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Abstract

In this paper, we study recourse-based stochastic nonlinear programs and make two sets of contributions.
The first set assumes general probability spaces and provides a deeper understanding of feasibility and recourse
in stochastic nonlinear programs. A sufficient condition, for equality between the sets of feasible first-stage
decisions arising from two different interpretations of almost sure feasibility, is provided. This condition is an
extension to nonlinear settings of the “W-condition,” first suggested by Walkup and Wets [65]. Notions of
complete and relatively-complete recourse for nonlinear stochastic programs are defined and simple sufficient
conditions for these to hold are given. Implications of these results on the L-shaped method are discussed.
Our second set of contributions lies in the construction of a scalable, superlinearly convergent method for
solving this class of problems, under the setting of a finite sample-space. We present a novel hybrid algorithm
that combines sequential quadratic programming (SQP) and Benders decomposition. In this framework,
the resulting quadratic programming approximations while arbitrarily large, are observed to be two-period
stochastic quadratic programs (QPs) and are solved through two variants of Benders decomposition. The first
is based on an inexact-cut L-shaped method for stochastic quadratic programming [55, 57] while the second is a
quadratic extension to a trust-region method suggested by Linderoth and Wright in [42]. Obtaining Lagrange
multiplier estimates in this framework poses a unique challenge and are shown to be cheaply obtainable through
the solution of a single low-dimensional QP. Globalization of the method is achieved through a parallelizable
linesearch procedure. Finally, the efficiency and scalability of the algorithm are demonstrated on a set of
stochastic nonlinear programming test problems.

1 Introduction

This paper concerns stochastic nonlinear programs: optimization problems in which the objective function and
constraints are nonlinear and possibly nonconvex functions of the decision variables, parameterized by random
variables. The randomness is characterized by a probability space (Υ,F , µ) wherein by ω we denote any point in
Υ. We specifically consider recourse based stochastic nonlinear programs such as (SNLP):

SNLP minimize
x

f(x) +Q(x)

subject to
u(x) = 0,

x ≥ 0,

where Q(·) : Rn → R, Q(x) ≡ IEµ [Q(x;ω)], IEµ[·] is the expectation operator on (Υ,F , µ) and Q(x;ω) is the
optimal value of the problem (RNLP(x;ω)):

RNLP(x;ω) miny{h(y;ω) : a(x, ω) + d(y, ω) = 0, y ≥ 0},

where a : Rn × Υ → R
p and d : RN × Υ → R

p This paper pertains to two important challenges regarding
(SNLP): (i) a deeper understanding of feasibility and recourse in nonlinear (and hence analytically nontrivial)
settings and (ii) the construction of a scalable convergent algorithm for solving (SNLP) under a finite Υ. Our
key contributions may be summed up as follows:
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grant (CCF-0728863)
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1. Feasibility and recourse: Throughout we shall be concerned with the “almost sure” notion of feasibility
and optimality of (SNLP), as defined below.

Definition 1.1 (Almost sure feasible and optimal solutions) Let Y be a space of Υ → R
N continuous

functions (random variables). A vector x∗ ∈ Rm is called almost sure feasible for (SNLP) if u(x∗) = 0, x∗ ≥ 0
and there exists y∗ ∈ Y such that

a(x∗, ω) + d(y∗(ω), ω) = 0, y∗(ω) ≥ 0, almost surely.

Furthermore, if the set of almost sure-feasible solutions is denoted by NF and there exists a neighborhood N of
x∗ such that for all x ∈ N ∩NF ,

f(x∗) +Q(x∗) ≤ f(x) +Q(x),

then x∗ is called an almost sure optimal solution of (SNLP).

(i) When Υ is infinite, there are many interpretations of “feasibility” for stochastic programs, as first noted by
Walkup and Wets [65, 1967] in the case of stochastic linear programs. We consider the two interpretations
feasibility studied by them and derive a simple condition under which they are equivalent. Specifically, if Υ̂ is
a closed subset of measure one of Υ, then under a suitable sufficiency condition the set of first-stage feasible
decisions was invariant under the choice of Υ̂. Importantly, we derive the W-condition for stochastic convex
programs with (i) linear and (ii) nonlinear constraints. Logically, this sufficiency condition is an extension
of the W-condition from [65] to stochastic nonlinear programs, but it is analytically more difficult to obtain.

(ii) Furthermore, the notion of complete and relatively complete recourse, while well understood in linear
settings, is made rigorous in nonlinear settings.

(iii) Finally, we highlight some interesting implications of our findings on the workings of L-shaped methods.

Since this body of questions has relevance to L-shaped methods, we thought it fitting to present them in connection
with the algorithmic contributions.

2. A scalable convergent algorithmic scheme: A novel scalable framework for (SNLP) is designed under
the assumption that Υ is finite. This framework combines the convergence properties of sequential quadratic
programming (SQP) with the scalability afforded by Benders decomposition. However, our algorithm, while
inspired by SQP methods, has several crucial differences:

(i) The quadratic programming approximations generated, are solved not by an active-set scheme, as is often
the case [46], but by a quadratic generalization of the L-shaped method. We provide two generalizations
for convex stochastic QPs: the first uses inexact cuts (due to Shanbhag et al. [55, 57]) while the second
employs a trust-region (TR) (extended from TR-based algorithm of Linderoth and Wright [42]). We present
extensions of the convergence theory provided in [42] to allow for solving stochastic QPs.

(ii) The use of Benders-type QP solvers necessitates the use of a sparse quasi-Newton update. We develop an
update that generates QP approximations of a desired structure while also allowing superlinear convergence.

(iii) It is seen that obtaining Lagrange multiplier estimates poses a unique challenge in our method and we
show that these estimates are cheaply obtainable through the solution of a single low-dimensional quadratic
program. This is essential to the scalability of the scheme.

Numerical simulations show that the method scales linearly with |Υ| and the framework can address problems
whose deterministic equivalents are well over a few hundred thousand variables and constraints.

Stochastic programming formulations were separately suggested by Dantzig [16] and Beale [3] for planning
under uncertainty. In 1969, based on a decomposition scheme suggested by Benders [4], the L-shaped method
was presented for solving two-stage stochastic linear programs [63]. In settings where |Υ| is infinite, sampling
methods are often employed. In the 90s, work by Dantzig, Glynn, Infanger, Higle and Sen [17, 37, 31, 18, 17, 36, 57]
concentrated on integrating Monte-Carlo sampling schemes within the L-shaped method [63]. Subsequent efforts
by Shapiro, Robinson, Linderoth, Wright and others aimed at using sample-average approximation (SAA) methods
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and their variants [59, 60, 41, 50] for solving a broad class of optimization problems. While much of the sample-
average approximation framework focuses on using a fixed-sample size, recent efforts by Deng and Ferris, Homem-
De-Mello and others [19, 35] have concentrated on developing iterative schemes with variable sample sizes. Convex
stochastic programs have recently seen much study through the use of both primal-dual and dual decomposition
methods [5, 54]. Recent work by Shanbhag et al. [57] examined stochastic convex programming through the use
of an L-shaped method. The crux of the work focused on providing convergence theory for inexact cut L-shaped
methods in settings with a finite sample-space. Furthermore, when the sample-space is infinite, the authors
provide convergence and confidence statements for the estimators of the value function. However, there are a
multitude of practical problems where neither linearity nor convexity can be assumed (cf. [27, 6, 46]).

In spite of their importance, stochastic nonlinear programs like (SNLP) have been relatively under stud-
ied. Theoretical work in explicitly stating the Karush-Kuhn-Tucker (KKT) conditions for the stochastic convex
programs is found in the work by Rockafellar and Wets [53]. More recent algorithmic work can be found in
[9, 10, 69, 68]. In a recent paper by Liu and Zhao [43] multistage stochastic nonlinear programs were addressed
by using an SQP method with the scenario analysis technique of Rockafellar and Wets [52]. Their algorithm
reformulates the objective of (SNLP) into a sum of scenario based objectives each with a different first-stage
variable. The nonanticipativity condition, which requires that all states which are observationally indistinguish-
able should have identical optimal value for the decision variable, is imposed explicitly by adding a set of linear
equality constraints. It is notable that ours is a significantly different approach.

Also under studied is (SNLP) with Υ infinite, and the various issues of feasibility and optimality that arise in
this case. The work by Walkup and Wets [65] appears to be one of the few in this direction and their contributions
are surveyed in section 2.

