Sparsity, discreteness and optimal control

Masaaki Nagahara¹

¹The University of Kitakyushu nagahara@ieee.org

> 20 May 2016 IIT Bombay

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control

IIT Bombay Sept 2015

l am ...

- Born in Ehime, Japan
- Graduated from Kyoto University
- Working at The University of Kitakyushu as a full professor
- Interested in control, signal processing, communications
- A blogger of *Welcome to My Sparseland* (very sparse blogging) sparseland.blogspot.com

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control

The University of Kitakyushu

- I am working with The University of Kitakyushu
- Faculty of Environmental Engineering
- Control theory, signal/image processing, artificial intelligence, autonomous vehicles (including drones), and so on.
- We welcome foreign students for master and PhD degrees.
 - If you are interested, please email me.

- Sparsity is useful (as you know)
- Relation between sparsity and discreteness
- Sparsity methods for control
- Interplay between control and sparse signal processing

PART I

Sparsity and discreteness¹

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control

¹M. Nagahara, Discrete signal reconstruction by sum of absolute values, *IEEE Signal Processing Letters*, Vol. 22, no. 10, pp. 1575-1579, Oct. 2015.

IIT Bombay Sept 2015 5 / 44

Sparsity in Engineering

- Image processing
 - single-pixel camera, compressed sensing MRI
- Statistics
 - big data analysis

"Your recent Amazon purchases, Tweet score and location history makes you 23.5% welcome here."

< 回 > < 三 > < 三 >

6 / 44

Sparsity in Engineering

- Image processing
 - single-pixel camera, compressed sensing MRI
- Statistics
 - big data analysis
- Discrete signal processing
 - binary image reconstruction, digital communications

Sparsity in Engineering

- Image processing
 - single-pixel camera, compressed sensing MRI
- Statistics
 - big data analysis
- Discrete signal processing
 - binary image reconstruction, digital communications
- Control
 - networked control, sparse control, discrete-valued control

• A vector x in \mathbb{R}^n is *sparse* if it contains many 0's, or has small ℓ^0 norm

 $||x||_0 \triangleq$ the number of the nonzero elements in x.

- Examples of sparse vectors
 - Frequency domain data of natural signals and images almost all of them are nearly 0 except for low-frequency data.
 - Pulse signals; they are sparse in the time domain.

• Suppose that a sparse signal $x \in \mathbb{R}^n$ is measured by linear measurements

$$y = \Phi x \in \mathbb{R}^m,$$

where $\Phi \in \mathbb{R}^{m \times n}$ is a known matrix.

- Finding the original x is ill-posed if m < n.
- To determine *one* vector from *y*, we adopt *optimization*.

• The following optimization will do for sparse signal reconstruction:

 $\min_{z\in\mathbb{R}^n}\|z\|_0 \text{ subject to } y=\Phi z.$

- This gives the exact reconstruction (with assumptions on x and Φ).
- However, it is hard to solve if n is very large (e.g. 1 milion).
- \bullet In many cases, the following ℓ^1 optimization solves the problem:

$$\min_{z \in \mathbb{R}^n} \|z\|_1 \text{ subject to } y = \Phi z.$$

Sparse signals

- Probability distribution of sparse vectors
 - Dirac delta at x = 0 (discrete distribution)
 - $\bullet\,$ continuous distribution for $x\neq 0$

Signals that contain many 1's

- Probability distribution of many-1 vectors
 - Dirac delta at x = 1 (discrete distribution)
 - continuous distribution for $x \neq 1$

Signals that contain many binary values ± 1

Probability distribution

- Dirac deltas at $x = \pm 1$ (discrete distribution)
- continuous distribution for $x\neq\pm 1$

Discrete signals

- Discrete signal z on a finite alphabet, $\{r_1, r_2, \ldots, r_L\}$
- Probability distribution is Dirac deltas at $x = r_1, r_2, \ldots, r_L$.

$$\mathbb{P}[x = r_j] = p_j, \quad p_j > 0, \quad p_1 + p_2 + \dots + p_L = 1.$$

$$p(x)$$

$$p(x)$$

$$r_1 + r_2 + r_3 + r_4$$

• The weighted sum of ℓ^0 norms

$$p_1 ||z - r_1||_0 + p_2 ||z - r_2||_0 + \dots + p_L ||z - r_L||_0$$

is small.

