S

−1)

Corollary (Gaussian density)

u(x , t) =
1

2
diva(x) +

1

4
θ−1
t θ̇tθ

−1
t ηt −

1

2
θ−1
t η̇t −

1

2
θ−1
t θ̇tx + a(x) (

1

2
ηt + θtx)

▸ example: constant diffusion term
→ linear drift u(x , t) = At +Btx

▸ ansatz: u(x , t) = 1
2 diva(x) +At +Btx + a(x) (Ct +Dtx)

dCt

dt
= −DtAt −Bt

⊺Ct ,
dDt

dt
= −2DtBt (⋆⋆)
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Optimal control problem reformulation of Problem (◻)

▸ const functional

D(Q ∣∣Πprior) +EQ[HT (⋅, y)]

= ∫

T

0
EQ[

1

2
∥u(Xt , t) − f (Xt)∥

2
a(Xt)

+ yt(u(Xt , t)
⊺

∇h(Xt)

+
1

2
σ(Xt)

⊺

∇
2h(Xt)σ(Xt)) +

1

2
∥h(Xt)∥

2
]dt − yTEQ[h(XT )]

▸ states: mt ,St ,Ct ,Dt

ODEs for mt , St from (⋆), ODEs for Ct , Dt from (⋆⋆)

▸ control input (decision variables): At ,Bt

▸ motivation
▸ necessary conditions via Pontryagin’s maximum principle
▸ semidefinite programming approach for certain problem classes
▸ infinite dimensional linear programming approach
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Parameter inference
▸ signal process

dXκ
t = f (Xκ

t , κ)dt + σ(Xκ
t , κ)dWt , Xκ

0 = x0, 0 ≤ t ≤ T

▸ non-negativity of relative entropy

I (Hκ
T (⋅, y))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
negative log-likelihood

≤ D(Q ∣∣Πκ
prior) +EQ[H

κ
T (⋅, y)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ F(Qi , κ) objective function

EM-type algorithm

initialize i = 0, κi ∶= κ̂0

while i ≤M
Step 1: compute Qi by solving Problem (◻) with parameter κi
Step 2: update parameter as κi+1 ∈ arg min

κ
F(Qi , κ)

Step 3: set i → i + 1
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Example 1: Geometric Brownian motion
▸ signal process dXt = κXtdt + λXtdWt , X0 = x0 ∼ log N(µ,σ)
▸ discrete observations Yk = Xtk + ρk , k = 1,⋯,N, ρk ∼ N(1,R)

▸ values: κ = 1, λ = 0.1, R = 0.15, T = 0.2s, µ = 0, σ = 0.25,
N = 4, t1 = T /4, t2 = T /2, t3 = 3T /4 and t4 = T

variational approximation
▸ drift function u(x , t) = At + (λ2 +Bt)x + λ

2x2(Ct +Dtx)
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8. Conclusion.
Tobias: Mention that with the presented method (compared to standard MCMC or Extended
Kalman Smoothing methods) one gets the full posterior SDE, which can be useful in many dif-
ferent settings (e.g., reachability type questions, or when estimating a functional ....

Tobias: mention numerical investigations as outlook — shooting methods etc.

Figure: Smoothing density
(PDE vs variational approx.)
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(a) Density v(x, t)
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(b) Filter density p(x, t)
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(c) Smooting density PS(x, t)
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7.2.1. Smoothing Density via PDE. As mentioned in Section 2, the likelihood density satisfies
the Kolmogorov backward equation

∂

∂t
PL(x, t) = −a(b− x)

∂

∂x
PL(x, t)− λ2x

2

∂2

∂x2
PL(x, t),

with terminal condition PL(x, T−) = 1√
2πR

exp
(
−(x−yT )2

2R2

)
given by the measurement model (7.5).

