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Introduction

Wireless Sensor Technologies

Due to advances in micro-electro-mechanical systems technology,
small and low cost sensors with sensing, computation and
wireless communication capabilities have become widely available
Key components in wireless sensor networks, networked control
systems, cyber-physical systems, Internet of Things, etc.
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Introduction

Energy Management
Communication between sensors often over wireless networks
Wireless channels are usually randomly time-varying
Transmitted signals can be attenuated, distorted, delayed, or lost
Transmission reliability can be improved by increasing
transmission energy, but this reduces battery life→ energy
management
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Introduction

Energy Harvesting

Sensors often run on batteries which are not easily replaced
Sensors may need to operate for years without battery change
Energy harvesting sensors recharge their batteries by collecting
energy from the environment

I e.g. solar, thermal, mechanical vibrations
I Potential for self-sustaining systems
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Introduction

Energy Harvesting

Energy
Management

E k

H
k

delay Bk

Battery level evolves as Bk+1 = min{Bk − Ek + Hk+1,Bmax},
where Bk is battery level at time k , Ek is energy used at time k ,
Hk+1 is energy harvested between times k and k + 1, Bmax is
maximum battery capacity
Key Issue: How much energy Ek should be used at time k?

I Should we use more energy now, or save energy for later?
I Also try to avoid battery level saturating
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Introduction

Energy Harvesting

Energy
Management

E k

H
k

delay Bk

Energy harvesting has been studied extensively in wireless
communications, e.g. maximizing throughput or minimizing
transmission delay1 2 3

Has also gained recent attention in state estimation and control,
e.g. minimizing estimation error covariance4 5 or minimizing LQG
control cost6

1Sharma, Mukherji, Joseph, Gupta, IEEE Trans. Wireless Commun., 2010
2Ozel, Tutuncuoglu, Yang, Ulukus, Yener, IEEE J. Sel. Areas Commun., 2011
3Ho, Zhang, IEEE Trans. Signal Process., 2012
4Nourian, Leong, Dey, IEEE Trans. Automat. Control, 2014
5Li, Zhang, Quevedo, Lau, Dey, Shi, IEEE Trans. Automat. Control, 2017
6Knorn, Dey, Automatica, 2017
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Introduction

Event Triggered Estimation and Control

EstimatorSensorDynamical
System

Controller

SensorDynamical
System

Traditionally in estimation and control, measurements and control
signals are transmitted periodically
Event Triggered View - Transmit only when certain events occur,
e.g. if system performance has deteriorated by a large amount
Event triggering can achieve energy savings
Event triggered estimation and control has been studied by
Åström, Başar, Dimarogonas, Heemels, Hespanha, Hirche,
Johansson, Lemmon, Shi, Tabuada, Trimpe, Wu, ...
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Introduction

Event Triggered Estimation and Control

Different transmission strategies have been studied
Threshold policies often proposed
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Introduction

Key Questions

What are good transmission policies for
remote state estimation using wireless sensors
with energy harvesting capabilities?

What is the role of event triggered methods?
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Remote State Estimation with an Energy Harvesting Sensor

Outline

1 Introduction

2 Remote State Estimation with an Energy Harvesting Sensor

3 Optimal Transmission Scheduling

4 Transmission Scheduling for Control

5 Simulation Studies

6 Conclusion
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Remote State Estimation with an Energy Harvesting Sensor

Remote State Estimation
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Process xk+1 = Axk + wk , wk ∼ N(0,Q)

Sensor measurement yk = Cxk + vk , vk ∼ N(0,R)

Sensor runs a local Kalman filter to compute (posterior) local
estimates x̂s

k

Local estimates transmitted over i.i.d. packet dropping link
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Remote State Estimation with an Energy Harvesting Sensor

Local Sensor Computations
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(Local) State estimates

x̂s
k |k−1 , E[xk |y0, . . . , yk−1],

x̂s
k , E[xk |y0, . . . , yk ]

(Local) Estimation error covariances

Ps
k |k−1 , E[(xk − x̂s

k |k−1)(xk − x̂s
k |k−1)T |y0, . . . , yk−1]

