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A simple example

Plant: G(s) = 1/s2

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), x(0) =

[
1
1

]

Feasible control

Fix T > 0. Find a feasible control u(t), t ∈ [0, T ] that drives the state
from x(0) to x(T ) = [0, 0]> that satisfies

|u(t)| ≤ 1, ∀ t ∈ [0, T ].

Maximum hands-off control problem

Find a feasible control that minimizes the L0 norm of u:

J0(u) = µ(supp(u)) =

∫ T

0
|u(t)|0dt (the length of the support)
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L0 norm and L1 norm

J0(u) = µ(supp(u)) =

∫ T

0
|u(t)|0dt

u
0

1

1−1

|u|0

|u|1

J1(u) =

∫ T

0
|u(t)|dt,
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A simple example

Plant: G(s) = 1/s2

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), x(0) =

[
1
1

]

L1-optimal control

Fix T > 0. Find a feasible control u(t), t ∈ [0, T ] that drives the state
from x(0) to x(T ) = [0, 0]>, that satisfies |u(t)| ≤ 1, ∀ t ∈ [0, T ], and
that minimizes the L1 norm of u:

J1(u) =

∫ T

0
|u(t)|dt.

Also known as fuel optimal control.

A convex optimization problem!
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A simple example

L1-optimal control u∗(t) and trajectory x∗(t) [Athans and Falb, 1966]
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t=0

t=T

u∗(t) ≡ 0 over [3−
√
10/2, 3 +

√
10/2] ≈ [1.4, 4.6]

u∗(t) is sparse (‖u∗‖0 = | supp(u∗)| ≈ 1.84 < 5 = T )

In fact, it is the sparsest (i.e., maximum hands-off control).
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Why hands-off control is green?
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Reduced fuel and electric power consumption

Reduced CO2, noise, and vibration

Data compression

Sparse signals can be effectively compressed;
see e.g. [Nagahara, Quevedo, Østergaard, IEEE Trans. AC 2014]

M. Nagahara (Univ of Kitakyushu) Max hands-off control 01/Mar/2017 11 / 31



Maximum hands-off control and L1 optimality

Plant

ẋ(t) = f(x(t)) + g(x(t))u(t), t ≥ 0, x(0) = x0

x(t) ∈ Rn, u(t) ∈ R

Theorem

Assume that the L1-optimal control problem is normal a (or non singular)
and has at least one solution. Then

{L0 optimal controls} = {L1 optimal controls}
aWhen the optimal control is uniquely determined almost everywhere from

the minimum principle, the control problem is called normal.

A maximum hands-off control problem (non convex optimization) can be
solved via a related L1 optimal control problem (convex)!
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Sufficient condition for normality

Lemma [Athans & Falb, 1966]

Assume the plant is given by

ẋ(t) = Ax(t) +Bu(t), t ≥ 0.

If the plant is controllable and A is non singular, then for any initial state
x(0) ∈ Rn, the L1-optimal control problem is normal.
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L1/L2-optimal control for continuous control
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Maximum-hands off control is discontinuous
the ”bang-off-bang” property

Smoothing by adding L2 norm:

J12 = ‖u‖1 +
1

2
r‖u‖22

L1/L2-optimal control is continuous in t.
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L1/L2-optimal control for continuous control

L1/L2-optimal control

Plant: ẋ(t) = f(x) + g(x)u

Assumption: f , g, df
dx , dg

dx are continuous in x.

Constraints: x(0) = x0; x(T ) = 0; |u(t)| ≤ 1 ∀t ∈ [0, T ]

Cost function: J12 = ‖u‖1 + 1
2r‖u‖22

Proposition

The L1/L2-optimal control u∗12(t) is continuous in t over [0, T ].

Proposition

Assume the L1-optimal control problem is normal and its solution exists.
Then

u∗12(t)→ u∗1(t) = u∗0(t), a.a. t ∈ [0, T ],

as r → 0.
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CLOT

CLOT (Combined L-One and Two)-optimal control

Plant: ẋ(t) = f(x) + g(x)u

Assumption: f , g, df
dx , dg

dx are continuous in x.

