
Adaptive Sampling based Sampling Strategies for the 

DACE Surrogate Model for Expensive Black-box 

functions 

 
AE 497 B.Tech. Project 

      
 
 
 
 

By 
 

Ankur Kulkarni 

02001003 

 

Under the guidance of 

Prof. P. Mujumdar 

 

 
 
 

 
 
 
 
 
 
 
 
 

 
 

Department of Aerospace Engineering, 

Indian Institute of Technology, Bombay 
April 2006 

 



 i

Table of Contents 

 

Abstract             iii 

List of Figures            iv 

List of Tables             v 

Nomenclature            vi 

Certificate             ix 

1. Introduction            1 

 1.1 Motivation             1 

 1.2 Aim and Scope of the Project         2 

 1.3 Layout of Report           2 

2. Surrogate Modeling           3 

 2.1 Computer Experiments and Surrogate Models       3 

 2.2 Surrogate models in literature          3 

 2.3 Functional Surrogate Models         4 

  2.3.1 Kriging           4 

3. Universal Kriging and DACE          6 

 3.1 Universal kriging structure         6 

 3.2 Kriging Predictor           7 

 3.3 Characteristics of the Kriging Predictor        7 

 3.4 Understanding the MSE          9 

4. Adaptive Sampling         12 

 4.1 The need for Adaptive Sampling       12 

 4.2 Issues arising in Adaptive Sampling      13 

  4.2.1 Initial Sampling Strategy      13 

  4.2.2 Infill Sampling Criteria       13 



 ii

  4.2.3 Convergence        15 

  4.2.4 Solution of the Infill Sampling Criteria     15 

5. Infill Sampling Criterion         16 

 5.1 Framework for testing results       16 

  5.1.1 Measure of accuracy       16 

5.1.2 Method of testing       17 

 5.2 Global Maximum of MSE as the ISC      17 

 5.3 Dual criteria adaptive sampling       23 

5.3.1 Some comments about Dual Criteria ISC    27 

 5.4 Further research and exploration       27 

6. Conclusions          28 

References           29 

Acknowledgements          32 

Appendix 1           33 

Appendix 2           35 

Appendix 3           36 

 

 

 

 

 

 

 

  

 

 



 iii

Abstract 

 

Conducting physical experiments constitutes many practical difficulties. It has hence become 

practice to replace physical experiments by sophisticated computer codes. CFD, FEM are 

examples of such codes. High fidelity computer codes have now entered many areas of 

scientific research. With increase in fidelity, there has been a steady increase in the expense 

of running these codes. Hence the need has arisen to find a way of using cheap surrogates to 

replace the expensive computer codes. These surrogates approximate the behavior of the 

computer output.  

In this report we survey a wide variety of surrogate models and study in depth the universal 

Kriging surrogate model and its so called DACE implementation. The objective of this report 

is to develop a sampling strategy for expensive black-box functions for the DACE surrogate 

model. DACE uses a probabilistic linear model to model a deterministic function, which in 

our case is an expensive computer code. The maximum likelihood estimation method is used 

to determine parameters of this model. The predictor, which is to serve as the approximation 

to the original computer code is taken to be linear and unbiased. The sampling strategy we 

have proposed is called adaptive sampling. Past uses of adaptive sampling in the Kriging 

context has been surveyed in the report. The sampling strategy is characterized by its infill 

sampling criterion. We demonstrate results obtained by using the maximum of the mean 

square error as the infill sampling criterion. We also present results obtained by the use of a 

new and original sampling criterion that we have developed called the Dual Criteria Infill 

Sampling Criterion. Satisfying the infill sampling criterion requires the solving of a global 

optimization problem. We have assumed in this report that the global optimum is obtainable, 

and it has been calculated by finely griding the domain. 
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Chapter 1 

Introduction 
 

Study of physical phenomena by simulating them using computer codes (computer models) 

has now become common among researchers. In the engineering context, experiments are 

always a series of tests carried out by changing system variables that are expected to have a 

bearing on the phenomenon being studied [1]. Physical experiments, like wind tunnel testing 

for instance, require large infrastructure, careful handling and also man power. Some physical 

experiments, like a study of weather trends, are impossible to conduct manually. With the 

greater availability of computing power computer codes started being used as a convenient 

replacement for physical experiment. Most engineering problems are not amenable to 

analytical solutions. Codes are also being used in such domains. 

1.1 Motivation 

With time the fidelity of computer models to nature has also steadily increased. Even with the 

fastest computers, computing expense is a problem in design optimization with high fidelity 

simulation. A need has now arisen to replace expensive computer simulations with alternative 

cheap surrogates in this arena [2]. These surrogates are approximate models which replace 

the behavior of the original high fidelity code. Surrogate modeling is now an active area of 

research. Figure (1.1) shows the entire philosophy of surrogate modeling in a flow chart. 

 
Fig (1.1) Surrogate modeling philosophy 
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1.2 Aim and Scope of the Project 

This project deals with surrogate modeling and our aim is to develop a sampling strategy for 

the use of the DACE surrogate model [3]. The scope of the project is limited to surrogates for 

computer models only. Computer codes have some peculiarities which drive the methodology 

behind surrogate modeling and due to which they also warrant a different sampling strategy. 

Computer codes are black boxes i.e. usually no analytical expression is available for their 

output. Hence no a priori knowledge of the output variation with change in input is available. 

Computer codes are deterministic, i.e. there is no systematic, random, or human error 

involved in running a computer code. The DACE surrogate model mentioned above creates 

an approximation from a given set of samples for such deterministic black box functions. As 

shown in Fig. (1.1) the original computer code has the information of the physics of the 

system, but the surrogate model gets information about the output of the code only by 

sampling it. It must be noted that for black box codes surrogate modeling involves creating a 

model for the code output without any prior knowledge of the output variation. Hence 

sampling the black box function intelligently as well as choosing the surrogate model 

framework is the key to obtaining a good approximation. We shall elaborate on these key 

issues further in the report. 

1.3 Layout of Report 

The layout of this report is as follows. In Chapter 2 we introduce the concept of surrogate 

modeling precisely and survey the various kinds of surrogate models in literature. We 

introduce concept Design and Analysis of Computer Experiments (DACE) [3]. Chapter 3 

deals in depth with a type of surrogate modeling methodology known as universal Kriging, 

its so called “DACE implementation” and the peculiarities of the DACE predictor. In Chapter 

4 we survey a methodology called adaptive sampling as a strategy for improving the accuracy 

of the Kriging predictor. As we shall see, this strategy of adaptive sampling hinges on its 

“infill sampling criterion”. Chapter 5 shows results obtained by using 2 infill sampling 

criteria- one which is conventional, and the other which is an original one that we have 

developed. This Chapter will also provide pointers for further research and exploration in this 

field. 
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Chapter 2 

Surrogate Modeling 

 

2.1 Computer Experiments and Surrogate Models 

The objective of the surrogate model, as shown in Fig. (1.1) of Chapter 1 is to predict the 

values of deterministic function ( )y x , nx∈R , qy∈R over a variable-space n,D D ⊂ R  when 

its values are known only at a limited, finite number of sites contained in 

{ }1 2 m i, ,..., |S s s s s D= ∈ . To make a good surrogate model we are free to choose S  as we 

like. m is usually bounded by operational constraints. Finding these design sites and a suitable 

surrogate model is the objective of DACE. According to ref. [4] the problem of creation of a 

surrogate model for a computer experiment can be subdivided into 2 parts: 

1. The Design problem: At which sites in { }1 2 m i, ,..., |S s s s s D= ∈ should the output data 

( ) ( ) ( ) T
1 2 m, , ...,Y y s y s y s= ⎡ ⎤⎣ ⎦ be collected?  

