Maximum hands-off control and discrete-valued control

Masaaki Nagahara¹²

¹The University of Kitakyushu nagahara@kitakyu-u.ac.jp ²Visiting Faculty at IITB (SysCon, 1st floor, visiting faculty room)

1 March 2017, IIT Bombay

Table of Contents

1 What is hands-off control?

2 A simple example

- Maximum hands-off control
- L¹-optimal control (minimum fuel control)
- 3 Maximum hands-off control and L^1 optimality

Discrete-valued control

Table of Contents

1 What is hands-off control?

A simple example

- Maximum hands-off control
- L¹-optimal control (minimum fuel control)
- $egin{array}{c} egin{array}{c} egin{array}$
- 4 Discrete-valued control

Hands-off control

Hands-off control

Table of Contents

What is hands-off control?

2 A simple example

- Maximum hands-off control
- L¹-optimal control (minimum fuel control)

3) Maximum hands-off control and L^1 optimality

4 Discrete-valued control

5 Conclusion

A simple example

Plant:
$$G(s) = 1/s^2$$

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Feasible control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^{\top}$ that satisfies

 $|u(t)| \le 1, \quad \forall \ t \in [0, T].$

Maximum hands-off control problem

Find a feasible control that minimizes the L^0 norm of u:

$$J_0(u) = \mu(\operatorname{supp}(u)) = \int_0^T |u(t)|^0 dt$$
 (the length of the support)

L^0 norm and L^1 norm

A simple example

Plant:
$$G(s) = 1/s^2$$

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

L^1 -optimal control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^{\top}$, that satisfies $|u(t)| \le 1$, $\forall t \in [0, T]$, and that minimizes the L^1 norm of u:

$$J_1(u) = \int_0^T |u(t)| dt.$$

- Also known as *fuel optimal control*.
- A convex optimization problem!

A simple example

 L^1 -optimal control $u^*(t)$ and trajectory $x^*(t)$ [Athans and Falb, 1966]

- $u^*(t) \equiv 0$ over $[3 \sqrt{10}/2, 3 + \sqrt{10}/2] \approx [1.4, 4.6]$
- $u^*(t)$ is sparse ($||u^*||_0 = |\operatorname{supp}(u^*)| \approx 1.84 < 5 = T$)
- In fact, it is the sparsest (i.e., maximum hands-off control).

Why hands-off control is green?

- Reduced fuel and electric power consumption
- Reduced CO2, noise, and vibration
- Data compression
 - Sparse signals can be effectively compressed; see e.g. [Nagahara, Quevedo, Østergaard, IEEE Trans. AC 2014]

Maximum hands-off control and L^1 optimality

Plant

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad t \ge 0, \quad x(0) = x_0$$
$$x(t) \in \mathbb{R}^n, \quad u(t) \in \mathbb{R}$$

Theorem

Assume that the L^1 -optimal control problem is *normal* ^a (or *non singular*) and has at least one solution. Then

 $\{L^0 \text{ optimal controls}\} = \{L^1 \text{ optimal controls}\}\$

^aWhen the optimal control is *uniquely determined almost everywhere* from the minimum principle, the control problem is called *normal*.

A maximum hands-off control problem (non convex optimization) can be solved via a related L^1 optimal control problem (convex)!

M. Nagahara (Univ of Kitakyushu)

Lemma [Athans & Falb, 1966]

Assume the plant is given by

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t \ge 0.$$

If the plant is *controllable* and A is non singular, then for any initial state $x(0) \in \mathbb{R}^n$, the L^1 -optimal control problem is normal.

L^1/L^2 -optimal control for continuous control

• Maximum-hands off control is discontinuous

- the "bang-off-bang" property
- Smoothing by adding L^2 norm:

$$J_{12} = \|u\|_1 + \frac{1}{2}r\|u\|_2^2$$

•
$$L^1/L^2$$
-optimal control is *continuous in t*.