• A binary signal $x \in \{1, -1\}^n$ whose entries are drawn from

$$\mathbb{P}[x=\pm 1] = 1/2.$$

Incomplete linear measurement

$$y = \Phi x \in \mathbb{C}^m$$
, with $m \ll n$

• Reconstruct x from y (discrete signal reconstruction)

Sum-of-absolute-values optimization

Observing that

$$\frac{1}{2}\|x-1\|_0 + \frac{1}{2}\|x+1\|_0$$

is small, we can say that the sum of absolute values (SOAV)

$$\frac{1}{2}\|x-1\|_1 + \frac{1}{2}\|x+1\|_1$$

is also small.

Solve the SOAV optimization

$$\min_{z \in \mathbb{R}^n} \frac{1}{2} \|z - 1\|_1 + \frac{1}{2} \|z + 1\|_1 \text{ subject to } y = \Phi z$$

In many cases, this will also do!

• See [Nagahara, IEEE SPL, Oct. 2015]

17 / 44

Binary image reconstruction

• Original image

• Original image disturbed by Gaussian noise

- Measurement: FFT and downsampling by 2
 - incomplete linear measurement

• Reconstruction by SOAV

• Reconstruction by Basis Pursuit (ℓ^1 optimization)

- Binary (or low-bit) image reconstruction
- Digital communications
- Discrete-valued control
- etc
- If you are interested, please email me. I can give you my preprints.

PART II

Sparsity Methods for Control

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 23 / 44

3

A B < A B <</p>

Maximum hands-off control

joint work with Debasish Chatterjee (IITB) K. S. Mallikarjuna Rao (IITB) Daniel E. Quevedo (University of Paderborn) Dragan Nešić (University of Melbourne)

• Classical control for stabilization (1960-)

3) 3

• Classical control for stabilization (1960-)

• Optimal control for enhancing performance (1970-1980)

3. 3

• Optimal control for enhancing performance (1970-1980)

• Robust control against uncertainties (1990-2000)

3. 3

• Robust control against uncertainties (1990-2000)

- Now: Green control
 - uses less fuel and electric power
 - reduces CO2, noise, and vibration

- Now: Green control
 - uses less fuel and electric power
 - reduces CO2, noise, and vibration
- Maximum hands-off control gives a smart solution!
 - maximizes the time duration on which the control value is 0
 - L⁰ optimal: non-convex
 - can be obtained via L^1 optimal control (convex)

Outline

- Maximum hands-off control
- L¹-optimal control (minimum fuel control)
- 2 Motivation of maximum hands-off control: Green control
- 3 Maximum hands-off control and L^1 optimality
- (4) L^1/L^2 -optimal control for continuous control
 - 5 Example

Plant:
$$G(s) = 1/s^2$$

$$\frac{dx(t)}{dt} = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

<ロ> (日) (日) (日) (日) (日)

2

Plant:
$$G(s) = 1/s^2$$

$$\frac{dx(t)}{dt} = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

Maximum hands-off control problem

Fix T > 0. Find an admissible control u(t), $t \in [0,T]$ that drives the state from x(0) to x(T) = 0, that satisfies

$$|u(t)| \le 1, \quad \forall \ t \in [0, T],$$

and that minimizes

$$J_0(u) = \mu(\text{supp}(u)) = \int_0^T |u(t)|^0 dt,$$

the length of the support of u (L^0 norm).