2. The Analysis problem: How should the data be used to make a surrogate model that 

will help us predict ( )y x  for all x D∈ with reasonable accuracy? 

Note that this methodology is applicable only when ( )y x  is a deterministic function. 

2.2 Surrogate models in literature 

Taking a satisfactory set of sites S as given, we shall first see the types of surrogate models 

existing in literature. Surrogate models are of various “forms” and varying in complexity. 

They can be broadly classified into two types- functional models and physical models [2], [5]. 

Physical models are mathematical models obtained by the conventional ideology of modeling 

the actual process using physical laws. These models may be physical approximations (for 

e.g. modal analysis of a beam using finite modes) or mathematical approximations (for e.g. 

Taylor series and finite difference approximations) [2], [5]. Hence CFD codes and FEM 

codes also qualify as surrogate models. The computer code referred to in Fig. (1.1) of Chapter 

1 is also by this definition, a surrogate model. Functional models are mathematical constructs 

that simply mimic the behaviour of the output of the process. In general they have no 

physical basis and can be constructed for any system without the knowledge of the governing 

equations. Hence functional models exist only in the context of prior sampled data. On the 

other hand, they are generic and can be applied to a wide class of problems. The surrogate 
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model showed in Fig. (1.1) of Chapter 1 falls under this category of surrogate models. In this 

report, we shall be focusing on functional type of surrogate models.  

2.3 Functional Surrogate Models 

Surrogates can be classified on the basis of the methodology used for generating these 

models. Some functional models are pure interpolating approximations (for e.g. spline 

interpolation). Under certain conditions and given sufficient data points they interpolate the 

data over the entire domain. Reference [6] provides a list of some of these surrogate models. 

The other chief methodologies for surrogate modeling are [2]: 

1. Regression models: polynomial, response surface models, rational function 

approximations, Kriging, wavelets. They consist of the broadest class of surrogate 

models. They use algebraic expressions as basis functions to fit the sampled data. 

2. Radial functions: Kriging, neural networks, radial basis functions. They use 

combinations of basis functions localized around sampled points. 

3. Single point approximations: reciprocal approximations, conservative 

approximations, posynomial approximations. 

2.3.1 Kriging 

We mentioned Kriging above as a part of both regression models and radial basis functions. 

Indeed Kriging is in many ways a cross between the two. In this approach the underlying 

process is assumed to be a superposition of a linear model and departures from the linear 

model [4]. 

  Actual Process = Linear model + Systematic departures            (2.1) 

Such a model is also called a “probabilistic linear model” [9]. Based on the knowledge of the 

underlying process being studied, the systematic departures are modeled as stochastic process 

of a certain kind [3]. The approach of using a realization of a stochastic process has 

traditionally been used in geostatistics under the name of Kriging. Derived from a miner 

named Krige, Kriging now is synonymous with spatial prediction. The linear model is a taken 

as regression model. Thus,  

Linear model = 
p

1
i i

i
f β

=
∑                                              (2.2)         

where 'i sβ are regression parameters and if ’s are regression functions. β is found as the least 

squares solution of the regression problem. The stochastic process is taken to be a decaying 
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function of the distance from a point. Hence Kriging also qualifies as a type of radial basis 

function surrogate model. And it indeed produces an approximation of the 

kind ( ) ( ) ( )T Ty x f x r xβ γ≈ + Depending on the choice of the stochastic process we get 

different kinds of Kriging approximations. For e.g. ref. [10] shows how Kriging can be 

related to an approximation of cubic splines with a certain choice of the stochastic process. 

Ref [11] also discusses how the stochastic process model is related to the traditional DOE 

methods. Ref [12] discusses the relationship between kringing and radial basis functions. 

There are several types of Kriging methods- simple Kriging, ordinary Kriging, indicator 

Kriging, universal Kriging to name a few. Brief introductions to simple, ordinary and 

universal Kriging can be found in ref [3] and to indicator Kriging in [13]. 

In ref. [4] the entire framework of universal Kriging was put into a form that could be used to 

make approximations to expensive and complex computer models. In some sense this 

framework provides a “model of a model”- a function surrogate model of an expensive 

physical surrogate model. Such a model is often referred to in literature as a metamodel. This 

framework is also called Design and Analysis of Computer Experiments (DACE), after the 

paper in Ref. [4] by Sacks et al, and is available as a code in MATLAB [14], [15]. The only 

reason why DACE is amenable to computer models and not to physical systems is that it is 

applicable only to deterministic systems. Essentially DACE can be applied to all kinds of 

processes that are deterministic. Reference [16] provides a good discussion of the distinction 

between DOE and DACE and the distinction between deterministic and random process from 

the point of view of industry experiences and their impacts on designs. Henceforth in this 

report we shall use DACE only in the context of surrogates for black box computer models. 

In the absence of any prior information about the black box computer model DACE requires 

the sampling be done in a space-filling way. Reference [14] mentions about 3 such sampling 

strategies, viz. random sampling, uniform sampling and Latin hypercube sampling. 

In this report we shall be studying in depth the universal Kriging method and its 

implementation in the form of DACE described by [4], [3] and [14]. 
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Chapter 3 

Universal Kriging and DACE 
 

3.1 Universal Kriging structure 

1. As we had seen in Chapter 2, the Kriging structure assumes that the underlying 

process for scalar ( )y x is given by 

    ( ) ( ) ( )
p

1
i i

i

y x f x z xβ
=

= +∑                 (3.1) 

where ( )z x is a stochastic process, if ’s are known regression functions, 'i sβ  are unknown 

regression parameters. In the case that qy∈R  Eq. (3.1) becomes 

( ) ( ) ( )
p

k i i;k k
1i

y x f x z xβ
=

= +∑ , k=1,2,...,q             (3.2) 

2. ( )z x is assumed to be a process of 0 mean and constant variance. That is, 

( )( ) 0E z x = , ( )( ) 2( ).E z x z x σ=              (3.3)    

Hence the covariance between the systematic departures at different sites , 'x x is  

( )( ) ( )2( ). ' , 'E z x z x x xσ ρ=                          (3.4) 

ρ is called the “correlation function” and 2σ  is called the process variance. ρ is assumed to 

be only a function of ( ')x x−  and its parameters can found such that they suit the data best. In 

this respect universal Kriging is different from other radial basis functions in which the 

parameters of ρ are specifiable by the user. Clearly, from Eq. (3.3) and Eq. (3.4) ( ), 1x xρ = . 