Its marginals are shown in Figure 2a. The filter density is given by the Kolmogorov forward equation

∂

∂t
PF (x, t) = aPF (x, t) + (−a(b− x) + λ2)

∂

∂x
PF (x, t) +

1

2
λ2x

∂2

∂x2
PF (x, t),

(d) Relative entropy
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(e) Parameter inference, η̂ = 1.1867

Fig. 1: Geometric Brownian motion: Comparison of the PDE solution (solid) versus
the variational approach (dashed). The considered numerical values are: η = 1,
λ = 0.1, R = 0.15, T = 0.2s, µ = 0, σ = 0.25, N = 4, t1 = T/4, t2 = T/2, t3 = 3T/4
and t4 = T .

density is depicted in Figure as the dashed line. Finally, Figure shows the
relative entropy between the smoothing density obtained by the PDE solution and
the variational approximation.

Parameter inference. We consider the case where the parameter a in the drift
term of () is unknown. Figure shows the-Algorithm introduced in Section

Figure: Parameter inference,
κ̂ = 1.18
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Example 2: Cox-Ingersoll-Ross
▸ signal process

dXt = κ(b −Xt)dt + λ
√
XtdWt , X0 = x0 ∼ N(µ,σ)

▸ discrete observations Yk = Xtk + ρk , k = 1,⋯,N, ρk ∼ N(1,R)

▸ values: λ = 0.2, κ = 1, b = 0.3, µ = 1, σ = 0.1, R = 0.1,
T = 0.3s, N = 2, t1 = T /2 and t2 = T

variational approximation
▸ u(x , t) = 1

2λ
2 +A(t) +B(t)x + λ2x(C(t) +D(t)x)
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Fig 2: Cox-Ingersoll-Ross: PDE (solid) vs variational approximation (dashed)

to solving a ordinary initial value problem that is tractable even in relatively large dimensions,
compared to PDEs. Alternatively, it would be interesting to study numerical methods specifically
tailored to the boundary value problems resulting from the maximum principle, such as the shooting
method, see [22] for a comprehensive summary. This should also lead to a significant reduction in
computation time, compared to the presented examples.

Tobias: any more ideas to mention for further research?

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.

Figure: Smoothing density
(PDE vs variational approx.)
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Tobias: mention that if we could estimate the terminal conditions of the smoothing density this
would lead to a significant improvement in terms of computation time

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.

(a) Density v(x, t)
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Tobias: mention that if we could estimate the terminal conditions of the smoothing density this
would lead to a significant improvement in terms of computation time

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.

(b) Filter density p(x, t)
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Fig 2: Cox-Ingersoll-Ross: PDE (solid) vs variational approximation (dashed)

to solving a ordinary initial value problem that is tractable even in relatively large dimensions,
compared to PDEs. Alternatively, it would be interesting to study numerical methods specifically
tailored to the boundary value problems resulting from the maximum principle, such as the shooting
method, see [22] for a comprehensive summary. This should also lead to a significant reduction in
computation time, compared to the presented examples.

Tobias: any more ideas to mention for further research?

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.
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to solving a ordinary initial value problem that is tractable even in relatively large dimensions,
compared to PDEs. Alternatively, it would be interesting to study numerical methods specifically
tailored to the boundary value problems resulting from the maximum principle, such as the shooting
method, see [22] for a comprehensive summary. This should also lead to a significant reduction in
computation time, compared to the presented examples.

Tobias: any more ideas to mention for further research?

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.

(d) Relative entropy
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Fig. 2: Cox-Ingersoll-Ross: Comparison of the PDE solution (solid) versus the vari-
ational approach (dashed). The considered numerical values are: λ = 0.2, a = 1,
b = 0.3, µ = 1, σ = 0.1, R = 0.1, T = 0.3s, N = 2, t1 = T/2 and t2 = T .

for an initial guess â0 = 4 of the unknown parameter.

Table summarizes the runtimes of the two numerical examples above. It can be
seen that the ODEs provided by the maximum principle can be solved by roughly one

5consists of solving the two PDEs () and ()
6consists of the PDE () and the ODE system in order to solve Problem

Figure: Parameter inference,
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Conclusion and Outlook

▸ Conclusion
▸ variational approximation to the smoothing density
▸ requires solving an optimal control problem
▸ parameter inference via maximum likelihood method

▸ Outlook
▸ solve the underlying optimal control problem

▸ necessary conditions via PMP (shooting method)
▸ semidefinite programming approach for certain problem classes
▸ infinite dimensional linear programming approach

▸ guarantees for the EM-alogrithm
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