IIT Bombay Sept 2015 31 / 44

Plant:
$$G(s) = 1/s^2$$

$$\frac{dx(t)}{dt} = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

L^1 -optimal control

Fix T>0. Find an admissible control u(t), $t\in[0,T]$ that drives the state from x(0) to x(T)=0, that satisfies

$$|u(t)| \le 1, \quad \forall \ t \in [0, T],$$

and that minimizes the L^1 norm

$$J_1(u) = \int_0^T |u(t)| dt.$$

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control

э

 L^1 -optimal control $u^*(t)$ and trajectory $x^*(t)$ [Athans and Falb, 1966]

• $u^*(t) \equiv 0$ over $[3 - \sqrt{10}/2, 3 + \sqrt{10}/2] \approx [1.4, 4.6]$

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 33 / 44

 L^1 -optimal control $u^*(t)$ and trajectory $x^*(t)$ [Athans and Falb, 1966]

•
$$u^*(t) \equiv 0$$
 over $[3 - \sqrt{10}/2, 3 + \sqrt{10}/2] \approx [1.4, 4.6]$
• $u^*(t)$ is sparse ($||u^*||_0 = |\operatorname{supp}(u^*)| \approx 1.84 < 5 = T$)

3

 L^1 -optimal control $u^*(t)$ and trajectory $x^*(t)$ [Athans and Falb, 1966]

- $u^*(t) \equiv 0$ over $[3 \sqrt{10}/2, 3 + \sqrt{10}/2] \approx [1.4, 4.6]$
- $u^*(t)$ is sparse ($||u^*||_0 = |\operatorname{supp}(u^*)| \approx 1.84 < 5 = T$)
- In fact, it is the sparsest (i.e., maximum hands-off control).

Why hands-off control is green?

• Reduced fuel and electric power consumption

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 34 / 44

Why hands-off control is green?

- Reduced fuel and electric power consumption
- Reduced CO2, noise, and vibration

Why hands-off control is green?

- Reduced fuel and electric power consumption
- Reduced CO2, noise, and vibration
- Data compression
 - Sparse signals can be effectively compressed; see e.g. [Nagahara, Quevedo, Østergaard, IEEE Trans. AC 2014]

Maximum hands-off control and L^1 optimality

Plant

$$\frac{dx(t)}{dt} = f(x(t)) + g(x(t))u(t), \quad t \ge 0, \quad x(0) = x_0$$
$$x(t) \in \mathbb{R}^n, \quad u(t) \in \mathbb{R}$$

- < ∃ →

3

Maximum hands-off control and L^1 optimality

Plant

$$\frac{dx(t)}{dt} = f(x(t)) + g(x(t))u(t), \quad t \ge 0, \quad x(0) = x_0$$
$$x(t) \in \mathbb{R}^n, \quad u(t) \in \mathbb{R}$$

Theorem

Assume that the L^1 -optimal control problem is *normal* ^a (or *non singular*) and has at least one solution. Then

 $\{L^0 \text{ optimal controls}\} = \{L^1 \text{ optimal controls}\}\$

^aWhen the optimal control is *uniquely determined almost everywhere* from the minimum principle, the control problem is called *normal*.

Maximum hands-off control and L^1 optimality

Plant

$$\frac{dx(t)}{dt} = f(x(t)) + g(x(t))u(t), \quad t \ge 0, \quad x(0) = x_0$$
$$x(t) \in \mathbb{R}^n, \quad u(t) \in \mathbb{R}$$

Theorem

Assume that the L^1 -optimal control problem is *normal* ^a (or *non singular*) and has at least one solution. Then

 $\{L^0 \text{ optimal controls}\} = \{L^1 \text{ optimal controls}\}$

^aWhen the optimal control is *uniquely determined almost everywhere* from the minimum principle, the control problem is called *normal*.

A maximum hands-off control problem (non convex optimization) can be solved via a related L^1 optimal control problem (convex)!

Lemma [Athans & Falb, 1966]

Assume the plant is given by

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t), \quad t \ge 0.$$

If the plant is *controllable* and A is non singular, then for any initial state $x(0) \in \mathbb{R}^n$, the L^1 -optimal control problem is normal.