Ps
k , E[(xk − x̂s

k |k )(xk − x̂s
k |k )T |y0, . . . , yk ]
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Remote State Estimation with an Energy Harvesting Sensor

Local Sensor Computations

State estimates and error covariances are computed using the
Kalman filter

x̂s
k+1|k = Ax̂s

k

x̂s
k = x̂s

k |k−1+Kk (yk−Cx̂s
k |k−1)

Ps
k+1|k =APs

k AT + Q

Ps
k =Ps

k |k−1 − Ps
k |k−1CT (CPs

k |k−1CT + R)−1CPs
k |k−1

where
Kk = Ps

k |k−1CT (CPs
k |k−1CT + R)−1

Under standard assumptions7, Ps
k → P̄ as k →∞

7(A,C) observable and (A,Q1/2) controllable
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Remote State Estimation with an Energy Harvesting Sensor

Sensor Transmissions
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Estimator

Sensor

Process

Feedback, 

Local KF
Packet
drops

x̂k∣k

x̂ k
s , Pk

sxk
γk

y k
Pk

~

Energy 
Harvester

H
k

Battery
B
k

νk

γk

Transmission decisions: Sensor transmits local state estimate to
remote estimator if νk = 1, doesn’t transmit if νk = 0

Transmitting local state estimates gives better performance over
packet dropping link than transmitting measurementsa, as local
estimate captures all relevant information when received

aXu, Hespanha, Proc. CDC, 2005

Packet drop process i.i.d. Bernoulli with γk = 1 if transmission
successful, γk = 0 otherwise
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Remote State Estimation with an Energy Harvesting Sensor

Remote Estimator
In the presence of dropouts, the information available to the
remote estimator at time k is

Ik ,{ν0, . . . , νk , ν0γ0, . . . , νkγk , ν0γ0x̂s
0 , . . . , νkγk x̂s

k }

Define remote state estimates and estimation error covariances

x̂k , E[xk |Ik ], Pk , E[(xk − x̂k )(xk − x̂k )T |Ik ].

Remote estimator has the form

x̂k =

{
Ax̂k−1 , νkγk = 0

x̂s
k , νkγk = 1

Pk =

{
APk−1AT + Q , νkγk = 0

P̄ , νkγk = 1

When transmission received, update remote estimate as local
estimate. When transmission is not received, use one step
ahead prediction
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Remote State Estimation with an Energy Harvesting Sensor

Energy Management

Energy
Management

E k

H
k

delay Bk

Transmission decisions: Sensor transmits local state estimate if
νk = 1, doesn’t transmit if νk = 0
Each transmission uses energy E
Battery level evolves as

Bk+1 = min{Bk − Ek + Hk+1,Bmax}
= min{Bk − νkE + Hk+1,Bmax}

Harvested energy process {Hk} is Markov
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Remote State Estimation with an Energy Harvesting Sensor

Energy Management

Harvested energy process {Hk} is Markov, to model time
correlations in amount of energy harvested
Example 1. For solar energy, very little/no energy can be
harvested at night
Example 2. Suppose the weather Xn on day n is either sunny
(state 1) or rainy (state 2), and is modelled as a Markov chain with
transition probabilities

P =

[
0.9 0.1
0.5 0.5

]
,

with the (i , j)-th entry of P representing P(Xn+1 = j |Xn = i)
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Optimal Transmission Scheduling

Outline

1 Introduction

2 Remote State Estimation with an Energy Harvesting Sensor

3 Optimal Transmission Scheduling

4 Transmission Scheduling for Control

5 Simulation Studies

6 Conclusion
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Optimal Transmission Scheduling

Transmission Scheduling
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Battery level evolves as Bk+1 = min{Bk − νkE + Hk+1,Bmax}
Key Question: Should we transmit now, or save energy for later?
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Optimal Transmission Scheduling

Optimal Transmission Scheduling
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Determine the transmission schedule that minimizes the expected
error covariance at remote estimator

min
{ν1,...,νK }

K∑
k=1

E[trPk ]

subject to energy harvesting constraints

νkE ≤ Bk ,∀k ,

with battery dynamics Bk+1 = min{Bk − νkE + Hk+1,Bmax}
Decision variables νk depend on (Pk−1,Hk ,Bk )
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Optimal Transmission Scheduling

