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PROBLEM FORMULATION

Switched system: | x = Asx + Bsu

{(Ap, Bp) : p € P} are (stabilizable) modes,
P is a (finite) index set, o : [0,00) — P is a switching signal

(can be state-dependent, realizing discrete state in hybrid system)

Information structure: sampling period
Sampling: state x is measured at times t, = kfsy k= 0,1,...

Quantization: each x(t;) is encoded by an integer from 0 to N™
and sent to the controller, along with o (t) € P (n = dimx)

l0go2(N™ 4+ 1) 4 logs | P
Ts

Data rate:

Obijective: design an encoding & control strategy s.t. x:(t) — O

based on this limited information about z(-) and o(-)
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MOTIVATION
Switching:
 ubiquitous in realistic system models
* lots of research on stability & stabilization under switching
* tools used: common & multiple Lyapunov functions,
slow switching assumptions

Quantization:

 coarse sensing (low cost, limited power, hard-to-reach areas)

e limited communication (shared network resources, security)

e theoretical interest (how much info is needed for a control task)
e tools used: Lyapunov analysis, data-rate / MATI bounds

Commonality of tools is encouraging

Almost no prior work on gquantized control of switched systems
(except quantized MJLS [Nair et. al. 2003, Dullerud et. al. 2009])
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NON-SWITCHED CASE

Quantized control of a single LTI system:
[Baillieul, Brockett-L, Hespanha, Matveev-Savkin, Nair-Evans, Tatikonda]

System can be stabilized if

error reduction factor at ¢, > growth factor on [¢x, tx41]
N(=3)

Control: ©u = KZ

Crucial step: obtaining a reachable set over-approximation
at next sampling instant

How to do this for switched systems?
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REACHABLE SET ALGORITHMS

Many computational (on-line) methods for hybrid systems

» Puri—Varaiya—Borkar (1996): approximation by piecewise-constant
differential inclusions; unions of polyhedra

* Henzinger—Preul3ig—Stursberg—et. al. (1998, 1999). approximation by
rectangular automata; tools: HyTech, also PHAVer by Frehse (2005)

» Asarin—Dang—Maler (2000, 2002): linear dynamics; rectangular polyhedra;
tool: d/dt

» Mitchell-Tomlin—et. al. (2000, 2003): nonlinear dynamics; level sets of
value functions for HIB equations

» Kurzhanski—Varaiya (2002, 2005): affine open-loop dynamics; ellipsoids
« Chutinan—Krogh (2003): nonlinear dynamics; polyhedra; tool: CheckMate

» Girard—Le Guernic—et. al. (2005, 2008, 2009, 2011): linear dynamics;

zonotopes and support functions; tool: SpaceEx
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OUR APPROACH

We develop a method for propagating reachable set
over-approximations for switched systems which is:

» Analytical (off-line)

e Leads to an a priori data-rate bound for stabilization
(may be more conservative than on-line methods)

« Works with linear dynamics and hypercubes (with
moving center)

* Tallored to switched systems (time-dependent switching)
but can be adopted/refined for hybrid systems
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SLOW-SWITCHING and DATA-RATE ASSUMPTIONS

1) 9 dwell time 74 (lower bound on time between switches)

2) 3 average dwell time (ADT) 74 S.t.

it — s

number of switches on (s,t] < Ng + Vt>s>0

Ta
3) Ta > T4 = Ts (sampling period)
Implies: < 1 switch on each sampling interval (tg, tx+1]
We’'ll see how large 74 should be for stability
Define A, := [|e??™||s0, pE P
4) Np < N Vp

(usual data-rate bound for individual modes)
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ENCODING and CONTROL STRATEGY

Goal: generate, on the decoder/controller side, a seqguence
of points x; € R™ and numbers E; > 0 s.t.

|z(ty) — xi|| < Ex Vk| (always oc-norm)

__Ekj T

>0®

Let p = o(t;)
Pick K, s.t. Ay + BpK) is Hurwitz
Define state estimate Z(-) on [tg,tr41) by
t=(Ap+ BpKp), i(ty) = ¢
Define control u(-) on [tg,tx+1) by
u(t) = Kpz(t)
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GENERATING STATE BOUNDS

Choosing a sequence Fq, /1, Eo>, ... that grows faster than
system dynamics, for some kg we will have [[z(ts )| < Ej,