L^1/L^2 -optimal control for continuous control

L^1/L^2 -optimal control

Plant:
$$\dot{x}(t) = f(x) + g(x)u$$

Assumption: $f, g, \frac{df}{dx}, \frac{dg}{dx}$ are continuous in x .
Constraints: $x(0) = x_0$; $x(T) = 0$; $|u(t)| \le 1 \ \forall t \in [0,T]$
Cost function: $J_{12} = ||u||_1 + \frac{1}{2}r||u||_2^2$

Proposition

The L^1/L^2 -optimal control $u_{12}^*(t)$ is continuous in t over [0,T].

Proposition

Assume the L^1 -optimal control problem is normal and its solution exists. Then

$$u_{12}^*(t) \to u_1^*(t) = u_0^*(t), \quad \text{a.a.} \ t \in [0,T],$$

as $r \to 0$.

CLOT (Combined *L*-One and Two)-optimal control

 $\begin{array}{l} {\sf Plant:} \ \dot{x}(t) = f(x) + g(x)u \\ {\sf Assumption:} \ f, \ g, \ \frac{df}{dx}, \ \frac{dg}{dx} \ \text{are continuous in } x. \\ {\sf Constraints:} \ x(0) = x_0; \ x(T) = 0; \ |u(t)| \leq 1 \ \forall t \in [0,T] \\ {\sf Cost function:} \ J_{\rm CLOT} = \|u\|_1 + r\|u\|_2 \ ({\sf cf.} \ J_{12} = \|u\|_1 + \frac{1}{2}r\|u\|_2^2) \end{array}$

- Motivated by CLOT in signal processing [Ahsen, Challapalli, & Vidyasagar 2016]
- The CLOT optimization may give much sparser but still continuous control [Challapalli, Nagahara, & Vidyasagar 2016] (submitted to IFAC2017)

Example: control problem

lant:
$$P(s) = \frac{1}{s^2(s^2+1)}$$

$$\frac{d\boldsymbol{x}(t)}{dt} = \begin{bmatrix} 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 2\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} u(t).$$

• Final time: T = 10.

• P

- State Constraints: $x(0) = [1, 1, 1, 1]^{\top}$ and x(10) = 0
- Control constraint: $|u(t)| \leq 1, \quad \forall t \in [0, 10]$

Examples: optimal controls

Examples: states with maximum hands-off control

Examples: L^1/L^2 -optimal control

Table of Contents

1 What is hands-off control?

A simple example

- Maximum hands-off control
- L¹-optimal control (minimum fuel control)
- ${rak 3}$ Maximum hands-off control and L^1 optimality

Discrete-valued control

5 Conclusion

Discrete-valued control

- The L^1 optimal control takes values ± 1 and 0.
- This is discrete valued.
- Discrete-valued control has merits of
 - discretization (quantization) of control
 - data compression
 - simple actuation

Discrete-valued control

Problem formulation

Plant

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad t \ge 0, \quad x(0) = x_0$$

Feasible control

Fix T > 0. Find a discrete-valued control u(t), $t \in [0, T]$ that drives the state from x(0) to x(T) = 0 and satisfies $U_{\min} \le u(t) \le U_{\max}$, $\forall t \in [0, T]$.

Discrete-valued control

Find a feasible control that satisfies

$$u(t) \in \{U_1, U_2, \dots, U_N\}$$

where $U_{\min} = U_1 < U_2 < \dots < U_N = U_{\max}$.

Cost function

Sum of absolute values (SOAV):

$$L(u) = \sum_{i=1}^{N} w_i |u - U_i|$$

SOAV optimal control

$$\underset{u \in \mathcal{U}}{\text{minimize}} \quad \int_0^T L(u(t))dt \to u(t) \in \{U_1, U_2, \dots, U_N\}$$

M. Nagahara (Univ of Kitakyushu)

Max hands-off control

Discrete-valued control

SOAV optimal control:

minimize
$$\int_0^T \sum_{i=1}^N w_i |u(t) - U_i| dt = \sum_{i=1}^n w_i ||u - U_i||_1$$

subject to

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad x(0) = x_0, \quad x(T) = 0$$