Optimal Transmission Scheduling

min
{ν1,...,νK }

K∑
k=1

E[trPk ]

subject to

νkE ≤ Bk , ∀k , Bk+1 = min{Bk − νkE + Hk+1,Bmax},

where decision variables νk depend on (Pk−1,Hk ,Bk )

Problem can be solved numerically using dynamic programming
However dynamic programming doesn’t provide much insight into
the form of the optimal solution
We will analyze the problem further to derive structural results

I This leads to insights and computational savings
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Optimal Transmission Scheduling

Structural Properties of Optimal Schedule

Theorem

(i) For fixed Bk and Hk , the optimal ν∗k is a threshold policy on Pk−1 of
the form:

ν∗k (Pk−1,Bk ,Hk ) =

{
0 , Pk−1 ≤ P∗k
1 , otherwise

where the threshold P∗k depends on k, Bk and Hk .

For large Pk−1, it is better to transmit than not transmit
Idea of proof: Show that the difference in expected cost between
transmitting and not transmitting is monotonic in Pk−1 (when Bk and
Hk are fixed)

Use an induction argument to prove this
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Optimal Transmission Scheduling

Structural Properties of Optimal Schedule

Theorem
(ii) For fixed Pk−1 and Hk , the optimal ν∗k is a threshold policy on Bk of
the form:

ν∗k (Pk−1,Bk ,Hk ) =

{
0 , Bk ≤ B∗k
1 , otherwise

where the threshold B∗k depends on k, Pk−1 and Hk .

More likely to transmit when battery level is high
Idea of proof: Show that the value functions of dynamic programming
algorithm, when regarded as a function of Bk and νk , are submodular
in (Bk , νk ). This then implies8 that ν∗k is non-decreasing with Pk−1.

8Topkis, Operations Research, 1978
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Optimal Transmission Scheduling

Structural Properties of Optimal Schedule

Optimal policies are of threshold-type, event based
I simplifies real-time implementation
I can also provide computational savings in numerical solution

n
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*
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I Pk−1 = f n(P̄), where f (P̄) , AT P̄A + Q
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Transmission Scheduling for Control

Outline

1 Introduction

2 Remote State Estimation with an Energy Harvesting Sensor

3 Optimal Transmission Scheduling

4 Transmission Scheduling for Control

5 Simulation Studies

6 Conclusion
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Transmission Scheduling for Control

Transmission Scheduling for Control

Controller
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Can also study the control problem
System model similar to estimation problem, except process is
now

xk+1 = Axk + Buk + wk
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Transmission Scheduling for Control

Transmission Scheduling for Control

Equations for local Kalman filter are now

x̂s
k+1|k = Ax̂s

k + Buk

x̂s
k = x̂s

k |k−1+Kk (yk−Cx̂s
k |k−1)

Ps
k+1|k =APs

k AT + Q

Ps
k =Ps

k |k−1 − Ps
k |k−1CT (CPs

k |k−1CT + R)−1CPs
k |k−1

where
Kk = Ps

k |k−1CT (CPs
k |k−1CT + R)−1

Note that uk can be reconstructed at sensor from γk , since x̂k can
be reconstructed from γk , and optimal uk will be a linear function
of x̂k (see later)
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Transmission Scheduling for Control

Transmission Scheduling for Control
Want to solve the following problem

min
{ν1,...,νK ,
u1,...,uK }

E
[ K∑

k=1

(xT
k Wxk + uT

k Uuk ) + xT
K+1WxK+1

]
subject to energy harvesting constraints

νkE ≤ Bk ,∀k

Is a joint control and scheduling problem
For transmission decisions νk dependent on (Pk−1,Bk ,Hk ),
problem can be shown to be separable, and is equivalent to

min
{ν1,...,νK }

[
min

{u1,...,uK }
E
[ K∑

k=1

(xT
k Wxk +uT

k Uuk ) +xT
K+1WxK+1

]]
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Transmission Scheduling for Control

min
{ν1,...,νK }

[
min

{u1,...,uK }
E
[ K∑

k=1

(xT
k Wxk +uT

k Uuk ) +xT
K+1WxK+1

]]
Inner optimization is LQG-type problem with solution

u∗k = −(BT Sk+1B + U)−1BT Sk+1Ax̂k ,

SK+1 = W ,

Sk = AT Sk+1A +W −ATSk+1B(BTSk+1B+U)−1BTSk+1A

Optimal cost is

tr(S1P1) +
K∑

k=1

tr(Sk+1Q) +
K∑

k=1

tr
(
(AT Sk+1A + W − Sk )E[Pk ]