The remainder of the paper is organized into six sections. We begin by considering a general Υ in section
2 wherein we study feasibility and recourse in stochastic nonlinear programs with a view towards extending the
W-condition to nonlinear settings. Furthermore, we define complete and relatively complete recourse in nonlinear
settings and we give sufficient conditions for these to hold. In section 3, we present an outline of our hybrid SQP
framework, focusing on the quasi-Newton update and the globalization scheme. Section 4 is organized around
the two extensions of the L-shaped method for the stochastic QP subproblems. We show why the Lagrange
multiplier estimates are not directly obtained and how they can be extracted through the solution of a small
quadratic program. In section 5, we demonstrate the scalability and efficiency of the algorithm on a test problem
set of stochastic NLPs. We conclude in section 6.

2 Feasibility and recourse in stochastic nonlinear programs

We now begin the first set of contributions of this paper. Consider the stochastic nonlinear program (SNLP) in
which Υ may be an infinite set. Recall from Definition 1.1 that Y was defined as the space of Υ → R

N continuous
functions.

Assumption 2.1 We assume that for every almost-sure feasible x, there exists y ∈ Y such that y(ω) is a solution
to (RNLP(x;ω)).

Notice that while random variables in general need only be measurable, we additionally require that the optimal
second stage decision be a continuous Υ → R

N function. This will particularly useful in the proof of Theorem
2.13. From a modeling standpoint, by allowing only continuous second stage decisions, we are implicitly assuming
that the decision maker does not gain from considering any discontinuous recourse decisions as a possible response
to the uncertain future. Indeed for practical problems of interest being captured by (SNLP), we believe that the
class of measurable functions may be too broad for second stage decisions. We expect that, in problems of our
interest, where the other problem data is smoothly varying with respect to ω, the second stage optimal decisions
are also well-behaved (in particular, that they are continuous with respect to ω). Furthermore, when Υ is finite,
Y contains all random variables, whereby in the more conventional case of finite Υ, no generality is lost.

When the constraints of an optimization problem are stochastic there are several interpretations of “feasibility”.
We consider two notions of feasibility introduced by Walkup and Wets in [65] and study how they affect the first-
stage feasibility set of (SNLP), the boundedness of Q(x;ω) and the optimal value of (RNLP(x;ω)). We then
derive a sufficiency condition under which these interpretations are “equivalent”, in a sense made precise below.
Admittedly, the questions we deal with here are subtle and perhaps of only academic interest. But they are
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seen to have important and interesting implications on L-shaped algorithms and sampling-based methods, as
mentioned in section 2.4. We thus find it apt to present them along with the Benders-SQP algorithm that will
follow in section 3.

Let K1 = {x | u(x) = 0, x ≥ 0} be the first stage feasibility set and Υ̃ be defined as

Υ̃ =
⋂

U∈F,U closed,µ(U)=1

U.

First note that Υ̃ 6= ∅: this follows from observing that for any U, V ∈ F , with µ(U) = µ(V ) = 1, we must have
U ∩V 6= ∅, since otherwise we would get µ(Υ) ≥ µ(U ∪V ) = 2. Furthermore, Υ̃ is closed, hence measurable with
µ(Υ̃) = 1 and is in fact the smallest closed set of measure 1. Υ̃ is often called the support of µ. The two notions
of feasibility we consider can be articulated via the sets C1,C2, defined as

C1 = {x ∈ K1 | ∃ y ∈ Y : a(x, ω) + d(y(ω), ω) = 0, y(ω) ≥ 0 ∀ω ∈ Υ̃},
C2 = {x ∈ K1 | ∃ y ∈ Y : a(x, ω) + d(y(ω), ω) = 0, y(ω) ≥ 0 with probability one }.

Both C1 and C2 are reasonable choices for the set of feasible x and result from two different interpretations
of feasibility for stochastic constraints: (1) C1 arises from a requirement that x ∈ K1 be deemed feasible for
(SNLP) if there exists a random variable ȳ ∈ Y such that ȳ(ω) is feasible for (RNLP(x;ω)) for all ω lying in Υ̃,
the support of µ; whereas (2) C2 requires that a ȳ exists that satisfies the stochastic constraints almost surely.
Clearly, C1 ⊆ C2, but in general C1 and C2 can differ vastly, as can the set over which the function Q(·;ω) for a
given ω is bounded. Ostensibly, the optimal value of (SNLP) can depend significantly on whether (1) or (2) is
the chosen formulation.

Interpretation (1) is more suited to algorithmic implementation, since it involves checking for feasibility on a
case-by-case basis for each ω ∈ Υ̃, while (2) is more conventional from the standpoint of stochastic equations or
inclusions. [65] studied these interpretations in the context of the stochastic linear program (StLP):

StLP minimize
x

cT x +QL(x)

subject to
Ax = b

x ≥ 0,

RLP(x, ω) minimize
y

q(ω)T y

subject to
Aωx + Bωy = bω

y ≥ 0,

where QL(x;ω) is the optimal value of (RLP(x;ω)) and QL(x) = IEµ [QL(x;ω)]. In was shown in [65], that for
such a program, if the “W-condition” below is satisfied, then the above interpretations are equivalent in that they
result in the same set of feasible first-stage decisions. i.e. if (SNLP) was linear and the W-condition holds, we
get C1 = C2. Let B denote the collection {Bω : ω ∈ Υ̃} and for any matrix A ∈ Rp×N define the set-valued
map pos(·) : Rp×N → 2R

p

, as pos(A) = {Ay | y ≥ 0}. Recapitulated below are the relevant results from [65],
beginning with the W-condition.

Definition 2.2 (W-condition for stochastic linear programs) The stochastic linear program (StLP) is said
to satisfy the W-condition if the restrictions of set-valued maps pos(Bω) and pos([BT

ω ,−BT
ω , I]) to B and

{[BT ,−BT , I] : B ∈ B}, respectively are continuous.

The main result from [65], articulating equivalence between the first-stage feasible sets, is reproduced below.

Theorem 2.3 Consider (StLP) and define

QL(x;ω) =

{
optimal value of (subω), if (subω) is feasible,
+∞, if (subω) is infeasible.

If (StLP) satisfies the W-condition, then

{x | −∞ < QL(x;ω) < ∞ with probability 1} =
⋂

ω∈eΥ
{x | −∞ < QL(x;ω) < ∞}.
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Walkup and Wets [65] also observed that if (a) Bω ∈ Rp×N is constant for all ω ∈ Υ, or (b) pos(Bω) = Rp

for all ω ∈ Υ, then the W-condition holds. (a) is called the condition of fixed recourse, and (b) is called complete
recourse – conditions which since have proliferated in stochastic programming literature, including that which
assumed |Υ| < ∞. The case where Bω is not a constant with respect to ω is simply called random recourse.
Given below is an illuminating example extended to the quadratic setting from [8, page 87] , that illustrates the
complications that result from random recourse.

Example 2.4 Suppose Υ = [0, 1], µ satisfies µ(ω : ω ≤ u) = u3, and

QQ(x;ω) = min
y
{y2 | ωy = 1− x, y ≥ 0},

with the convention that if {y ≥ 0|ωy = 1 − x} = ∅, then QQ(x;ω) = +∞. It is clear that for all ω ∈ (0, 1], the
optimal y is 1−x

ω , and is required to be nonnegative. Therefore

{x| −∞ < QQ(x;ω) < ∞, ∀ω ∈ (0, 1]} = {x | x ≤ 1}.

For ω = 0, the problem is feasible only for x = 1. Thus

{x | −∞ < QQ(x; 0) < ∞} = {1} and QQ(x; 0) = 0.

Observe that Υ̃ = Υ. Furthermore, since µ(ω : ω = 0) = 0 we get

C1 = {x | −∞ < QQ(x;ω) < ∞ ∀ω ∈ Υ̃} = {1},
C2 = {x | µ(ω : −∞ < QQ(x;ω) < ∞) = 1} = {x | x ≤ 1}.

So if C1 is the feasible set,

QQ(x) =
∫ 1

0

(1− x)2

ω2
3ω2dω = 3(1− x)2.

However, if C2 is the feasible set, QQ(x) = 0. Observe that if one were to consider the same problem as above
but with Υ = [ε, 1 + ε], ε > 0 and proceed exactly as above, one would obtain C1 = C2 = {x|x ≤ 1}. Furthermore,
if one assumed fixed recourse by replacing the constraint ωy = 1− x by γy = 1− x for some constant γ > 0 and
proceeded as above, one would get C1 = C2. For the 1× 1 matrix ω, pos(ω) is not upper semicontinuous w.r.t ω
at ω = 0, since pos(0) = 0 and pos(ω) = R+ for ω > 0. In the following section, we show that this continuity
requirement is precisely what suffices to ensure C1 = C2 and constitutes the “W-condition” for convex programs
with polyhedral constraints.