This means that the model is deterministic. In ref [3], [14] ( ), 'x xρ is given by 

    ( ) ( )j
n p

j j j
1

, ' exp | ' |x x x xρ θ= ∏ − −              (3.5) 

where jθ >0 along with σ  are parameters of the stochastic process. j0<p 2≤  are specified 

constants. Model in Eq. (3.5) is called the Gaussian correlation model. The variance-

covariance matrix R is defined for i j,s s S∈ as follows. 

i,jR = ( )i j,s sρ                  (3.6) 

The choice and the number of regression functions if ’s depends on our understanding of the 

nature of underlying process. They are usually lower order polynomials.  
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In compact form Eq. (3.1) is written as  

     ( ) ( ) ( )Ty x f x z xβ= +              (3.7) 

( ) ( ) ( ) ( ) T

1 2 p, ,...,f x f x f x f x⎡ ⎤= ⎣ ⎦  ,
T

1 2 pβ β β β⎡ ⎤= , ,...,⎣ ⎦ , [ ]T1 2 n, ,...,θ θ θ θ=            (3.8) 

( )z x  is a function of 2σ  and θ . The task now is two find the parametersβ , 2σ and θ  which 

is posed as maximum likelihood estimation problem. The maximum likelihood estimation 

technique and its use for Kriging is described in Appendix 1. 

3.2 Kriging Predictor 

The predictor of universal Kriging is, according to Ref. [3], 

1. Linear with respect to the output data  

2. Unbiased.  

Linearity implies that the predictor must be of the form given below.  

     ( ) ( )T
py x c x Y=               (3.9) 

Unbiasedness implies that ( )( ) ( )( )pE y x E y x= . For any given data, there exist infinite 

predictors that are both linear and unbiased. The “Best Linear Unbiased Predictor” (BLUP) is 

one that gives minimum mean square error between the predictor and the function. Thus 

finding the BLUP requires that we 

1. Minimize ( ) ( )( )2| |pE y x y x−  with respect to ( )c x  

2. subject to ( )( ) ( )( )pE y x E y x=                          (3.10)  

The set of conditions in (3.10) now form a constrained optimization problem, which is solved 

by a method of Lagrange multipliers in Appendix 2. Solution of this problem will yield us the 

BLUP for the data S .  

( ) ( ) ( ) ( )( ) ( )T 1T 1 T 1 T 1 T 1
py x r x R Y F R r x f x F R F F R Y

−− − − −= − −          (3.11)  

Using the notation of [15], finally the Kriging predictor is given by 

    ( )py x = ( ) ( )T T* *f x r xβ γ+             (3.12) 

where ( )* 1 *R Y Fγ β−= − and *β is as solved for in the Appendix.    

3.3 Characteristics of the Kriging Predictor 

It is interesting to observe that *β and *γ  are independent of the untried point x. Hence as 

seen in Eq. (3.12) evaluation of ( )py x for every new x involves only the computation of 
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( )Tf x and ( )Tr x which are much easier to compute than the original function. This is the 

huge benefit obtained from the entire exercise of creating a computer model. The mean 

square error associated with ( )py x is given by 

( ) ( ) ( ) ( ) ( ) ( )( )1T T*2 T 1 11MSE x u x F R F u x r x R r xσ
−− −= + −           (3.13) 

where   ( ) ( ) ( )T 1u x F R r x f x−= −             (3.14) 

The mean square error is a measure of the uncertainty associated with the predicted value. A 

greater value of MSE at a point implies that the underlying process is inadequately 

represented by the samples in the region around that point. We shall investigate the reasons 

for this in Chapter 4. Fig. (3.1a) the shows function ( ) ( )siny x x x=  and its Kriging predictor 

obtained by taking S as a set of 12 equi-spaced points in the domain D=[0,10π ]. 

 

Fig. (3.1a)The function ( ) ( )siny x x x= , Kriging predictor and sites in S  

From Fig (3.1a) it can be seen that the Kriging predictor intersects ( ) ( )siny x x x= at 

precisely the12 points that belong to S . The corresponding MSE shown in Fig (3.1b) for these 

points is also exactly 0. This can also be seen by substituting ix s= in Eq. (3.27) and Eq. 

(3.28). The universal Kriging predictor is hence a surrogate model that is exact for the 

specified sites. This is a powerful property of the universal Kriging predictor. As a result of 

this, in regions where the predictor shows a departure from the behaviour of the actual 

function it is possible to enforce the required behaviour by specifying the point through 

which the Kriging predictor must pass. This kind of fitting is not possible in the conventional 

regression based methods, since in those methods the least squares approximation does not 
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necessarily pass through the specified sites and the introduction of new sites does not 

guarantee the expected change in shape of the predictor. 

 

       Fig (3.1b) The MSE for ( ) ( )siny x x x= and its Kriging predictor. 

Kriging always provides a better approximation than traditional regression models for the 

same set of samples for a deterministic function [11]. Reference [11] provides an insightful 

discussion on this. Regression assumes that errors between the regression model and the 

process at any two points are independent and can be treated as random departures from the 

regression model. Hence it does not model them. But for deterministic models any such lack 

of fit is due improper modeling and not noise. Given two points & 'x x  that are very close the 

errors of the regression model ( ) ( )& 'x x∈ ∈ are also close and are hence correlated [11]. 

Fig (3.1b) also shows that the MSE associated with the Kriging predictor is highly 

multimodal. Since MSE(x) is 0 for x S∈ , the MSE function has at least as many valleys as the 

number of points in S. Hence even in higher dimensions, the MSE function is multimodal.  

3.4 Understanding the MSE 

( ) ( ) ( )( )2| |pMSE x E y x y x= − . Hence MSE is regarded to be the confidence or the 

uncertainty that one can place in the values predicted by ( )py x . For a black box function 

( )y x whose analytical form is not known, the MSE is calculated by using the probabilistic 

linear model for ( )y x  in Eq. (3.7). The parameters of this model are calculated on the basis 

of the existing samples. Hence the MSE found is not the “real error” between the predictor 

and the actual underlying process. It is simply the error between the predictor and the model 

in Eq. (3.7). How closely MSE resembles the real error depends on how well we have 
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sampled the existing data. A low value of MSE does not necessarily imply that the real error 

is small. This peculiarity of the MSE can be seen in Fig. (3.2) 

.   

  (a)     (b) 

 Fig. (3.2) Problem of aliasing and insufficient sampling  

(a) The function, the DACE predictor and sampled data.  

(b) MSE 

In Fig. (3.2a) the real function is ( ) ( )sin 10 sinx x  which has been sampled at 10 uniformly 

spaced points in [0, 2π ]. We see that the MSE is ~ 410− times the maximum value of the real 

function. This however does not imply that the predictor is a good approximation. The real 

function consists of a fast varying component whose variations we have not been able to 

capture adequately through our current sampling. In order that our MSE provides a correct 

measure of the real error, it is necessary that we sample finely enough to capture all 

variations in the real function.  

In signal processing parlance this phenomenon of higher frequency components appearing 

above lower frequency components is called aliasing. Nyquist criterion [18] states that the 

sampling frequency should be at least twice the highest frequency present in the signal in 

order to be able to capture it correctly. Reference [16] provides some discussion on aliasing 

in surrogate models.  

Let us now add a sample (indicated by the small arrow) close to the 8th sample in Fig (3.3a). 