)
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Transmission Scheduling for Control

min
{ν1,...,νK }

[
min

{u1,...,uK }
E
[ K∑

k=1

(xT
k Wxk +uT

k Uuk ) +xT
K+1WxK+1

]]
Substituting optimal cost of inner optimization

tr(S1P1) +
K∑

k=1

tr(Sk+1Q) +
K∑

k=1

tr
(
(AT Sk+1A + W − Sk )E[Pk ]

)
,

the following transmission scheduling problem remains:

min
{ν1,...,νK }

[ K∑
k=1

tr
(
(AT Sk+1A+W−Sk )E[Pk ]

)]
,

subject to energy harvesting constraint νkE ≤ Bk ,∀k
Similar to transmission scheduling problem for remote estimation
discussed before
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Transmission Scheduling for Control

Theorem

In the transmission scheduling problem for control:
(i) For fixed Bk and Hk , the optimal ν∗k is a threshold policy on Pk−1 of
the form:

ν∗k (Pk−1,Bk ,Hk ) =

{
0 , Pk−1 ≤ P̃∗k
1 , otherwise

where the threshold P̃∗k depends on k, Bk and Hk .
(ii) For fixed Pk−1 and Hk , the optimal ν∗k is a threshold policy on Bk of
the form:

ν∗k (Pk−1,Bk ,Hk ) =

{
0 , Bk ≤ B̃∗k
1 , otherwise

where the threshold B̃∗k depends on k, Pk−1 and Hk .
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Simulation Studies

Outline
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Simulation Studies

Simulation Studies

Parameters

A =

[
1.2 0.2
0.2 0.7

]
, C =

[
1 1

]
, Q = I, R = 1

Packet reception probability λ = 0.7, transmission energy E = 2
Harvested energy process {Hk} is Markov with state space
{0,1,2} and transition probability matrix9

P =

 0.2 0.3 0.5
0.3 0.4 0.3
0.1 0.2 0.7


Horizon K = 10.

9Energy is scarce in this example
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Simulation Studies

Simulation Studies

Estimation problem. Comparison with greedy method which
always transmits provided there is enough energy in battery

B
max

2 3 4 5 6

tr
 E

[P
k
]

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Always transmit

Optimal solution

The optimal solution outperforms greedy method, without using
more energy
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Simulation Studies

Simulation Studies

Control problem. Same parameters as estimation problem, plus
B =

[
1 2

]T , W = I, U = 1.
Comparison with greedy method which always transmits provided
there is enough energy, together with optimal LQG controller
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Optimal solution
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Conclusion

Conclusion

Energy harvesting introduces new design issues
We have studied transmission scheduling problems for remote
state estimation and control with an energy harvesting sensor
We showed that threshold policies are optimal
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Conclusion

Open Questions

Derive structural results for
I Power control instead of transmission scheduling
I Multiple sensors

Wireless power transfer and energy sharing
I Transfer of electrical energy without wires using electro-magnetic

(EM) fields and EM radiation
I Both near field (e.g. wireless phone chargers) and far field (over km

distances) techniques currently under active investigation

Energy harvesting from ambient EM waves also being investigated
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Conclusion

Further Reading

The current presentation is based on:
Leong, Dey, Quevedo, “Transmission Scheduling for
Remote State Estimation and Control With an Energy
Harvesting Sensor”, to be published in Automatica

Other related work:
Li, Zhang, Quevedo, Lau, Dey, Shi, “Power
Control of an Energy Harvesting Sensor for
Remote State Estimation”, IEEE Transactions
on Automatic Control, January 2017
Leong, Quevedo, Dey, “Optimal Control of
Energy Resources for State Estimation Over
Wireless Channels”, Springer, 2018 123
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