The goal of this section is to obtain a condition similar to Definition 2.2, for stochastic convex programs, to
allow for an equality between appropriately defined sets corresponding to C1 and C2. Section 2.1 derives such
a condition for stochastic convex programs with linear constraints, while in 2.2 we extend the condition to the
case of general nonlinear constraints. In section 2.3, we define complete and relatively complete recourse in the
nonlinear context and examine what sufficient conditions lead to these recourse properties. Finally, in section
2.4, we conclude with an examination of the implications of our findings on L-shaped methods.

2.1 A W-condition for stochastic convex programs with linear constraints

We show that for stochastic convex programs with linear constraints, the W-condition can be directly extracted
from some results in [65]. Consider the problem which has the same constraints as (StLP):

StP minimize
x

f(x) +Q(x)

subject to
Ax = b

x ≥ 0,

where we define Q(x;ω) as the optimal value of

P2(x;ω) min
y

{h(y, ω) : Aωx + Bωy = bω, y ≥ 0} ,
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if (P2(x;ω)) is feasible and Q(x;ω) = +∞, if it is infeasible. Additionally, we assume that h(·, ω) is a convex C1

function with bounded level sets, for each ω ∈ Υ. and f(·) is a real-valued function, is not necessarily convex. We
further assume that Aω, Bω and h(·, ω) are continuous with respect to ω. For a fixed x the optimality conditions
of P2(x, ω) are finitely many algebraic equations (and inequalities), namely the KKT conditions, implying that
Q(x;ω) is a measurable function of ω. The set of x that is a.s. permissible is denoted by K and can be written
using only Q(x;ω) in the following way:

K = {x | (P2(x;ω)) is feasible and bounded a.s.} = {x | −∞ < Q(x;ω) < ∞ a.s.}.

Following [65], we consider the sets

feasibility set K2 := {x | Q(x;ω) < +∞ a.s.},
elementary feasibility sets K2(ω) := {x | Q(x;ω) < +∞},
dual feasibility set K∗

2 := {x | Q(x;ω) > −∞ a.s.},
elementary dual feasibility sets K∗

2 (ω) := {x | Q(x;ω) > −∞}.

(1)

It follows that K = K2 ∩K∗
2 . Consequently,⋂

ω∈eΥ
K2(ω) ⊆ K2 and

⋂
ω∈eΥ

K∗
2 (ω) ⊆ K∗

2 =⇒
⋂

ω∈eΥ
(K2(ω) ∩K∗

2 (ω)) ⊆ K. (2)

We are now prepared to identify a W-condition analogous to Definition 2.2 for stochastic convex programs so that
the last inclusion in (2) holds with equality. Observe that if (P2(x;ω)) is feasible, it is always bounded below (by
its unconstrained minimum). This is a point of departure from LPs where feasibility does not necessarily imply
boundedness. Consequently,

K2(ω) ⊆ K∗
2 (ω) ∀ ω ∈ Υ.

The next result provides a sufficiency condition for drawing an equivalence between the feasibility sets arising
from the two different interpretations of feasibility.

Theorem 2.5 Consider the stochastic convex program (StP). If the restriction of pos(·) to B is continuous, then

{x | Q(x;ω) < +∞ ∀ ω ∈ Υ} = {x | Q(x;ω) < +∞, ∀ω ∈ Υ̃}.

Proof : Since (P2(x;ω)) has the same constraints as (subω), the result follows directly from [65] (Th. 3.7).
This gives us the W-condition for convex stochastic programs.

Definition 2.6 (W–condition for convex stochastic programs with bounded level sets) The problem (StP)
is said to satisfy the W–condition if the restriction of pos(·) to B is continuous.

Using the W-condition and a bounded level sets assumption, we may provide a simpler characterization for K.

Theorem 2.7 Consider the stochastic convex program (StP) where the level sets of the second-stage recourse
problems are assumed to be bounded for all ω ∈ Υ and the W-condition holds. For such a program we have that

K = K2.

Proof : By Theorem 2.5, K2 =
⋂

ω∈eΥ K2(ω). Combining with Eq (2),

K2 =
⋂

ω∈eΥ
K2(ω) ⊆

⋂
ω∈eΥ

K∗
2 (ω) ⊆ K∗

2 .

Hence K = K2 ∩K∗
2 = K2.

Next we show that for |Υ| < ∞, condition in Definition 2.6 can be ensured simply, by proving that the
restriction of pos(·) to B is continuous if Υ is a finite set. Recall the definition of upper semicontinuity of
set-valued maps.
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Definition 2.8 (Upper semicontinuity of set-valued maps [2]) Let X and Y be metric spaces. A set–
valued map F : X 7→ Y is called upper semicontinuous at x ∈ dom(F ) if and only if for any neighborhood
U of F (x),

∃ η > 0 such that ∀ x′ ∈ BX(x, η), F (x′) ⊂ U ,

where BX(x, η) is a ball defined on X centered at x and with radius η. A map is said to be upper semicontinuous
if it is upper semicontinuous for all x ∈ X.

Proposition 2.9 For a finite set Υ, the restriction of pos(·) to B is continuous.

Proof : Proving such a result requires proving the upper and lower semicontinuity of pos(·). It is known that
pos(·) is lower semicontinuous [64]. Hence we only need to prove upper semicontinuity.

Denote the restriction of pos to B by pos|B. Let Bω ∈ dom(pos|B), pick an arbitrary ω ∈ Υ̃ and consider a
neighborhood U around pos(Bω). Since Υ is a finite set, Υ̃ and B are also finite. There exists a neighborhood
N ⊂ Rp×N of Bω such that N ∩B = {Bω}. Furthermore, for all B ∈ N\Bω, pos|B(B) = ∅. So for all B ∈ N ,
pos(B) ⊂ U . It follows that pos|B is continuous.

We point out some insights obtained from these results that apply to the formulations of stochastic programs.
Note that the W-condition does not eliminate the possibility that there exists x̃, withQ(x̃) < ∞ butQ(x̃; ω̃) = +∞
for some ω̃ ∈ Υ. Traditional stochastic programs were formulated to require feasibility of (RNLP(x̃;ω)) for all
ω ∈ Υ. For such a program x̃ could qualify as infeasible. Scenarios like ω̃ introduce constraints that restrict the
feasible region but leave the objective unaffected. Thus a stochastic program requiring feasibility of (RNLP(x̃;ω))
for all ω ∈ Υ may have no feasible first-stage solution if one added appropriately chosen constraints corresponding
to measure zero events. Note however that x̃ is feasible under the larger “almost surely” sense of Definition 1.1.
To obtain the almost sure optimum, in some settings, it may be possible to prune Υ and perform stochastic
programming on a smaller set of scenarios (but of measure one). If the smaller set is Υ̃, the W-condition ensures
an equivalence to the almost sure case from the standpoint of feasible first-stage decisions. If Υ is finite, this
pruning can be done trivially since scenarios ω̃ as above have µ(ω̃) = 0 and can be eliminated at the outset. This
also leads us to an important insight into decision making under uncertainty. Often in real life problems, scenarios
that lead to infinite returns also have an infinitesimal likelihood of occurrence. What we have presented above
is a mathematical justification of why, if almost sure feasibility/optimality is all one desires and the W-condition
holds, making decisions by considering the smallest closed scenario set of measure 1 (i.e. Υ̃) suffices.

2.2 Extension to stochastic convex programs with nonlinear constraints

We consider (SNLP) with the property that h(·, ω) is convex with bounded level sets to articulate a “W-condition”
for such a problem class. Using the arguments used in the previous section, we see that if (RNLP(x;ω)) is feasible,
it is bounded. Thus we only concern ourselves with the question of feasibility and the interpretations at the
beginning of section 2. Clearly, when the constraints of (SNLP) are nonlinear a W-condition that is structurally
similar to Definition 2.2 can be difficult to obtain. We observe that a more elegant condition can be obtained by
making a simple (and not very restrictive) assumption about the probability measure.

Assumption 2.10 For all U ∈ F , U open, µ(U) > 0.

The Lebesgue measure has this property, implying µ is well defined. Recall the sets C1 and C2 from section 2.
We first define the W-condition and then prove that it ensures C1 = C2.

Definition 2.11 (W-condition for stochastic nonlinear programs) The problem (SNLP) is said to satisfy
the W-condition if a(x, ω) and d(z, ω) are continuous with respect to ω for any x, z.

We begin by proving a technical result that shows that any set of measure 1 is dense in Υ̃.

Lemma 2.12 Let U ∈ F be any set of measure 1. U is dense in Υ̃.