Inductively, assuming ||z (tx) — x3.|| < Ej we show how to

find 21 1, Egt1 St [e(trt1) — 2yl < Egga

Case 1 (easy): sampling interval with no switch

o(ty) = c(tg+1) =p = o(t) =p Vt € [tg, tpt1l

= Apz+ Bpu [ = é = Ape | = llelterll < 7] |lelt)]]
T(tg) = cp = [le(tp)|l < Ex/N < NpEg/N =t Eg1

Ej

>0® ( 3

* .— (Ap+BpK. ,
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GENERATING STATE BOUNDS
Case 2 (harder): sampling interval with a switch
o(ty) =p, o(tg+1) =qFp

| O—0DpD O —(q |
Lk tp+ 1 te41
Before the switch: as on previous slide,
J(ty+E) — B(tp+ )| < [leT]| Byy/N
™ but this is unknown _ known

1 t — unknown to the controller

A

Instead, pick some t’ € [0, 7] and use Z(t; + t') as center

(triangle inequality)

Intermediate bound:

B(tr) p(tp+0)| ||o(te+t) — 2(tp+1)|| < Dpg1(2)
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GENERATING STATE BOUNDS
After the switch: on [tx+¢, tx41], closed-loop dynamics are

(:}3) = (o Ap+Bpr> (5:3) of 2= fpg?

- L 4/
Auxiliary system in R2": z = qu,g, z(0) = (w(tk t ))

z(tp, + 1)

ﬁl __Jif_t ------ > o
® T - \

2(ty+t') z(0)~

E(t/,> ‘,

Tht1 project *
<> - °_
Ek—|—1 ontox E(Ts—t )

Then take maximum over t to obtain final bound 1 of 15



STABILITY ANALYSIS: OUTLINE
1) sampling interval with no switch: ¢ = p on [tg, tp41]

thqy = T = BTS2 4 (e —af))
This is exp. stable DT system w. input A, 1= ¢}, — a:}’;

|AL| < E.(N—1)/N /data-rate assumption o8

and Epy41 = ExNp/N < B, = E, 220 ry cp

Thus, the overall “cascade” system is exp. stable

Lyapunov function: Vp(x, E) 1= a:*TPpa: + ppE2

satisfies Vp(:c]’:+1,Ek_|_1) < vVp(ap, E), v <1

2) if [tg, tx41] contains a switch from p to g, then
Vq(zc;”;+1,Ek+1) < uVp(ay, Eg), p>1

If ADT satisfies 74 > (1+1og(w)/109(1/v))7s then

V() (@ B B 0 as k — oo = same true for z(ty,)

Intersample bound, Lyapunov stability — see [L, Automatica, Feb'14] ., ;15



SIMULATION EXAMPLE

P2 (3 0) m=(3) m=(20
o — (2
EZ=E)223 AQ:(—Ol 3)1322(?),@:(0 )

7« = 0.5, N =5 (data-rate assumption holds)

74 =1.05, 7, =7.55, Ng =5

10

L1
T1
o switch

o 5 10 4, 15 20 25

Theoretical lower bound on 7 is about 50 13 of 15
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HYBRID SYSTEMS

Switching triggered by switching surfaces (guards) in state space

* Previous result applies if we can use relative location of
switching surfaces to verify slow-switching hypotheses

« Can just run the algorithm and verify convergence on-line

« Can use the extra info to improve reachable set bounds

For example: o(tg) =p, o(tp4+1) =qF p

discard

_ Ty _
L1

keep

« State jJumps — easy to incorporate
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CONCLUSIONS and FUTURE WORK

Contributions:

 Stabilization of switched/hybrid systems with quantization

« Main step: computing over-approximations of reachable sets
e Data-rate bound is the usual one, maximized over modes

« Refining reachable set bounds (set shapes, choice of ¢, ¢’/
 Relaxing slow-switching assumptions (747 < 7s)
* Less frequent transmissions of discrete mode value

Challenges:

» Output feedback (Wakaiki and Yamamoto, MTNS’14)
» External disturbances (ongoing work with Yang)

* Modeling uncertainty

* Nonlinear dynamics
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CONCLUSIONS and FUTURE WORK

External disturbances (ongoing work with Yang)

r = Az + Bsu + Dsd