 $U_{\min} \le u(t) \le U_{\max}$

Theorem

If the SOAV optimal control is normal (or nonsingular), then the optimal solution satisfies

$$u(t) \in \{U_1, U_2, \dots, U_N\},$$
 a.a. $t \in [0, T].$

M. Nagahara (Univ of Kitakyushu)

Discrete-valued control for linear plants

SOAV optimal control:

$$\begin{aligned} & \underset{u}{\text{minimize}} \int_{0}^{T} \sum_{i=1}^{N} w_{i} | u(t) - U_{i} | dt = \sum_{i=1}^{n} w_{i} \| u - U_{i} \|_{1} \\ & \text{subject to} \\ & \frac{\dot{x}(t) = Ax(t) + Bu(t)}{U_{\text{min}}}, \quad x(0) = x_{0}, \quad x(T) = 0 \\ & U_{\text{min}} \leq u(t) \leq U_{\text{max}} \end{aligned}$$

Theorem

If $\left(A,B\right)$ is controllable, A is nonsingular, and

$$a_k \triangleq \sum_{i=1}^k -\sum_{i=k+1}^N \neq 0, \quad \forall k = 1, 2, \dots, N-1,$$

then the optimal solution satisfies $u(t) \in \{U_1, U_2, \dots, U_N\}$, a.a. $t \in [0, T]$.

Discrete-valued control for linear plants

Theorem

If $\left(A,B\right)$ is controllable, A is nonsingular, and

$$a_k \triangleq \sum_{i=1}^k w_i - \sum_{i=k+1}^N w_i \neq 0, \quad \forall k = 1, 2, \dots, N-1,$$

then the optimal solution satisfies $u(t) \in \{U_1, U_2, \ldots, U_N\}$, a.a. $t \in [0, T]$.

 a_k is the slope of the line between U_k and U_{k+1}

M. Nagahara (Univ of Kitakyushu)

References

Maximum hands-off control

- M. Nagahara, D. E. Quevedo, and J. Ostergaard, Sparse packetized predictive control for networked control over erasure channels, *IEEE TAC*, vol. 59, no. 7, pp. 1899-1905, July 2014.
- M. Nagahara, D. E. Quevedo, and D. Nesic, Maximum hands-off control: a paradigm of control effort minimization, *IEEE TAC*, Vol. 61, No. 3, pp. 735-747, 2016.
- T. Ikeda and M. Nagahara, Value function in maximum hands-off control for linear systems, Automatica, vol. 64, pp. 190-195, Feb. 2016
- D. Chatterjee, M. Nagahara, D. E. Quevedo, and K. S. M. Rao, Characterization of maximum hands-off control, *Systems & Control Letters*, vol. 94, pp. 31-36, Aug. 2016.
- M. Nagahara, J. Ostergaard, D. E. Quevedo, Discrete-time hands-off control by sparse optimization, EURASIP Journal on Advances in Signal Processing, 2016:76, Dec. 2016.

Discrete-valued control

- M. Nagahara, Discrete Signal Reconstruction by Sum of Absolute Values, *IEEE SPL*, Vol. 22, no. 10, pp. 1575-1579, Oct. 2015.
- H. Sasahara, K. Hayashi and M. Nagahara, Symbol Detection for Faster-Than-Nyquist Signaling by Sum-of-Absolute-Values Optimization, *IEEE SPL*, vol. 23, no. 12, pp. 1853-1857, Dec. 2016.
- T. Ikeda, M. Nagahara, and S. Ono, Discrete-Valued Control of Linear Time-Invariant Systems by Sum-of-Absolute-Values Optimization, *IEEE TAC*, 2017 (to appear)

- Maximum hands-off control is green control.
 - uses less fuel and electric power
 - reduces CO2, noise, and vibration
 - gives effective data compression for networked control systems
- L^0 optimality = L^1 optimality
 - under the assumption of normality.
- $\bullet\,$ Continuous control by $L^1/L^2\text{-optimal control}$
- Discrete-valued control via SOAV optimization