Proof : Assume the contrary. There exists U ∈ F of measure 1, a point ω ∈ Υ̃ and an open neighborhood
V ∈ F of ω such that V ∩ U = ∅. But by Assumption 2.10, µ(V ) > 0, implying that µ(Υ) > 1. Through such a
contradiction, the required result follows.

The theorem below is our central equivalence result. Recall that Y is the space of functions that are continuous
on Υ.
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Theorem 2.13 If (SNLP) satisfies the W-condition of Definition 2.11, C2 = C1.

Proof : Since C1 ⊆ C2, we concentrate on showing the reverse inclusion. Let x ∈ C2 and let y ∈ Y, U ∈ F ,
µ(U) = 1 such that

a(x, ω) + d(y(ω), ω) = 0, y(ω) ≥ 0 (3)

for all ω ∈ U . Let ω′ ∈ Υ̃ be arbitrary. By Lemma 2.12, for each open neighborhood V of ω′, V ∩ U 6= ∅. Thus
there exists ωk, k = 1, 2 . . . each of which satisfies (3) and ωk → ω′. Recall from the definition of Y from section 1,
that if y ∈ Y then y(ω) is a continuous function of ω. So a(x, ω) + d(y(ω), ω) is continuous in ω, and we conclude
that ω′ satisfies (3). Thus

a(x, ω) + d(y|eΥ(ω), ω) = 0 y|eΥ(ω) ≥ 0 ∀ω ∈ Υ̃,

implying that x ∈ C1. This completes the proof.
Observe that we have been able to obtain a W-condition in Definition 2.11 that is weaker than the one

obtained by Walkup and Wets in Definition 2.2 (since continuity of Bω, Aω with respect to ω only implies lower
semicontinuity of pos(Bω)). This has been facilitated by Assumption 2.10.

2.3 Nonlinear complete and relatively complete recourse

When working with polyhedral constraints, ensuring complete or relatively-complete recourse requires that the
recourse matrices satisfy certain properties. The analogues of these sufficiency conditions in nonlinear settings
forms the subject of this subsection. Throughout this subsection we consider a slight modification of (SNLP),
shown below

SNLP′ minimize
x

f(x) +Q(x)

subject to
u(x) ≥ 0

x ≥ 0,

where Q(x) = IEµ [Q(x;ω)] and Q(x;ω) is the optimal value of

RNLP′(x;ω) miny{h(y, ω) : a(x, ω) + d(y, ω) ≥ 0, y ≥ 0}.

Furthermore, h(·, ω) ∈ C1 is convex with bounded level sets, a(·, ω), d(·, ω) are C1 functions and d(·, ω) is concave
for all ω ∈ Υ. A consequence of complete recourse in (StLP), apart from the satisfaction of the W-condition,
is that it ensures for any x the existence of a recourse decision y ∈ Y satisfying Aωx + Bωy(ω) = bω ∀ ω ∈ Υ.
A concept closely related to complete recourse is relatively complete recourse. (StLP) has relatively complete
recourse if for all x satisfying Ax = b, x ≥ 0, there exists y ∈ Y satisfying Aωx + Bωy(ω) = bω, y(ω) ≥ 0 forall
ω ∈ Υ. We extend these notions to nonlinear recourse.

Definition 2.14 (Nonlinear complete recourse) The stochastic nonlinear program (SNLP′) has complete re-
course if for any x, there exists ȳ ∈ Y such that ȳ(ω) solves (RNLP′(x;ω)) for all ω ∈ Υ.

Definition 2.15 (Nonlinear relatively complete recourse) The stochastic nonlinear program (SNLP′) has
relatively complete recourse if for any x in {x : u(x) ≥ 0, x ≥ 0}, there exists ȳ ∈ Y such that ȳ(ω) solves
(RNLP′(x, ω)) for all ω ∈ Υ.

We now provide simple sufficiency conditions for complete (and relatively complete) recourse using the fol-
lowing proposition from [23], Vol I.

Proposition 2.16 (Prop. 2.2.7 [23]) Let F : RN → R
N be continuous and K ⊆ RN be a closed convex set.

If there exists a vector zref ∈ K such that

F (z)T (z − zref) ≥ 0, ∀z ∈ K,

then VI(K, F ) has a nonempty compact solution set.
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It is easy to see that K(x, ω) = {y|a(x, ω) + d(y, ω) ≥ 0, y ≥ 0} is a closed convex set. By convexity of h(·, ω),
(RNLP′(x;ω)) has a solution y∗ if and only if

∇h(y∗, ω)T (y − y∗) ≥ 0 ∀y ∈ K(x, ω).

We now state a result that provides a sufficient condition for being able to take complete and relatively complete
recourse in nonlinear settings.

Theorem 2.17 For any x and ω ∈ Υ, if there exists a yref ∈ Y such that yref(ω) ∈ K(x, ω), such that

∇h(y, ω)T (y − yref(ω)) ≥ 0 ∀y ∈ K(x, ω),

then (SNLP′) has complete recourse. Furthermore, if such a yref exist for all x ≥ 0 such that u(x) ≥ 0, the
problem has relatively complete recourse.

2.4 Implications on the L-shaped method

We consider (SNLP) where f(·) and h(·, ω) are convex with bounded level sets for each ω ∈ Υ to highlight some
applications of the preceding theory to L-shaped methods for solving such programs. Recall from Definition 1.1
the definition of almost sure feasible x. Using this we write (SNLP) as

min
{

f(x) +
∫

Υ

Q(x;ω)dµ : x ∈ K1 ∩ C2

}
≡ min

{
f(x) +

∫
eΥQ(x;ω)dµ : x ∈ K1 ∩ C2

}
(4)

Assume that the the W-condition is satisfied. Then (4) is equivalent to

min
{

f(x) +
∫

eΥQ(x;ω)dµ : x ∈ K1 ∩ C1

}
. (5)

We now argue that L-shaped methods that are applied to the case of infinite Υ via sampling from Υ, may
converge to a suboptimal solution of (SNLP) if a certain precaution is not taken. Such L-shaped methods proceed
iteratively by solving the first-stage problem to get x̂ ∈ K1 and then solving (RNLP(x̂;ω)) to find a solution
ŷ(ω) for each ω in a sample set Υ̂ ⊆ Υ. If all (RNLP(x̂, ω)) are feasible for all ω ∈ Υ̂, they constrain the
first-stage problem with an optimality cut. If (RNLP(x̂; ω̃)) is infeasible for some ω̃ ∈ Υ̂, the method adds a
feasibility cut. Note, however, that scenarios in Υ\Υ̃ do not appear in (5) and such scenarios are inconsequential
to the objective, the feasible region and indeed the optimal solution of (SNLP). Thus, in the L-shaped method,
if (RNLP(x̂; ω̃)) is infeasible for some ω̃ ∈ Υ̂, one need add a feasibility cut if and only if ω̃ ∈ Υ̃. One should
not add feasibility cuts for infeasibility arising from scenarios in Υ\Υ̃. If the precaution of not adding feasibility
cuts for samples in Υ\Υ̃ is not taken, feasibility cuts arising out from these scenarios would unduly constrain
the first-stage problem, and may eventually result in convergence of the L-shaped method at points that are
suboptimal for (4). Alternatively one may employ the L-shaped method with samples Υ̂ chosen only from Υ̃. To
summarize, if one were to analytically solve (4), none of the above exemptions would be necessary. But in the
algorithmic computation of the solution via the L-shaped method feasibility cuts need to applied with the above
caveat in mind in order to obtain the same solution as the one obtained analytically.

3 A sequential quadratic programming framework

The rest of this paper is devoted to our second set of contributions, namely development of an SQP method for
solving (SNLP). The SQP approach for the solution of nonlinear optimization problems found inception in the
Ph.D. thesis of Wilson in 1963 [66]. But the method became truly popular after Hessian-update methods for
problems with indefinite Lagrangian Hessians were studied by Mangasarian and Han [11, 29, 30]. Through several
papers by Powell in the late 1970s [49, 47, 48], Han’s theorems on the convergence of SQP methods became widely
known in the optimization community.

The SQP method is an iterative method with its basic idea being to model the nonlinear program at a given
iterate xk by an approximate quadratic program (QP). The solution of this QP provides a direction pk and
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an acceptable stepsize αk is obtained by conducting a linesearch on an appropriately defined merit function.
The new iterate xk+1 is defined as xk + αkpk. Under some assumptions, it can be shown that the sequence of
iterates converges to the KKT point of the original nonlinear program. SQP methods offer great flexibility in
the construction of the QP approximations in order to be able to deal with regions with an indefinite Hessian,
with the overarching goal of driving the sequence of solutions to a KKT point. With an appropriate choice of
Hessian matrices, SQP methods can be shown to be equivalent to a Newton or quasi-Newton method applied to
solving the KKT system of the original nonlinear problem [46]. As a result of this equivalence, in regions close
to the KKT point of the original problem, with exact Hessians, SQP methods show similar behaviour to Newton
methods – that of quadratic local convergence.