The effects are seen in Fig (3.3). The maximum value of MSE has increased to ~ 0.25 times 

the maximum value of the real function after the injection of the new sample. DACE has now 

encountered the new sample which was injected near another sample. 
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  (a)     (b) 

 Fig. (3.3) Effect of adding a new sample to an aliased function 

(a) DACE predictor after adding new sample (b)  MSE 

As a result DACE could discover the sharp variation that exists in the neighbourhood of the 

sample. In order to capture this sharp variation the entire predictor has got reshaped. As a 

result the uncertainty in predictor is also higher. This reemphasizes the point that low values 

of MSE do not necessarily imply that the approximation is good. High values of MSE in a 

certain region mean that the real function is insufficiently sampled in it. That means that there 

are too few points in the region or that the points are not close enough to capture large 

gradients in the actual function.  
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Chapter 4 

Adaptive Sampling 

4.1 The need for Adaptive Sampling 

In Chapter 3 we saw the effect sampling has on the DACE predictor. Let us now return to the 

objective of this report, that of developing a sampling strategy for expensive black-box 

functions. Suppose we have a fixed budget of m evaluations that can be done on the black-

box function. Given that DACE will be used to create an approximation out of those points, 

the question that we are trying to answer is the design problem stated in Section 2.1: where 

should we sample the function? 

In the case of a black box computer model, where the function topology is not known, no 

proactive sampling strategy can be relied upon for a good approximation. Hence none of the 

conventional space filling strategies like random sampling, uniform sampling, Latin 

hypercube sampling can be used effectively with all the m points. The only information we 

have about the actual function is from the existing samples and the DACE predictor created 

out of them. Hence it is essential to use a reactive strategy which “learns” from the 

information provided by previous samples to get the new set of samples. Such a process is 

commonly referred to as adaptive sampling. 

Adaptive sampling as a technique often appears in the area of clinical research [19]. For 

example Bandits problems choose points from a finite set of alternatives with unknown yield 

to maximize some overall yield [20]. Adaptive sampling is an area of active research [19], 

[21], [22], [23]. The adaptive sampling has also been used in the framework for efficient 

global optimization (EGO) [11] and for superEGO [24], [25] on Kriging models to find the 

global optimum of the actual function. A general framework for DACE with adaptive 

sampling is as follows: 

1. Use some space filling sampling strategy to sample some points in the variable-space 

2. Use DACE to fit a surrogate model 

3. Find the new sample by satisfying some infill sampling criteria (ISC) [19] 

4. Repeat step 2 & 3 with new set of samples 

5. Stop when some termination criterion is reached (e.g. maximum number of samples is 

overshot) 
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4.2 Issues arising in Adaptive Sampling 

Some issues emerge out of the inspection of this framework.  

1. What should be the initial space filling sampling strategy? 

2. What should be the ISC? 

3. What is the measure of accuracy of a model? 

4. What is the guarantee of convergence of the algorithm vis-à-vis the initial sampling 

strategy and the ISC? 

Let us look into these one by one. 

4.2.1 Initial Sampling Strategy 

The decision of the initial sampling strategy can be decomposed into two choices 

a) The type of sampling, i.e. the distribution of points in the design space 

b) Number of points (out of m) to be sampled with respect to the maximum number of 

samples 

Both (a) and (b) are heavily dependent on the user’s knowledge of the underlying process in 

the computer model. In the case where no knowledge is available about the underlying 

process, the user is best placed to use any of the standard space filling strategies. Some 

popular space filling sampling strategies are [14] 

a) Random sampling- randomly chooses points over the entire domain. 

b) Uniform sampling- fills the space with uniformly spaced points  

c) Latin hypercube sampling – chooses points such that no two of them have the same 

coordinate, and fills the space thus. 

4.2.2 Infill Sampling Criteria 

A variety of different ISC have been used and documented in literature. We shall survey them 

here in brief. Reference [11] uses adaptive sampling to find the global optimum of the black 

box function in his technique called EGO. It uses a function called expected improvement 

which is a probabilistic measure of the chances of that the new global minimum is lower than 

the current minimum sampled function value minf .  

( )( ) ( )( ) ( )
( )

( ) ( )
( )

min p min p
min p

f y x f y x
E I x f y x MSE x

MSE x MSE x
φ

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟= − Φ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

              (4.1) 
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whereΦ is the cumulative distribution function and φ  is the probability distribution function. 

The ISC is the global maximum of ( )( )E I x . It is useful to study the idea behind choice of 

this ISC. When looking for the next sample there is always a dilemma about choosing 

between: 

(a) searching in the neighborhood of minf for a better minimum by sampling in the 

vicinity of minf  and  

(b) searching in region that is sparsely sampled to check for possibilities of a better 

global minimum in that region [11].  

Disregarding either (a) or (b) would be using the known information insufficiently. It is 

necessary to balance both (a) and (b) which is what ( )( )E I x does. Hence the expected 

improvement is large when ( )py x is likely to be less than minf  or when the uncertainty itself is 

large. In the same vein as EGO, superEGO uses a generalized expected improvement [25]. By 

introducing a non-negative integer parameter g the generalized improvement is defined as 

( ) ( )( ){ }g
minmax 0,gI x f y x= −               (4.2) 

The value of g determines which of the trends (a) and (b) is given more preference. 

Reference [26] specifies 3 criteria for infill in a problem for finding extremes. Each criterion 

solves a different problem viz. (i) to locate threshold-bounded extreme (ii) locate regional 

extreme or (iii) minimize surprises [25].  

Note that though EGO and superEGO have been used to find optima of the black box 

function, their ISC are completely flexible and can be fine tuned to meet the objective we set 

for ourselves. Reference [19] is one such recent (2002) work in this direction. Reference [19] 

has used the adaptive sampling in the EGO framework with Kriging approximation to 

improve the design of ergonomics experiments. The ISC used by Ref [19] is to maximize the 

MSE of the DACE model. However this ISC is applied selectively only in certain regions of 

the design space that are most relevant to their experiment.  

Our objective is similar to that of Ref. [19] and hence we shall be using maximizing MSE as 

our ISC. This is to say the new sample newx  is given by 

( )( )arg maxnew
x D

x MSE x
∈

=                (4.3) 
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It is crucial that the ISC is well catered to the kind of problem we are trying to solve. 

Existence of a better ISC is always matter for further research. In Chapter 5 we shall also 

develop a new ISC that is suitable to our problem. 

4.2.3 Convergence 

According to Ref. [25] there are no rigorous convergence criteria for the adaptive sampling 

technique used by EGO and superEGO. Reference [3] suggests that the sampling may be 

stopped once the improvement of current best sample becomes sufficiently small. There is 

however no discussion of the guarantee of convergence of adaptive sampling strategies in 

literature. In our case where the function is a black box expensive function, the most prudent 

termination criterion is the maximum number of samples. In lieu of the problem of aliasing 

discussed in Section 4.1, it is necessary that while using adaptive sampling we first check for 

aliasing. Aliasing can be most easily be checked by sampling two points very close by and 

seeing its effect on the predictor.  

4.2.4 Solution of the Infill Sampling Criteria 

In all literature on adaptive sampling solving the ISC is a global optimization problem. We 

mentioned in Chapter 3 that the MSE of Kriging is highly multimodal and possibly highly 

dimensional. Hence solving Eq. (4.3) necessitates the use of a global optimization strategy 

that is amenable to multimodal functions. We shall assume in this report that the global 

optimum is obtainable, and in all our simulation results it has been found by griding the 

domain finely. Since the simulations are performed on the standard test case problems in 

optimization literature, griding is inexpensive. 
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Chapter 5 

Infill Sampling Criterion 
 

5.1 Frame work for testing results 

In this Chapter we shall be testing the adaptive sampling algorithm with 2 different infill 

sampling criteria. Before we can get into the results of these tests, let us first establish a 

framework for testing and judging them. 