Constraints: x(0) = x0; x(T ) = 0; |u(t)| ≤ 1 ∀t ∈ [0, T ]

Cost function: JCLOT = ‖u‖1 + r‖u‖2 (cf. J12 = ‖u‖1 + 1
2r‖u‖22)

Motivated by CLOT in signal processing [Ahsen, Challapalli, & Vidyasagar 2016]

The CLOT optimization may give much sparser but still continuous
control [Challapalli, Nagahara, & Vidyasagar 2016] (submitted to IFAC2017)
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Example: control problem

Plant: P (s) = 1
s2(s2+1)

dx(t)

dt
=


0 −1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

x(t) +


2
0
0
0

u(t).
Final time: T = 10.

State Constraints: x(0) = [1, 1, 1, 1]> and x(10) = 0

Control constraint: |u(t)| ≤ 1, ∀t ∈ [0, 10]
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Examples: optimal controls

0 2 4 6 8 10

−1

−0.5

0

0.5

1

time (sec)

u
(t

)
Optimal Control

 

 

L
1
 optimal

L
2
 optimal

M. Nagahara (Univ of Kitakyushu) Max hands-off control 01/Mar/2017 18 / 31



Examples: states with maximum hands-off control
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Examples: L1/L2-optimal control
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Discrete-valued control
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The L1 optimal control takes values ±1 and 0.

This is discrete valued.
Discrete-valued control has merits of

discretization (quantization) of control
data compression
simple actuation
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Discrete-valued control

L1 optimal control:

minimize
u∈U

∫ T

0
|u|dt −→ u(t) takes ± 1, 0

Let us consider

minimize
u∈U

∫ T

0
L(u)dt −→ u(t) takes ?± 1,±r, 0

u
0

1

1−r−1 r

|u|

L(u)
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Problem formulation

Plant

ẋ(t) = f(x(t)) + g(x(t))u(t), t ≥ 0, x(0) = x0

Feasible control

Fix T > 0. Find a discrete-valued control u(t), t ∈ [0, T ] that drives the
state from x(0) to x(T ) = 0 and satisfies Umin ≤ u(t) ≤ Umax, ∀t ∈ [0, T ].

Discrete-valued control

Find a feasible control that satisfies

u(t) ∈ {U1, U2, . . . , UN}

where Umin = U1 < U2 < · · · < UN = Umax.
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Cost function

U1 U2 U3 U4 U5

L(u)

u

Sum of absolute values (SOAV):

L(u) =
N∑
i=1

wi|u− Ui|

SOAV optimal control

minimize
u∈U

∫ T

0
L(u(t))dt→ u(t) ∈ {U1, U2, . . . , UN}
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Discrete-valued control

SOAV optimal control:

minimize
u

∫ T

0

N∑
i=1

wi|u(t)− Ui|︸ ︷︷ ︸
=L(u(t))

dt =

n∑
i=1

wi‖u− Ui‖1

subject to

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0, x(T ) = 0

Umin ≤ u(t) ≤ Umax

Theorem

If the SOAV optimal control is normal (or nonsingular), then the optimal
solution satisfies

u(t) ∈ {U1, U2, . . . , UN}, a.a. t ∈ [0, T ].
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Discrete-valued control for linear plants

SOAV optimal control:

minimize
u

∫ T

0

N∑
i=1

wi|u(t)− Ui|dt =
n∑

i=1

wi‖u− Ui‖1

subject to

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, x(T ) = 0

Umin ≤ u(t) ≤ Umax

Theorem

If (A,B) is controllable, A is nonsingular, and

ak ,
k∑

i=1

−
N∑

i=k+1

6= 0, ∀k = 1, 2, . . . , N − 1,

then the optimal solution satisfies u(t) ∈ {U1, U2, . . . , UN}, a.a. t ∈ [0, T ].
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Discrete-valued control for linear plants

Theorem

If (A,B) is controllable, A is nonsingular, and

ak ,
k∑

i=1

wi −
N∑

i=k+1

wi 6= 0, ∀k = 1, 2, . . . , N − 1,

then the optimal solution satisfies u(t) ∈ {U1, U2, . . . , UN}, a.a. t ∈ [0, T ].

ak is the slope of the line between Uk and Uk+1

U1 U2 U3 U4 U5

L(u)

u

a1

a2 a3

a4
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Conclusion

Maximum hands-off control is green control.

uses less fuel and electric power
reduces CO2, noise, and vibration
gives effective data compression for networked control systems

L0 optimality = L1 optimality

under the assumption of normality.

Continuous control by L1/L2-optimal control

Discrete-valued control via SOAV optimization
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