If the SQP method is augmented with a merit function, a reduction in which directs the sequence {xk} toward
a KKT point, the SQP method can be proved to be globally convergent [11]. There are several practical SQP
methods tailored to various kinds of applications; NPSOL [26] for dense problems, SNOPT [25] for sparse problems
and filterSQP – a filter method [24] – being some of them. The method that follows is the one employed in the
solver SNOPT by Gill, Murray and Saunders [25], which we shall apply to (SNLP). It must be emphasized that,
while the outer SQP structure is similar to SNOPT, our framework has a multitude of distinctions from a standard
linesearch SQP methods, principal amongst these being the nature of the Hessian update and the subproblem
solvers.

In the next two sections, we present the second set of contributions of this paper, namely the Benders-SQP
algorithm for solving (SNLP). This section, in particular, discusses the outer SQP framework, assuming that
the resulting quadratic programming subproblems can be solved. Special emphasis will be given to making the
algorithm scalable, parallelizable and fast locally convergent. We assume that ω takes values in a finite set Ω (may
be thought of as a set of samples of Υ) and with a probability given by the counting measure IP. Let IE be the
expectation with respect to IP.

The remainder of this section is organized as follows. In section 3.1, we outline our assumptions and provide
the notation for our SQP method. The SQP method applied to (SNLP) is described in section 3.2. In section 3.3
we show that one can always get descent in the merit function, a property central to establishing convergence of
SQP methods. In 3.4 we outline our sparse Hessian update, termination criteria and prove that the algorithm is
superlinearly convergent.

3.1 A linesearch-based SQP method

Following are some notational rules we follow during our description of the SQP algorithm. Some of these
notations might change meaning later in the paper; the new meaning will be made clear as and when necessary.

Variables: We denote y, z, λ, µ, ν and c(z) as

y :=


y1

y2

...
y|Ω|

 , z :=
(

x
y

)
, λ :=


λx

p1λ
1

p2λ
2

...
p|Ω|λ

|Ω|

 , µ :=


µx

p1µ
1

p2µ
2

...
p|Ω|µ

|Ω|

 , ν :=
(

λ
µ

)
and c(z) :=


u(x)

a1(x) + d1(y1)
a2(x) + d2(y2)

...
a|Ω|(x) + d|Ω|(y|Ω|)

 .

Subscripts and superscripts:

• We use a superscript x to denote terms associated with f(·) or u(·) or the multipliers. Second-stage variables,
constraints or objectives will be denoted by ω ∈ {1, . . . , |Ω|} as superscript. All quantities that are given as
a part of the definition of SNLP – viz., aω(.), hω(.) etc. use the scenario number as subscript and thus are
distinguished from quantities that we introduce into the problem – viz. yω, λω etc.

• We reserve the subscript k to denote the SQP iteration to which the subscripted variables belong: e.g.
xk, yω

k , λx
k etc. For a function F (x), Fk will denote its value at xk, unless stated otherwise.

• The superscripted asterisk denotes the optimal for (SNLP): (z∗, ν∗) is the KKT point of (SNLP).

• We use the subscript L and Q along with the function to depict its linearization and its quadratic approxi-
mation respectively.
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Jacobians and Hessians: Jacobians and Hessians (or approximations to the Hessian, whichever is applicable)
will be denoted by J and H respectively. They will be affixed with suitable subscripts and superscripts to denote
which SQP iteration and functions they pertain to.

Miscellaneous: Let δL denote the departure from linearity of c(z) at the current iterate zk while cL denote its
linearization.

cL(z; zk) := c(zk) + Jc
k∆zk. and δL(z; zk) := c(z)− cL(z; zk)

Lastly, for any variable x, we use ∆xk to denote the difference (x− xk).
We make the following assumptions about (SNLP):

Assumption 3.1

(a.) The optimal value of (SNLP) is bounded and denoted by v∗.

(b.) The functions f(·), hω(·), u(·), aω(·) and dω(·) are continuously differentiable functions for all ω ∈ Ω.

(c.) The Jacobian corresponding to the active constraints at any first-order KKT point has full rank. Strict
complementarity holds at all stationary points of (SNLP).

(d.) For all ω ∈ Ω, IP(ω) > 0.

Assumption (d) is motivated by the insights listed in section 2.4. It implies that Ω is the smallest relatively
closed subset of Ω with measure 1.

3.2 Constructing QP approximations

SQP literature commonly refers to quadratic programs that approximate the original problem as QP subproblems
[25]. We will continue to refer to them as approximations and instead reserve the term subproblem for scenario-
wise problems obtained from decomposing the stochastic program. Following [25], the modified Lagrangian is
defined as

L(z; νk, zk) := f(x) + IE [hω(yω)]− λT
k δL(z; zk).

We distinguish it from the true Lagrangian L̂(z; νk) := f(x)+IE [hω(yω)]−λT
k c(z)−µT

k z. The modified Lagrangian
is similar to the true Lagrangian with one crucial difference: instead of the constraint function, the modified
Lagrangian uses the departure from linearity. Let gk := ∇Lk. By the procedure described in the preceding
section, the QP approximation is

StQPk minimize
z

Lk + gT
k ∆zk + 1

2∆zT
k Hk∆zk

subject to
cL(z; zk) = 0

z ≥ 0,

where Hk � 0 is a positive definite approximation to ∇2Lk. In constructing the QP approximations using the
modified Lagrangian, we maintain feasibility with respect to the linearization. Continuing the same notation as
for (SNLP), let (z̄k, ν̄k) be the KKT point of (StQPk). We assume the following about the nature of the solution
of (StQPk).

Assumption 3.2 At the solution of (StQPk), (z̄k, ν̄k), the constraint Jacobian Jc
k is full row rank and the Hessian

of the Lagrangian ∇2L(z̄k, ν̄k) is positive definite in the null-space of the constraints.

The modified Lagrangian function L may be written as L = Lx + IE [Lω] , where

Lx(x;xk, νk) = f(x)− λxT
k (u(x)− uL(x;xk))− IE

[
λωT

k (aω(x)− aωL(x;xk))
]

Lω(yω; yω
k , λω

k ) = hω(yω)− λωT
k (dω(yω)− dωL(yω; yω

k )).
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The value and the gradient of the modified Lagrangian at the point of linearization is the same as that of the
objective function at that point, while the Hessian of the modified Lagrangian equals the Hessian of the true
Langrangian at all points. i.e.

L(zk; zk, νk) = f(xk) + IE[hω(yω
k )], ∇zL(zk; zk, νk) =


∇fk

p1∇h1k

...
p|Ω|∇h|Ω|k

 , and ∇2
zL(z; zk, νk) = ∇2

zL̂(z; νk).

In particular, ∇2L is independent of zk. See [25, 51, 34] for more on the modified Lagrangian.
From a structural standpoint, the matrices Hk need to satisfy the following conditions:

1. It must have a block diagonal structure with blocks corresponding to x and each yω, ω ∈ Ω.

2. Each block should be positive definite.

We will return to the question of constructing such Hessians, with some added requirements in section 3.4. Given
Hessians of such structure, the quadratic approximations of the Lagrangian functions may then be stated as

Lx
Q(x;xk, νk) = Lx

k + ∆xT
k∇Lx

k + 1
2∆xT

k Hx
k ∆xk

Lω
Q(yω; yω

k , λω
k ) = Lω

k + (∆yω
k )T∇Lω

k + 1
2 (∆yω

k )T Hω
k ∆yω

k .

With such a structure, the QP subproblem (StQPk) can now be rewritten as a two-stage stochastic program

StQPk minimize
x,y

Lx
Q(x;xk, νk) + IE

[
Lω

Q(yω; yω
k , λω

k )
]

subject to
Ju

k ∆xk = −uk : λ̄x

Jdω

k ∆yω
k + Jaω

k ∆xk = −aω,k − dω(yω
k ) : pωλ̄ω

x, yω ≥ 0, : µ̄x, pωµ̄ω ∀ω ∈ Ω.

In the following sections, we will assume that (StQPk) is solvable and that its KKT point can be obtained.
Scalable convergent schemes for solving (StQPk) are presented in section 4.