5.1.1 Measure of accuracy 

We saw in Chapter 3, that MSE cannot be taken to be a measure of accuracy for the DACE 

predictor. Hence we measure accuracy using the following 2 parameters.  

1. Normalized absolute deviation (NAD): defined as 

( ) ( )( )pmax | |NAD y x y x range= −              (5.1) 

where, ( )( ) ( )( )( )max min 2range y x y x= −             (5.2) 

2. Integrated error (IE): defined as 

( ) ( )p| |
domain

IE y x y x dx= −∫               (5.3) 

NAD measures the maximum deviation that the predictor shows from the real function. It is 

normalized with respect to range, which is the half of the maximum variation in the values 

that the function shows. As a result of this normalization, NAD can be used to compare 

accuracies across different functions ( )y x . IE is the integrated absolute difference between 

the predictor and the function. While NAD is a local measure of how well the predictor 

resembles the real function, IE is a global measure of how close the function and predictor 

are. If the predictor has its highest mismatch with the real function in only a small region and 

shows a good match everywhere else, NAD will be as high as the mismatch. But, depending 

on the size of this region and the extent of this mismatch, the value of IE will be either large 

or small. No or little change in NAD after the injection of a sample would imply that the new 

samples have not been put in the region of maximum mismatch. However even when NAD is 

constant, if IE shows decrease it means a significant match between the predictor and the real 

function has occurred in some other region of the domain. If a sample results in almost no 
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decrease in NAD and a small decrease in IE, it is redundant to the approximation. The 

objective of the entire exercise of adaptive sampling is to bring 0.01NAD ≤ . 

5.1.2 Method of testing 

Approximation algorithms are usually developed for specific classes of functions only. In our 

case, since we are not targeting any specific type of function, we will have to carry out a 

more generic study. We shall be testing our algorithm for its effectiveness through a method 

of experimental exploration on various test functions. There are no standardized set of test 

functions available in literature for testing approximation algorithms. The test functions we 

have used are the ones used for testing optimization algorithms. The complete set is in shown 

in Appendix 3. The method of comparing results is the following: 

We first find the number of uniformly distributed samples needed to have 0.01NAD ≤ . This 

number is compared with the number of samples we need for the same accuracy while 

sampling them using adaptive sampling. This comparison is carried out on every test 

function. When carrying out adaptive sampling the following choices are varied: 

1. ISC 

2. Number of initial samples 

The ISC is a rule which specifies where the next sample is to be injected. As we shall see, the 

ISC is what characterizes the adaptive sampling algorithm. In the following sections we shall 

discuss and compare the use of 2 different ISCs. 

5.2 Global Maximum of MSE as the ISC 

The MSE of DACE as is a measure of the uncertainty in the value predicted by the predictor. 

We had seen in Section 3.5 that the MSE is large in regions that are insufficiently sampled or 

in those that have large gradients. As seen in Section 4.2, by taking inspiration from literature 

like ref. [19], the global maximum of the MSE of DACE is a plausible infill sampling 

criterion. In this section we shall present some results pertaining to the same.  

1. Peaks function:  

( ) ( )( ) ( ) ( )( )2 2 22 3 5 2 2 2
1 2 1

1( , ) 3 1 exp 1 10 exp exp 1
5 3
xpeaks x x x x y x y x y x y⎛ ⎞= − − − + − − − − − − − + −⎜ ⎟

⎝ ⎠
 

1 23 3, 3 3x x− ≤ ≤ − ≤ ≤  

It is found that uniform proactive sampling of 196 (14x14) samples results in 0.01NAD ≤ .  
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We carried out simulations on the peaks function with varying number of initial samples. The 

observations from these tests are included below. The complete results are in Table 5.1 

Observations: 

• The first observation we see is that the total number of samples required with the 

adaptive sampling strategy is indeed lesser than the number required in a proactive 

sampling. Hence adaptive sampling indeed works better than any proactive sampling. 

• With adaptive sampling, it is also found that the number of points required for 

0.01NAD ≤  changes with the number of samples put in initially. The number of 

samples required also doesn’t vary uniformly with the number initial samples, but 

shows a rather erratic behavior. The maximum effectiveness of this strategy (the 

minimum number of samples needed) is obtained when we sample about 121 points 

initially and get the rest from adaptive sampling. The maximum percentage reduction 

(from the number of points required in a proactive sampling) is about 18%. 

Number of 
initial 

samples 

Total number 
of samples 

required 

Percentage reduction 
in number of samples 

9 167 14.80 
16 167 14.80 
25 165 15.82 
36 182 7.14 
49 177 9.69 
64 164 16.33 
81 175 10.71 
100 176 10.2 
121 161 17.86 
144 164 16.33 
169 187 4.59 

             Table 5.1 Adaptive sampling on the Peaks function using MSE as ISC 

• It is also worthwhile seeing where the sampling has occurred for some of these cases. 

Figure 5.1a shows the function ( ) ( )p| |y x y x− with the samples and Fig 5.1b shows 

the MSE with the samples. The samples are denoted by the black dots. The bright red 

dot is the last sample. The circled black dots are the initial samples. Regions that are 

red have higher value while blue ones have lower value of the function being plotted. 

Several observations can be made from these 2 figures. It is firstly seen that though 

the initial samples were far apart, the injected samples have filled the space almost 

uniformly. There are several samples injected on the boundary of the domain. The 

reason for this is that for wavy functions like the peaks function, the MSE is usually 
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higher on the boundary. It is also seen that even after sampling has been stopped, 

MSE and ( ) ( )p| |y x y x−  are dissimilar. The maxima of MSE do not coincide with 

the regions where ( ) ( )p| |y x y x− is maximum. This is true not just at this stage of 

sampling, but at every stage of adaptive sampling. 

 

 (a) ( ) ( )p| |y x y x− with samples  (b)MSE with samples 

Fig 5.1 Sampling on peaks function with 3x3 uniform initial samples 

• Having seen that the maxima of ( ) ( )p| |y x y x− and MSE do not coincide, it is 

important that we now look at the behavior of NAD and IE to see if all the samples 

that have been injected have indeed been useful in improving the approximation of 

the predictor. Figure 5.2 shows the plots of NAD and IE for 3x3 = 9 uniformly 

distributed initial samples. 

 
  (a) NAD with number of injected samples    (b) IE with number of injected samples 

   Fig 5.2 Progress of adaptive sampling on peaks function with 3x3 initial sampling 
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• The plots show a step-like behavior for NAD. That is to say that during adaptive 

sampling, there are phases when NAD remains almost unchanged. That again 

reiterates the fact that the successive samples are not getting injected in the region 

where there is maximum mismatch between the function and the predictor. The 

corresponding IE shows small reduction in value. Which means that though in regions 

where the sample is being injected the approximation has improved, the injected 

sample is redundant and has not helped to improve the fit significantly. Such behavior 

is observed for the peaks function even with more initial samples. 

• The reasons for this step-like behavior are as follows. When we sample the domain 

with, say 25 uniformly distributed points, we find several local maxima of the MSE 

function distributed over the domain. Several of these maxima are of similar height. 