Maximum-hands off control is discontinuous

- the "bang-off-bang" property
- Smoothing by adding L^2 norm:

$$J_{12} = \|u\|_1 + \frac{1}{2}r\|u\|_2^2$$

•
$$L^1/L^2$$
-optimal control is *continuous in t*.

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control

37 / 44

L^1/L^2 -optimal control

Plant:
$$\frac{dx}{dt} = f(x) + g(x)u$$

Assumption: f , g , $\frac{df}{dx}$, $\frac{dg}{dx}$ are continuous in x .
Constraints: $x(0) = x_0$; $x(T) = 0$; $|u(t)| \le 1 \ \forall t \in [0, T]$
Cost function: $J_{12} = ||u||_1 + \frac{1}{2}r||u||_2^2$

3

L^1/L^2 -optimal control

Plant:
$$\frac{dx}{dt} = f(x) + g(x)u$$

Assumption: $f, g, \frac{df}{dx}, \frac{dg}{dx}$ are continuous in x .
Constraints: $x(0) = x_0$; $x(T) = 0$; $|u(t)| \le 1 \ \forall t \in [0, T]$
Cost function: $J_{12} = ||u||_1 + \frac{1}{2}r||u||_2^2$

Proposition

The L^1/L^2 -optimal control $u_{12}^*(t)$ is continuous in t over [0,T].

御天 不良天 不良天 二臣

L^1/L^2 -optimal control

Plant:
$$\frac{dx}{dt} = f(x) + g(x)u$$

Assumption: $f, g, \frac{df}{dx}, \frac{dg}{dx}$ are continuous in x .
Constraints: $x(0) = x_0$; $x(T) = 0$; $|u(t)| \le 1 \ \forall t \in [0, T]$
Cost function: $J_{12} = ||u||_1 + \frac{1}{2}r||u||_2^2$

Proposition

The
$$L^1/L^2$$
-optimal control $u^*_{12}(t)$ is continuous in t over $[0,T]$.

Proposition

Assume the L^1 -optimal control problem is normal and its solution exists. Then

$$u_{12}^*(t) \to u_1^*(t) = u_0^*(t), \quad \text{a.a.} \ t \in [0,T],$$

as $r \to 0$.

Example: control problem

• Plant:
$$P(s) = \frac{1}{s^2(s^2+1)}$$

$$\frac{d\boldsymbol{x}(t)}{dt} = \begin{bmatrix} 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 2\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} u(t).$$

- Final time: T = 10.
- State Constraints: $x(0) = [1, 1, 1, 1]^{\top}$ and x(10) = 0
- Control constraint: $|u(t)| \leq 1, \quad \forall t \in [0, 10]$

Examples: optimal controls

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 40 / 44

Examples: states with maximum hands-off control

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 41 / 44

Examples: L^1/L^2 -optimal control

42 / 44

Conclusion

• Maximum hands-off control is green control.

- uses less fuel and electric power
- reduces CO2, noise, and vibration
- gives effective data compression for networked control systems
- L^0 optimality = L^1 optimality
 - under the assumption of normality.
- $\bullet\,$ Continuous control by $L^1/L^2\text{-optimal control}$
- Characterization of maximum hands-off control (i.e. L^0 optimal control) is given in the following paper:
 - D. Chatterjee, M. Nagahara, D. E. Quevedo, and K. S. M. Rao, "Characterization of maximum hands-off control," *Systems and Control Letters*, 2016, to be published.

• Relation between sparsity and discreteness

- Relation between sparsity and discreteness
- Sparsity methods for control (maximum hands-off control) for green technology

- Relation between sparsity and discreteness
- Sparsity methods for control (maximum hands-off control) for green technology
- Interplay between control and sparse signal processing
 - Collaborative work by researchers and engineers on control, signal processing, communications, etc is highly important.

- Relation between sparsity and discreteness
- Sparsity methods for control (maximum hands-off control) for green technology
- Interplay between control and sparse signal processing
 - Collaborative work by researchers and engineers on control, signal processing, communications, etc is highly important.
- Let's get started!