3.3 A parallelizable linesearch

The augmented Lagrangian merit function for an SQP method on (SNLP) is

M(z, ν, s; ρ) = f(x) + IE[hω(yω)]− λT c(z)− µT (z − s) + 1
2ρ
∑

‖ci(z)‖2 + 1
2ρ‖z − s‖2. (6)

The linesearch procedure is as follows. Having obtained the KKT point (z̄k, ν̄k) of (StQPk), we determine the
slack variables s̄k corresponding to z̄k. The search direction (pk, ξk, qk) in the primal variables, the multipliers
and slacks is constructed as ((z̄k − zk), (ν̄k − νk), (s̄k − sk)). For a given ρ, αk denotes the steplength satisfying
the Armijo conditions for M(zk + αkpk, νk + αkξk, sk + αkqk; ρ). The condition below ensures sufficient descent
[28]: pk

ξk

qk

T

∇Mk < − 1
2pT

k Hkpk ≤ 0. (7)

If (7) is not met, we increase the parameter ρ so as to satisfy it. The following lemma shows that this can indeed
be done.

Lemma 3.3 At a given iterate (zk, νk) there exists a finite ρ̄ such that for all ρ ≥ ρ̄, the sufficient descent
condition (7) is satisfied.
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Proof : The derivative of M from Eq (6) at (zk, νk, sk) is given by

∇Mk =


gk − (Jc

k)T λk − µk + ρ(Jc
k)T ck + ρ(zk − sk)

−ck

−(zk − sk)
µ− ρ(zk − sk)

 .

Therefore, we have thatpk

ξk

qk

T

∇Mk = gT
k pk + pT

k JcT
k (ρck − λk)− ξT

k

(
ck

zk − sk

)
+ (qk − pk)T (µk − ρ(zk − sk)). (8)

Observe that since s̄k = z̄k, (qk − pk) = (zk − sk). And since z̄k is feasible for (StQPk), Jc
kpk = −ck. Two cases

arise.
Case 1: The current iterate is infeasible or ‖zk − sk‖2 + ‖ck‖2 > 0. Using Eq (8), condition (7) becomes

ρ >

− 1
2pT

k Hpk − gT
k pk − cT

k λk +
(

λ̄k − 2λk

µ̄k − 2µk

)T (
ck

zk − sk

)
‖zk − sk‖2 + ‖ck‖2

. (9)

Since (zk, νk) 6= (z∗, ν∗), the right hand side of (9) is well defined. Hence there exists a ρ < ∞ such that condition
(7) is satisfied.
Case 2: The current iterate is feasible or ‖zk − sk‖2 + ‖ck‖2 = 0. Therefore, from (8), we have thatpk

ξk

qk

T

∇Mk = gT
k pk + pT

k JcT
k (ρck − λk)− ξT

k

(
ck

zk − sk

)
+ (qk − pk)T (µk − ρ(zk − sk))

= gT
k pk + pT

k JcT
k (−λk) + (qk − pk)T (µk).

But since ck = 0, we have that Jc
kpk = 0. Also (qk − pk) = (zk − sk) = 0, leaving us to prove that

gT
k pk < − 1

2pT
k Hkpk.

To prove this, observe that z = zk is feasible for (StQPk), and at the solution of (StQPk), ∆zk = pk. Denote the
objective of (StQPk) by F (z). Hence F (zk + pk) < F (zk), implying that gT

k pk < − 1
2pT

k Hkpk.
Given an αk, the (k + 1)th iterate is computed as(

zk+1

νk+1

)
=
(

zk

νk

)
+ αk

(
z̄k − zk

ν̄k − νk

)
.

Observe that the merit function can be written as

M(z, ν, s; ρ) := f(x)− (λx)T u(x)− (µx)T (x− sx) + 1
2ρ
∑

i

‖ui(x)‖2 + 1
2ρ‖x− sx‖2

+ IE
[
hω(yω)− (λω)T (aω(x) + dω(yω))− (µω)T (yω − sω)

]
+ IE

[
1
2ρ
∑

i

‖aω,i(x) + dω,i(yω)‖2 + 1
2ρ‖yω − sω‖2

]
.

Hence its evaluation can be parallelized to a large extent by decomposing into first-stage and scenario-wise
second-stage evaluations.

3.4 A Sparse Quasi-Newton Update

The entire analysis that ensued in the previous section relied on the separability of the objective of (StQPk).
Indeed, our solution method for (StQPk) is also incumbent on this property. The requirements from the Hessian
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approximations are (1.) a block diagonal structure, (2.) block-wise positive definiteness, and (3.) to ensure local
superlinear convergence and allow updating in parallel. In the SQP method used in SNOPT [25], the authors
have employed a modified BFGS update which ensures superlinear convergence. However if we choose to apply
this directly on Hk (the approximation to ∇2

zL), it does not leave Hk+1 with the block diagonal structure that
we need. Several sparsity preserving updates exist in literature (see Shanno [58], Toint [62] and Lucia [44] for
examples). But it is not obvious from the structure of these updates if they can be constructed in a parallelizable
manner, so we do not employ any of them. We employ a BFGS update on the blocks, with the update rule
defined below.

Definition 3.4 Suppose the Hessian of the Lagrangian function at the kth iterate is denoted by Hk. Then the
updated Hessian, denoted by Hk+1, is given by a relationship, referred to as R(Hk), where Hk+1 is defined as
Hk+1 = R(Hk) and R(Hk) is given by

Hx
k+1 := BFGS(Hx

k ),
Hω

k+1 := BFGS(Hω
k ), ∀ ω ∈ Ω, H0 � 0,

where BFGS(.) is the BFGS update

Bk+1 = Bk +
rkrT

k

rT
k pk

− (Bkpk)(Bkpk)T

pT
k Bkpk

, (10)

with pk = zk+1 − zk, and

rk = ∇L(zk+1; zk, νk+1)−∇L(zk; zk, νk+1) = ∇L̂(zk+1; zk, νk+1)−∇L̂(zk; zk, νk+1).

Clearly R(Hk) preserves the block diagonal structure of Hk, but it is not guaranteed to retain the sparsity
structure inside individual blocks. Also, R can be applied in parallel on individual blocks of Hk without any
information from the other blocks. It is well known that BFGS updates retain positive definiteness as long as
pT

k rk > 0 [46]. If pT
k rk is not sufficiently positive, we choose to simply skip the update1. So we conclude, under

R,
H0 � 0 =⇒ Hk � 0 ∀ k > 0.

The following is our Benders-SQP method for solving (SNLP).

Algorithm 1: Benders-SQP method for Stochastic NLPs
0 initialization k = 1;

choose constants τP > 0 and τD > 0, initial first stage decision x0, second stage decisions yω
0 , multipliers

λx
0 , λω

0 , µx
0 , µω

0 ∀ ω ∈ Ω and initial (SNLP) Hessian H0 � 0;
while conditions (11) are not satisfied do

Construct QP approximation (StQPk) at kth iterate;1

Solve (StQPk) using algorithm ILS or TR;2

Recover first-stage multipliers by solving problem (mult) in section 4.3;3

Perform linesearch as shown in section 3.3 and get zk+1;4

Construct new Hessian approximation Hk+1 = R(Hk);5

end

For prespecified small constants τP and τD define τz = τP (1 + ‖z‖) and τν = τD(1 + ‖ν‖). A point (z∗, ν∗) is
taken to be a KKT point of (SNLP) if it satisfies

|ci(z∗)| ≤ τz∗ , µ∗i ≥ −τν∗ , |ci(z∗)λ∗i | ≤ τν∗ , z∗i µ∗i ≤ τν∗ , |[∇L̂(z∗, ν∗)]i| ≤ τν∗ , ∀i. (11)

The differences between Algorithm 1 and a standard linesearch SQP method lie in the computation of the search
directions (i.e. the QP solver), in the computation of the Hessian update and finally in technique for obtaining
multiplier estimates (discussed in section 4.3). The global convergence of our method can be directly concluded
and is a consequence of prior work on SQP methods. A required condition for global convergence is that pk results
in descent with respect to a merit function (shown in Lemma 3.3). Additionally, the constructed sequences need

1Our numerical results show that this technique works well for our problem.
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to satisfy set of properties such as boundedness of iterates, boundedness of the penalty parameters and that
the sequence of steplengths is bounded away from zero (see sections 3.3, 3.4 and 3.5 from [45]). These follow
immediately in the current setting, given that our problem is essentially a large structured nonlinear program.
We reproduce and reference the main convergence result for the linesearch SQP method.

Theorem 3.5 (Th. 3.15, 3.17 [45]) The sequence of primal iterates and Lagrange multipliers produced by Al-
gorithm 1 converges to a unique KKT point.

We rely on this result for claiming convergence of our scheme and now proceed to discuss the question of the rate
of convergence of iterates close to the solution.

