
A Matlab toolbox to make optimization on manifolds 
 
feel as simple as unconstrained optimization

A project of the RANSO group
Nicolas Boumal and Bamdev Mishra
P.-A. Absil, Y. Nesterov and R. Sepulchre

Manopt.org



Why care for such optimization 
problems?

2

min f(x)

subject to x 2 M

Even if you do, why a new toolbox?



3

Manifold definitions

Solvers Tools

Manopt

M



What is the minimal framework you need  
for steepest descent optimization?

min
x2Rn

f(x)



Rn



6

min f(x)

subject to x 2 M

Now what is the framework for this?



M



M



M



M



M



We only need the search space to be  
a Riemannian manifold

   We need…
A notion of directions along which we can move 
tangent space, tangent vector

A notion of steepest descent direction  
inner product, gradient

A means of moving along a direction 
Geodesics, retractions



Symmetry leads to manifold structures

Grassmann manifold  dimensionality reduction
Unit norm vector      independent comp.analysis
Orthonormal matrix  sparse and robust PCA
Rotation matrix        synchronization of rotations
Positive definite matrix  diffusion tensor imaging
Fixed-rank matrix     low-rank matrix completion
Semidefinite fixed-rank matrix  covariance estim.
Euclidean distance matrix     data visualization
. . .

M Applications



The theory is mature at this point.

 
What’s been missing is 
matching software.



A Matlab toolbox to make optimization on manifolds 
 
feel as simple as  
unconstrained optimization

With generic solvers, 
a library of manifolds and  
diagnostics tools

Manopt.org



Example code for  
dominant eigenvectors

max

kxk=1
x

T

Ax

M := {x 2 Rn : kxk = 1}

f(x) = x

T
Ax

rf(x) = 2Ax



% Generate the problem data.
n = 1000;
A = randn(n);
A = .5*(A+A');

% Create the problem structure and specify the manifold.
problem.M = spherefactory(n);

% Define the problem cost function and its gradient.
problem.cost  = @(x) -x'*(A*x);
problem.egrad = @(x) -2*A*x;

% Numerically check gradient consistency.
checkgradient(problem);



Gradient check

Approximation  
error

Step size in the Taylor expansion



% Generate the problem data.
n = 1000;
A = randn(n);
A = .5*(A+A');

% Create the problem structure and specify the manifold.
problem.M = spherefactory(n);

% Define the problem cost function and its gradient.
problem.cost  = @(x) -x'*(A*x);
problem.egrad = @(x) -2*A*x;

% Numerically check gradient consistency.
checkgradient(problem);

% Solve.
[x, xcost, info] = trustregions(problem);



>> [x, xcost, info] = trustregions(problem);

                                            f:  1.571531e+000   |grad|: 4.456216e+001

REJ TR-   k:     1     num_inner:     1     f:  1.571531e+000   |grad|: 4.456216e+001   negative curvature

acc       k:     2     num_inner:     1     f: -2.147351e+001   |grad|: 3.053440e+001   negative curvature

acc       k:     3     num_inner:     2     f: -3.066561e+001   |grad|: 3.142679e+001   negative curvature

acc       k:     4     num_inner:     2     f: -3.683374e+001   |grad|: 2.125506e+001   exceeded trust region

acc       k:     5     num_inner:     3     f: -4.007868e+001   |grad|: 1.389614e+001   exceeded trust region

acc       k:     6     num_inner:     4     f: -4.237276e+001   |grad|: 9.687523e+000   exceeded trust region

acc       k:     7     num_inner:     6     f: -4.356244e+001   |grad|: 5.142297e+000   exceeded trust region

acc       k:     8     num_inner:     8     f: -4.412433e+001   |grad|: 2.860465e+000   exceeded trust region

acc       k:     9     num_inner:    20     f: -4.438540e+001   |grad|: 3.893763e-001   reached target residual-kappa

acc       k:    10     num_inner:    20     f: -4.442759e+001   |grad|: 4.116374e-002   reached target residual-kappa

acc       k:    11     num_inner:    24     f: -4.442790e+001   |grad|: 1.443240e-003   reached target residual-theta

acc       k:    12     num_inner:    39     f: -4.442790e+001   |grad|: 1.790137e-006   reached target residual-theta

acc       k:    13     num_inner:    50     f: -4.442790e+001   |grad|: 3.992606e-010   dimension exceeded

Gradient norm tolerance reached.

Total time is 2.966843 [s] (excludes statsfun)



% Generate the problem data.
n = 1000;
A = randn(n);
A = .5*(A+A');

% Create the problem structure and specify the manifold.
problem.M = spherefactory(n);

% Define the problem cost function and its gradient.
problem.cost  = @(x) -x'*(A*x);
problem.egrad = @(x) -2*A*x;

% Numerically check gradient consistency.
checkgradient(problem);

% Solve.
[x, xcost, info] = trustregions(problem);

% Display some statistics.
semilogy([info.iter], [info.gradnorm], '.-');



Convergence of the Riemannian trust-regions 

Gradient 
norm

Iteration #



Riemannian optimization is…
Well-understood
Theory is available for robust algorithms

Useful
Leverage the symmetry of your constraints

Easy
With Manopt, you simply provide the cost



Manopt is open source and 
documented
www.manopt.org