When a sample is injected at one of those maxima, the MSE in its vicinity reduces, 

whereas the MSE in the rest of the domain remains almost unchanged. In successive 

iterations, the algorithm samples points one by one at these maxima. However not all 

of these points are useful in getting a good approximation, and several of them are 

redundant. But while sampling, when the algorithm does sample in a region where the 

mismatch is maximum, the NAD suddenly falls. This problem occurs because, as 

discussed in Section 3.5 and above, the MSE is not the real error between the function 

and the predictor. This problem is fundamental to DACE and is a significant 

weakness in using global maximum of MSE as the ISC. It hence warrants the 

development of a new and more effective ISC. The next section elaborates on the new 

ISC we have developed. 

2. Goldstein Price, Branin’s rcos, Rosenbrock’s valley function 

We also carried out similar tests on the Goldstein Price function, Branin’s rcos function and 

the Rosenbrock’s valley function. Please refer to Appendix 3 for the function definition. The 

waviest topology is of the Peaks function. The others mentioned above are moderately wavy. 

Functions have been simulated with various numbers of uniformly distributed initial samples 

Percentages are calculated w.r.t. the number of such samples required for 0.01NAD ≤ .  

Observations: 

• The results obtained from these simulations show that for wavy functions, adaptive 

sampling is less effective. The extent of success of adaptive sampling though is 

different for different functions. As functions get flatter DACE is able to capture their 

variations with fewer samples and adaptive sampling proves effective in locating 
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those samples. Figure 5.3 shows the percentage reduction in number of samples 

required for 0.01NAD ≤  plotted against the percentage of initial samples.  

Percentage reduction in number of samples with 
MSE as ISC
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Fig 5.3 Percentage reduction in number of samples with MSE as ISC 

• From these results it appears that for smoother functions about 30-40% of the total 

number of available samples should be used for initial sampling. The rest should be 

injected adaptively. For wavy functions, about 40-60% of the samples should be used 

for initial sampling, and the rest should be injected adaptively. 

• Figure 5.4 shows the plot of NAD and IE with number of samples injected for the 

Goldstein price function. These plots were obtained for the Goldstein Price function 

with the use of adaptive sampling with 25 initial samples. Once again we see the step-

like behavior in NAD. This kind of behavior often occurs with smoother functions 

when the number of initial samples is large.  

 
  (a) NAD with number of samples injected      (b) IE with number of samples injected 

Fig. 5.4 Effect of Adaptive sampling on the Goldstein Price function 
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           (a) With 25 initial samples         (b) With 25 samples + 1 injected sample 

Fig 5.5 MSE for Goldstein Price function 

• In order to understand this behavior we must have a look at the MSE that is formed 

with 25 uniformly distributed samples. Figure 5.5a shows the MSE after sampling 25 

uniformly distributed points. It is seen that for a flat function like the Goldstein Price 

function, the MSE is also uniform. In every quadrilateral marked by 4 initial samples, 

there is a local maximum of the MSE. Figure 5.5b shows the MSE after injection of 

one more point. We see that after the injection of this point the MSE in the 

rectangular region surrounding that point subsides, while the MSE peaks in other 

regions remain. All these peaks are of similar height. The algorithm samples points 

one by one at successive peaks in the MSE. However, since the function is largely 

flat, not all of these points result in a reduction of the NAD. Not all of them result in 

significant reduction of IE too. Hence we get the step like behavior in NAD. More the 

number of initial samples, more the number of such peaks, and more and longer the 

“steps” in NAD. 

As discussed with the observations about the 

peaks function, the step-like NAD is 

attributable to the fact the maxima of MSE do 

not coincide with the maxima 

of ( ) ( )p| |y x y x− . This seen in Fig 5.6 which 

shows the plot of ( ) ( )p| |y x y x−  for the 

Goldstein Price function with 25 uniformly

             Fig 5.6 ( ) ( )p| |y x y x−  for Goldstein Price 
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distributed samples. Comparing this with Fig 5.5a shows that there are gross differences 

between the two. We have hence developed a new ISC, which will try to reduce the 

number of redundant points sampled by the algorithm. 

5.3 Dual criteria adaptive sampling 

Before we present the new ISC, let us look at what information we have about the function as 

we try to approximate it. The information about the function is available from the initially 

sampled points, from the successively injected samples, successive DACE models, and the 

MSE. The algorithm described in Section 5.2 is weak since it uses only MSE and thus fails to 

use all the information available about the function. Our effort in this new “Dual Criteria ISC 

(DCISC)” is to use information from the previous DACE models to try and guess in which 

regions is the real error ( ) ( )p| |y x y x−  is high.  

When we make a series of DACE models in the adaptive sampling algorithm, each time we 

have a predicted value for the point where sample is to be injected. After the sample is 

injected (i.e. the real function is evaluated at that point), we know the real value of the 

function for that point. If the discrepancy between the predicted value and the real value is 

large as compared to MSE , it means that in the vicinity of that point there is a need for 

more samples. The DCISC is based on this idea. It is defined as follows. 

1. Consider the previous k models, and the previous k injected points.  

2. Find the discrepancy between the predicted value and the real value at these k points. 

3. Consider the point that shows the maximum discrepancy amongst these k points. Let 

it be *x and let the maximum discrepancy be d. 

4. Define stepY as an n-D step function such that it has value = d in a δ box around *x and 

is 0 everywhere. 

5. The DCISC is the global maximum of stepY MSEα + . The new sample is given by 

( )arg maxnew stepx Y MSEα= +              (5.4) 

where ( )0,1α ∈ is called relative influence parameter. It determines how much importance is 

to be given to the discrepancy relative to the MSE . k is an integer greater than 1 and is 

called the discrepancy memory parameter. It determines the discrepancy from how many of 

the previous models influence the current one.δ is called the spatial influence parameter. It 

determines in how much vicinity of *x does the influence of the discrepancy hold. 



 24

1. Peaks function 

We shall now present results obtained with this new ISC on the peaks function defined in 

Section 5.2. These results have been obtained by taking α =0.5, k= 4, andδ =1.5. The budget 

is the same in Section 5.2 and a similar set of simulations have been carried out. 

Observations 

• The results presented in Table 5.2. As expected, the DCISC performs better than a 

proactive initial sampling. Just as with the MSE based sampling, here too the total 

number of samples needed varies with the number of points sampled initially. 

• We see that this criterion performs better than the other criterion of using global 

maximum of MSE only. This is true for any number of initial samples. We see that 

the maximum reduction in the number of samples is obtained with 81 samples. 

Number of 
initial 

samples 

Percentage 
of 

maximum 
samples 

Total number 
of samples 

required 

Percentage reduction in 
number of samples (with 

dual criteria ISC) 

Percentage reduction in 
number of samples 

(with only MSE) 

9 5 164 16.33 14.80 
16 8 150 23.47 14.80 
25 13 135 31.12 15.82 
36 18 172 12.24 7.14 
49 25 160 18.37 9.69 
64 33 143 27.04 16.33 
81 41 133 32.14 10.71 
100 51 173 11.73 10.2 
121 62 162 17.35 17.86 
144 73 164 16.33 16.33 

Table 5.2 Dual criteria adaptive sampling on Peaks function 

• When the number of initial samples is either too small or too large, the DCISC 

behaves similarly to the conventional criterion. However when the number of samples 

is 20-50% of the number of uniformly distributed samples required for 0.01NAD ≤ , 

we see that there is a significant difference in performance between the DCISC and 

the conventional one. Again it is seen that the total number of samples needed does 

not vary uniformly with the number of initial samples. 