Superlinear convergence is a different matter primarily because we do not have the same Hessian update as
in deterministic NLPs. Our next goal is to show that R provides us with superlinear convergence. We assume
that rT

k pk > 0 (cf. Definition 3.4) for all k such that zk is a small neighborhood of z∗. This assumption is
standard and it ensures that the update R is not skipped. (If in the neighborhood of z∗, rT

k pk becomes 0 for some
k, superlinear convergence be known to degenerate for SQP methods with BFGS updates too.) Quasi-Newton
methods for constrained optimization requires the satisfaction of the following test [12, 61, 46] for superlinear
convergence:

Theorem 3.6 Suppose Assumption 3.2 holds and the iterates zk obtained from Algorithm 1 converge to z∗, a
solution of (SNLP). Then zk → z∗ superlinearly if and only if

lim
k→∞

‖Pk(Bk −∇2
zL̂∗)(zk+1 − zk)‖

‖zk+1 − zk‖
= 0, (12)

where Pk = I − (Jc
k)T

[
Jc

kJcT
k

]−1
Jc

k is the projection on the null-space of the constraints and L̂ denotes the true
Lagrangian (not the modified Lagrangian).

The following theorem combines the Dennis-Moré characterization theorem for quasi-Newton methods [20, 46]
with the fact that BFGS updates provide superlinear convergence (see [46] for a proof of this fact).

Theorem 3.7 For some function F , let z∗ be a minimum. Suppose iterates zk generated using a rule zk+1 =
zk −B−1

k ∇Fk, converge to z∗. Then zk → z∗ superlinearly if and only if

lim
k→∞

‖(Bk −∇2F (z∗))(zk+1 − zk)‖
‖zk+1 − zk‖

= 0. (13)

Furthermore, if Bk is the BFGS update applied to approximate ∇2Fk, then (13) holds.

We are now ready to prove the required superlinear convergence result.

Theorem 3.8 Suppose the iterates zk are obtained from Algorithm 1 converge to z∗, a solution of (SNLP). Then

lim
k→∞

‖(Hk −∇2L̂(z∗))(zk+1 − zk)‖
‖zk+1 − zk‖

= 0

and zk
k−→ z∗ superlinearly.

Proof : Observe that the KKT conditions for (StQPk) are

Hkpk + gk − JcT
k λk − µ = 0 =⇒ pk = −H−1

k ∇zL̂,

since L̂(z, ν) = f(x) + IEωhω(yω)− λT c(z)− µT z. Since R is block-wise separable,

xk+1 = xk − (Hx
k )−1∇xL̂k and yω

k+1 = yω
k − (Hω

k )−1∇yω L̂k, ∀ ω ∈ Ω. (14)

Let ∇2L̂∗ := ∇2L̂(z∗). Now

lim
k→∞

‖(Hk −∇2L̂∗)(zk+1 − zk)‖
‖zk+1 − zk‖

= lim
k→∞

[∑
ω∈Ω

(
‖(Hω

k −∇2L̂ω∗)(yω
k+1 − yω

k )‖
‖pk‖

)
+
‖(Hx

k −∇2L̂x∗)(xk+1 − xk)‖
‖pk‖

]
.
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Take a typical term from the right side like the one corresponding to ω. The sequence of iterates {yω
k } obtained

by the SQP method and the Hessian Hω
k is a BFGS approximation to ∇2Lω

k = ∇2L̂ω
k . Using Theorem 3.7 we find

that each such term in the right hand side of this equation is 0. A similar result holds for the term containing
Hx

k and it follows that

lim
k→∞

‖(Hk −∇2L̂(z∗))(zk+1 − zk)‖
‖zk+1 − zk‖

= 0

We need to show (12) holds with Bk = Hk obtained by rule R.

0 ≤ lim
k→∞

‖Pk(Hk −∇2
zL̂∗)(zk+1 − zk)‖

‖zk+1 − zk‖
≤ lim

k→∞
‖Pk‖ · lim

k→∞

‖(Hk −∇2
zL̂∗)(zk+1 − zk)‖

‖zk+1 − zk‖
.

Since {zk} converges, limk→∞ ‖Pk‖ exists and is finite. We have shown above that the second limit in the right
hand side is zero. This implies that rule R satisfies the condition (12) and zk → z∗ superlinearly.

4 Dual Decomposition Methods for the QP approximations

This section focuses primarily on the decomposition schemes for solving the QP approximations that appear
within the SQP framework. After providing some preliminaries on the basic algorithmic framework, namely dual
decomposition, we discuss two variants of this decomposition scheme. In both cases, we consider the following
stochastic quadratic program which is in the form of (StQPk):

StQP minimize
x,y

1
2xT Px + cT x + IE

[
1
2 (yω)T Dωyω + dωyω

]
subject to

Ax = b
Aωx + Bωyω = bω

x, yω ≥ 0, ∀ω ∈ Ω.

Stochastic QPs, in an inequality form, such as when the deterministic equivalent is given by

min
x
{ 1

2xT Qx + cT x : Ax ≥ b, x ≥ 0},

can be written as stochastic linear complementarity problems (LCPs). There have been several attempts made
in constructing scalable schemes for solving such problems. In particular, work by Fukushima et al. [40] have
considered smoothing schemes while Shanbhag et al. [56] have concentrated on scalable matrix-splitting methods.
The latter, in particular, accommodates convex QPs through a Tikhonov regularization. A question worth
discussing further is whether an LCP approach may prove more attractive. We contend that in the solution
of stochastic QPs, an LCP approach may not prove favorable for at least two reasons. First, the convergence
scheme is closely related to the spectral properties of the associated matrices [15] and may not follow from merely
imposing strict convexity on the original QP. Second, the scenario subproblems are monotone LCPs over a larger
space which are generally more challenging to solve than sparse convex QPs.

Matrices P and Dω are positive definite for all ω ∈ Ω while Bω is full row-rank for all ω ∈ Ω. In addition
IP(ω) > 0 ∀ω ∈ Ω. Using the decomposition idea of Van-Slyke and Wets for stochastic linear programs [63], we
separate the stochastic QP into a master problem and a set of scenario-based subproblems defined as

master minimize
x,θ

1
2xT Px + cT x + θ

subject to
Ax = b

θ ≥ Q(x)
x ≥ 0

and

subω minimize
yω

1
2 (yω)T Dωyω + dT

ωyω

subject to Bωyω = bω −Aωx : vω

yω ≥ 0, : uω

respectively, where uω, vω are the Lagrange multipliers and Q(x) = IE [Q(x;ω)] and Q(x;ω) is the optimal value
of (subω). The Lagrange dual of (subω) is given by

dsubω maximize
uω,vω

− 1
2

(
uω

vω

)T

Qω

(
uω

vω

)
+ qT

ω

(
uω

vω

)
+ rω

subject to uω ≥ 0,
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where

Qω =
(

D−1
ω D−1

ω BT
ω

BωD−1
ω BωD−1

ω BT
ω

)
, qω =

(
D−1

ω dω

BωD−1
ω d− (Aωx− bω)

)
and rω = − 1

2dT
ωD−1

ω dω.

Observe that qω depends on x, but Qω, rω do not. If (subω) is feasible then strong duality holds and the optimal
values of (subω) and (dsubω) are equal. This allows us to define Q(x;ω) (the random recourse function) in terms
of the optimal point of (dsubω), (uω∗, vω∗), using sets K2 and K2(ω) (see (1) in section 2.1).

Definition 4.1 The random recourse function is defined as

Q(x;ω) := − 1
2

(
uω∗

vω∗

)T

Qω

(
uω∗

vω∗

)
+ qT

ω

(
uω∗

vω∗

)
+ rω ∀ x ∈ K2(ω).

The recourse function is defined as the expectation of the random recourse function or

Q(x) := IE[Q(x;ω)] ∀ x ∈ K2.

Moreover let S denote the solution set of (StQP):

S := arg min
x

{
1
2xT Px + cT x +Q(x) : Ax = b, x ≥ 0.

}
We state the following result and refer the reader to [55, 57] for proof. The proof in [55, 57] uses the recourse
function defined in terms of the solution the Dorn dual [22] of (subω), given the strong duality between (subω)
and its Dorn dual. Although we have used the solution of the Lagrange dual to define Q(x), the result from [55]
continues to hold since strong duality applies in our case too.

Proposition 4.2 The random recourse function Q(x;ω) is finite for all x ∈ K2(ω). Moreover Q(x;ω) is convex
and continuous for all x ∈ K2(ω) and for all ω ∈ Ω, and the recourse function Q(x) is convex and continuous for
all x ∈ K2.