• Let us compare the NAD for the peaks function with 81 initial samples with the two 

different criteria. Figure 5.7 shows the NAD plots for the 2 different approaches. We 

see that the NAD plots for the two different criteria are strikingly similar in some 

regions of the plot. Which means that in some phases of the sampling process DCISC 
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is degenerating to the conventional MSE based criterion, though the criterion overall 

performs better than the MSE based criterion. Such behavior is observed for any 

number of initial samples. 

 

 (a) With DCISC   (b) With only MSE 

Fig 5.7 NAD for the peaks function with 81 initial samples with different ISCs 

2. Goldstein Price, Branin’s rcos, Rosenbrock’s valley function 

Simulations carried out are just like in Section 5.2, with similar number of initial samples. 

Observations 

• We see that for the smoother variety of functions, like the Goldstein Price function, 

Branin’s rcos function, Rosenbrock’s valley functions the DCISC criterion performs 

significantly better than the conventional criterion. Table 5.3 shows the comparative 

results of the two different criteria on these functions. 

• The improvement in performance is observed for any number of initial samples. In 

general we see that when the number of initial samples is around 10-35% of the 

number of uniformly sampled points needed to get 0.01NAD ≤ , we get the greatest 

percentage reduction in the number of samples.  

• As opposed to the case for wavy functions, this sampling criterion does not 

degenerate to the conventional criterion based on only MSE. But when number of 

initial samples is large the DCISC performs similar to the conventional criterion.  

• As seen for the peaks function, here too the NAD plots resemble each other in some 

regions, while in other regions they are different - which again shows that there are 

phases when the DCISC degenerates to the conventional MSE based criterion. 
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Number of 
initial 

samples 

Percentage 
of 

maximum 
samples 

Total number of 
samples required 

Percentage reduction in 
number of samples (with 

dual criteria ISC) 

Percentage reduction 
in number of samples 

(with only MSE) 

9 25 21 41.67 19.44 
16 44 22 38.89 13.89 
25 69 28 22.22 22.22 

    (a) Rosenbrock’s valley function 

Number of 
initial 

samples 

Percentage 
of 

maximum 
samples 

Total number of 
samples required 

Percentage reduction in 
number of samples (with 

dual criteria ISC) 

Percentage reduction 
in number of samples 

(with only MSE) 

9 9 30 70.00 65 
16 16 31 69.00 70 
25 25 34 66.00 67 
36 36 42 58.00 58 
49 49 53 47.00 47 

    (b) Branin’s rcos function 

Number of 
initial 

samples 

Percentage 
of 

maximum 
samples 

Total number of 
samples required 

Percentage reduction in 
number of samples (with 

dual criteria ISC) 

Percentage reduction 
in number of samples 

(with only MSE) 

9 9 69 31 18 
16 16 75 25 25 
25 25 71 29 28 
36 36 69 31 23 
49 49 76 24 28 
64 64 70 30 30 

    (c) Goldstein Price function 

Table 5.3 Comparative performance of DCISC and MSE based criterion 

• Figure 5.8 also shows the percentage reduction in the number of samples for different 

number of initial samples, for various functions using DCISC. 

Various functions with Dual criteria ISC
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Fig 5.8 Percentage reduction in number of samples with DCISC 



 27

5.3.1 Some comments about Dual Criteria ISC 

The performance of the DCISC based adaptive sampling algorithm is sensitive to the values 

of relative influence parameter, discrepancy memory parameter, and spatial influence 

parameter ( , ,kα δ ). The values of , ,kα δ  we have used in our results have been arrived at by 

a process of trial and error, but their choice is critical to the success of this algorithm. Let us 

throw some light on the role of these parameters.  

Relative influence parameter,α  

In the DCISC, since stepY  is added to MSE , α should be taken such that if d (as defined in 

Section 5.3) is comparable to MSE , that region should get preference. It was found that 

α =0.5 yielded good results. If α  is very small, the DCISC criterion reduces to using only 

MSE. If α is very large MSE loses its significance completely. 

Discrepancy memory parameter, k 

Often the largest discrepancies are found earliest stages of sampling. If k chosen to be very 

large, then we find that only one of the discrepancies dominate and a number of samples get 

accumulated in one region. If k is taken to be too small then DCISC degenerates to using only 

MSE. After some trial and error, a value of k = 4 was found to appropriate. 

Spatial influence parameter,δ   

It was found that the number of initial samples andδ are closely related. When the domain is 

sampled uniformly, it is divided into rectangular subdomains of equal area. The results seem 

to be best when the area of each of these subdomains have is nearly equal to the area of the 

δ box. Again ifδ is too small or too large, the algorithm degenerates to using only MSE.  

5.4 Further research and exploration 

From our results we find that the DCISC developed seems to have a lot of potential, 

particularly in the case of flat and smooth functions. It is able to capture several of the regions 

where samples are most needed and is able to also ignore the regions where samples are not 

required. It must be noted that in the worst case, DCISC performs as well as using only MSE 

as the ISC. The exact impact that the relative influence parameter, discrepancy memory 

parameter, and spatial influence parameter have on the algorithm is an interesting matter for 

further exploration.  

 

 



 28

Chapter 6 

Conclusion 
 

In this report we have surveyed the various existing methodologies for surrogate modeling 

and global optimization. We have dealt in depth with the theory associated with universal 

Kriging and DACE and chosen it as our surrogate model. We have developed and 

demonstrated the use of 2 methods to improve the approximation provided by the DACE 

predictor. The methods use a technique of adaptive sampling and successive improvements of 

the DACE model. Positioning the next sample requires us to solve a global optimization 

problem to satisfy some infill sampling criterion. Two sampling criteria were developed and 

compared. A new and original criterion, called the “dual criteria infill sampling criterion” 

was developed and was seen to produce better results than using only MSE. 

The implementation of this “dual criteria infill sampling criterion” involves specifying values 

of 3 parameters - relative influence parameter, discrepancy memory parameter, and spatial 

influence parameter. Further research should be directed towards understanding the exact 

influence of these. 
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Appendix 1 
 

Maximum Likelihood Estimation 

We shall first explain what the maximum likelihood estimation problem is. The maximum 

likelihood estimation (MLE) that we shall consider is a parametric form of density estimation 

problem. Suppose 1 2 m, ,...,X X X are independent and identically distributed (iid) with a 

common probability density functionψ . Suppose ψ  is parameterized with respect toθ . The 

maximum likelihood estimation problem is to find θ  such that the conditional probability of 

1 2 m, ,...,X X X given θ , i.e. 1 2 m( , ,..., | )P X X X θ  is maximum [17]. Using that i 'X s are iid,    

1 2 marg max( ( , ,..., | ))MLE P X X Xθ θ=             

Since i 'X s are iid,   
m

i
1

arg max ( | )MLE P Xθ θ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏               

    
m

i
1

arg max ( , )MLE Xθ ψ θ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏             

In our case, we frame an MLE problem to find all of , ,θ σ β  such that the joint probability 

distribution given by
m

i
1

( ( ), , , )z sψ θ σ β∏  is maximized, where i( )z s = ( )T
i i( )y s f s β−  is the 

error at site is appearing out of a stochastic process. The Kriging model is a combination of 

multivariate normal model and a linear model. If the stochastic process is taken as Gaussian 

then the probability density function is given by [3] 

( )( )
( )( )

( ) ( )T 1m

i m/2 221

1, , , exp
22 det( )

Y F R Y F
z s

R

β β
ψ θ σ β

σπ σ

−⎛ ⎞− − −
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∏  

where R , the correlation matrix is a function of θ , [ ]T1 2 m( ), ( ),..., ( )Y y s y s y s= is the vector of 

outputs at the chosen sites, and ( ) ( ) ( ) T
1 2 m, ,...,F f s f s f s= ⎡ ⎤⎣ ⎦ is an m p× matrix holding the 

regression functions evaluated at the chosen sites andβ  is as defined in Eq. (3.9). Hence the 

MLE problem for our case is, 

( )
( )( )

( ) ( )T 1

m/2 22

1, , arg max exp
22 det( )MLE

Y F R Y F

R

β β
θ σ β

σπ σ

−⎛ ⎞⎛ ⎞− − −⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Taking natural logarithms we get the log likelihood problem 
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( ) ( ) ( )T 1
2

2

1, , arg max ln ln det( )
2MLE

Y F R Y F
m R

β β
θ σ β σ

σ

−⎛ ⎞⎛ ⎞− −−⎜ ⎟= + +⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

To solve this we must differentiate the log likelihood with respect to , , andθ σ β  and put the 

respective partial derivatives equal to 0. σ and R  are independent of β , so the MLE of β , 

denoted by *β  is obtained as 

( ) ( )( )T 1 0Y F R Y Fβ β
β

−∂
− − =

∂
 

   ( ) 1* T 1 T 1F R F F R Yβ
−− −=             

This MLE *β  is the same as the generalized least squares estimate of the regression problem. 

Similarly, the MLE of 2σ , denoted by *2σ  is obtained as  

( ) ( )T* 1 *
2

2 2ln 0
Y F R Y F

m
β β

σ
σ σ

−⎛ ⎞− −∂ ⎜ ⎟+ =
⎜ ⎟∂
⎝ ⎠

 

    ( ) ( )( )T*2 * 1 *1 Y F R Y F
m

σ β β−= − −                        

We see that parameters β  and 2σ  are decoupled. In fact it is clear that both *2σ and *β  are 

both essentially functions ofθ . Thus the MLE problem posed above is in fact a problem of 

finding the MLE of onlyθ . Although the least squares solution forβ  and the MLE *β  are 

identical, this fact could not have been established by finding least squares solution first and 

then imposing MLE separately onθ .  

On solving the MLE forθ , *2σ and *β  get fixed as a consequence. This means that by 

choosing n critical values in the vectorθ , the model and as we shall see in the next section, 

the predictor can be determined. This remarkable simplicity is attributed to the choice of the 

stochastic process as Gaussian. MLE forθ  is reposed as  

   ( )*21arg max ln ln det( )
2MLE m Rθ σ−⎛ ⎞= +⎜ ⎟

⎝ ⎠
            

This is an optimization problem that has to be solved numerically. References [14] and [15] 

provide algorithms for this. Having solved forθ  and having found *2σ and *β  we are in a 

position now to create a predictor for the function ( )y x  to predict its value over the 

domain D . 

 



 35

Appendix 2 
 

Deriving the BLUP using the method of Lagrange Multipliers 

The BLUP (best linear unbiased predictor) requires that we solve: 

1. Minimize MSE = ( ) ( )( )2| |pE y x y x−  with respect to ( )c x  

2. subject to ( )( ) ( )( )pE y x E y x=   

The mean square error at untried x is  

( ) ( ) ( ) ( ) ( ){ }T T* * 2| |MSE x E c x F Z f x z xβ β∴ = + − −              

where    ( ) ( ) ( ) T
1 2 m, ,...,Z z s z s z s= ⎡ ⎤⎣ ⎦       

Since ( ) ( ) 0E z E Z= = the unbiasedness condition becomes ( ) ( )TF c x f x=    

   ( ) ( ) ( ) ( ) ( )( )T T2 1 2MSE x c x Rc x c x r xσ= + −             

where ( )r x is a vector that holds the correlations between the untried x  and sites in S . 

( ) ( ) ( ) ( ) T
1 2 m, , , ,..., ,r x s x s x s xρ ρ ρ= ⎡ ⎤⎣ ⎦                                         

Thus the constrained optimization problem stated above is to minimize MSE (x) subject 

to ( ) ( )TF c x f x= . This can be solved using the method of Lagrange multipliers. The 

Lagrange equation is with a vector Lagrange multipliers λ is 

( ) ( ) ( ) ( )( )T T,L c MSE x F c x f xλ λ= − −                       

 ( ) ( )T0 0L F c x f x
λ
∂

∴ = ⇒ − =
∂

   &  ( ) ( )( )20 2 0L Rc x r x F
c

σ λ∂
= ⇒ − − =

∂
               

   ∴ ( ) ( ) ( ) ( ) ( )( )( )11 T 1 T 1c x R r x F F R F f x F R r x
−− − −= + −   

Thus the BLUP can now presented as below. Using that R is symmetric, 

( ) ( ) ( ) ( )( ) ( )T 1T 1 T 1 T 1 T 1
py x r x R Y F R r x f x F R F F R Y

−− − − −= − −    
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Appendix 3 
 

 
Test functions for Adaptive Sampling 

1. Peaks function 

( ) ( )( ) ( ) ( )( )2 2 22 3 5 2 2 2
1 2 1

1( , ) 3 1 exp 1 10 exp exp 1
5 3
xpeaks x x x x y x y x y x y⎛ ⎞= − − − + − − − − − − − + −⎜ ⎟

⎝ ⎠
 

1 23 3, 3 3x x− ≤ ≤ − ≤ ≤  

2. Ackley’s path function 

( ) ( )( )( ) ( ) ( )( )

[ ]

2 2
1 2 1 2 1 2

1 2

1, *exp * 1 exp cos cos

20, 0.2, 2 ; , 30,30

ackley x x a b n x x cx cx a e
n

a b c x xπ

⎛ ⎞= − − + − + + +⎜ ⎟
⎝ ⎠

= = = ∈ −
 

3. Rosenbrock’s valley function 

( ) ( ) ( )
2 22

1 2 1
1

, 100 1i i i
i

rosen x x x x x+
=

⎡ ⎤= − + −⎣ ⎦∑  

[ ]1 2, 30,30x x ∈ −  

4. Branin’s rcos function 

( ) ( ) ( )22
1 2 2 1 1 1, 1 cosbranin x x a x bx cx d e f x e= − + − + − +  

( )21, 5.1 4 , 5 , 6, 10, 1 8a b c d e fπ π π= = = = = = , 1 25 10,0 15x x− ≤ ≤ ≤ ≤  

5. Goldstein-Price function 

( ) ( ) ( )
( ) ( )

2 2 2
1 2 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

, 1 1 19 14 3 14 6 3 *

30 2 3 18 32 12 48 36 27

goldsteinprice x x x x x x x x x x

x x x x x x x x

⎡ ⎤= + + + − + − + +⎣ ⎦
⎡ ⎤+ − − + + − +⎣ ⎦

 

[ ]1 2, 2, 2x x ∈ −  
 

 