4.1 L-shaped method with inexact cuts

The L-shaped method creates an outer-approximation of the recourse function by using a series of tangent
hyperplanes, called optimality cuts [8, 54]. The use of inexact optimality cuts, i.e. hyperplanes that do not
intersect the recourse function but are a small distance away from the tangent hyperplane, to model the recourse
function for stochastic linear programs was discussed separately by Au et al. [1] and Zakeri et al. [67]. This
technique showed an improvement in the performance of the traditional L-shaped method [63] since it required
the solution of the dual problems only to feasibility, as opposed to optimality.

The L-shaped method with inexact cuts was extended to solve stochastic convex programs by Shanbhag et
al. [55, 57] and is the method we apply. Following is the definition of an ε-inexact optimality cut in the context
of (StQP).

Definition 4.3 Suppose for all ω ∈ Ω, given an x̄ ∈ K2, the subproblem (dsubω(x̄)) is solved to an optimality
tolerance of ε, with solution given by (vω∗, uω∗). Then an ε-inexact cut is given by the linear function H : Rn → R,
such that

H(x) = GT
I x + gI , ∀x ∈ K2

where GI and gI are given by

GI := IEω

[
AT

ωvω∗]
gI := IEω

[
bT
ωvω∗ − 1

2uω∗T D−1
ω uω∗ − 1

2vω∗T BωD−1
ω BT

ω vω∗ + vω∗T BωD−1
ω dω + uω∗T D−1

ω dω − uω∗D−1
ω BT

ω vω∗] ,
respectively, and the ε−inexact cut satisfies H(x̄) + ε ≥ Q(x̄).

We shall use (GI , gI) to denote the inexact cut and (G, g) to denote the exact (ε = 0) cut. In the event that
a choice of the first stage variable renders (dsubω) unbounded, the algorithm adds a “feasibility cut”, defined
below.
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Definition 4.4 Given an x̃ that solves (master), suppose the scenario dual (dsubω) is unbounded. If (v̄ω, ūω) is
a direction of unboundedness for (dsubω), boundedness of (dsubω) is ensured by the following inequality

(bω −Aωx̃)T
v̄ω + (v̄ω)T BωD−1

ω dω + (ūω)T D−1
ω dω − ūωD−1

ω BT
ω v̄ω ≤ 0.

A feasibility cut is thus defined as the linear Rn → R function x 7→ FT
ω x− fω where

Fω := (AT
ω v̄ω)T and fω := bT

ω v̄ω + (v̄ω)T BωD−1
ω dω + (ūω)T D−1

ω dω − ūωD−1
ω BT

ω v̄ω.

and it satisfies FT
ω x̃ ≥ fω.

Let Iopt and I fea be the set of optimality and feasibility cuts present at the current iterate of the algorithm. Note
that I fea contains elements identified by a tuple (j, ω) consisting of an index and the scenario number. At any
iteration, the stochastic QP master problem, together with the cuts is then given by

m-ils minimize
x,θI

1
2xT Px + cT x + θI

subject to

Ax = b,

GjT
I x + θI ≥ gj

I , j ∈ Iopt

FT
j,ωx ≥ fj,ω, j, ω ∈ I fea

x ≥ 0.

At any iteration xk (dsubω) are solved for all ω ∈ Ω to εk-inexactness to obtain the cut (GI , gI). This constraint
is added to (m-ils) which is then solved to get xk+1. If any (dsubω) is unbounded, a feasibility cut is added to
(m-ils). If

(Gk
I )T xk + gk

i > θI
k,

then εk+1 = εk/u, and the upper and lower bounds are not updated, implying that the optimality cut is recom-
puted with a lower εk [55]. The L-shaped method with inexact cuts (Algorithm 2) proceeds as given below [55].

Algorithm 2: L–shaped method with inexact cuts
0 initialization k = 1, U I

k = ∞, LI
k = −∞;

choose ε1, τ, u > 1;
while |U I

k − LI
k| > τ do

Solve (m-ils) to get (xk, θk);1

Solve (dsubω) to tolerance εk to obtain (uω∗, vω∗) for all ω ∈ Ω;2

if (dsubω) is bounded ∀ω then3

Construct
(
Gk

I , gk
I

)
as per Definition 4.3;

else
Add feasibility cut and go to step 1;

end
if If (Gk

I )T xk + gk
I ≤ θI

k then4

Update upper bound U I
k , lower bound LI

k and add optimality cut
(
Gk

I , gk
I

)
to (m-ils)

else
U I

k+1 = U I
k , LI

k+1 = LI
k and εk+1 = εk/u;

end
k = k + 15

end

In the above algorithm, u is called the inexactness update. It controls the rate at which optimality cuts are
tightened. U I

k , LI
k are upper and lower bounds, defined as

LI
k ≡ cT xk +

1
2
xT

k Pxk + θk and U I
k ≡ min{U I

k−1, c
T xk +

1
2
xT

k Pxk +Q(xk)}, respectively.

Notice that {LI
k} is a monotonically increasing sequence while {U I

k} is a monotonically decreasing sequence. It
can be shown that as k → ∞, |U I

k − LI
k| → 0 and hence xk → x∗, the solution of (StQP) and θk approaches

Q(x∗). The convergence theory for the inexact cut L-shaped method can be found in [55, 57].
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4.2 Trust-region L-shaped method for stochastic QPs

In [42], a trust-region variant of the L-shaped method is employed for solving stochastic linear programs. Specif-
ically, such a scheme requires appending a trust-region bound to the master problem to regulate the step taken.
In the past, trust-region approaches have been explored by Kiwiel [38] (bundle methods) and by Hiriart-Urruty
and Lemaréchal [32]. The trust-regions used by Linderoth and Wright (hereafter referred to as LW) differ from
these in the way that they use box constraints, keeping the new set of constraints also linear. Furthermore, they
assume that their stochastic linear program has complete recourse [42].

As noted in the previous section, assuming relatively complete recourse for (SNLP) does not guarantee us
complete recourse for (StQPk). Here we present a modified version of their algorithm for stochastic QPs that
does not assume complete recourse. Our method has the following distinctions from the method of LW:

• It can address stochastic QPs.

• The convergence of the method is under the assumption of relatively complete recourse (as opposed to
complete recourse in the case of LW) and uses feasibility cuts.

Consider a generic stochastic quadratic program (StQP). If we assume that all (subω) are feasible, solving
(StQP) is equivalent to solving the following problem.

master minimize
x,θ

1
2xT Px + cT x + θ

subject to
Ax = b

θ ≥ IE
[
1
2 ȳωT Dω ȳω + dT

ω ȳω
]

x ≥ 0.

This is an exact-cut analogue of (m-ils) with ȳω as the solution to (subω). The right hand side of the second
constraint forms the recourse function defined by Definition 4.1 and Theorem 4.2. One of our key modifications
to LW’s method is that in the event that any (dsubω) turns out to be unbounded, and ȳω does not exist, we
append the master problem with a feasibility cut as in Definition 4.4. It is hence possible to append the feasibility
cut to the constraint Ax = b in the form of an equality constraint with slack variables to form a new set of
constraints Āx − s = b̄. In Lemma 4.10, we show that the total number of feasibility cuts that can be added
in the algorithm is finite. For simplicity, we assume that all the possible feasibility cuts are added and included
within the constraint Āx− s = b̄. Before proceeding further, we introduce some notation. Let

Q̂(x) ≡ 1
2
xT Px + cT x +Q(x),

where Q(x) is defined in Definition 4.1. We define two kind of iterates – major and minor, of which the major
fall into two types to be defined later. Major iterates are denoted with a single subscript as “xk” k = 0, 1, 2, . . .,
regardless of their type. Corresponding to each major iterate there could be a series of minor iterates, denoted
by “xk,l” l = 0, 1, 2, . . .. All other entities are subscripted by the pair (k, l) where k is the major iterate index and
l is the corresponding minor iterate index. The sets Iopt and I fea represent the set of optimality and feasibility
cuts respectively while S is the set of all solutions of (StQP). Let ∆k,l denote the trust-region imposed at the
kth major iteration and lth minor iterate. The first-stage problem at any iteration, together with the box-shaped
trust region is given by (m-trk,l):

m-trk,l minimize
x,θ

1
2xT Px + cT x + θ

subject to

Āx− s = b̄
θ ≥ −GT

j x + gj ∀ j ∈ Iopt

−∆k,le ≤ x − xk ≤ ∆k,le
x, s ≥ 0.

An alternative to using the `∞ trust regions would be to use `2 trust regions by adding a constraint to (m-trk,l)
like

‖x− xk‖22 ≤ ∆k,0.
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While such a quadratically constrained QP would not be solvable by standard QP solvers, this is more in line
with conventional trust-region subproblems [46]. Another alternative is to impose the trust region implicitly by
adding a term ρ‖x − xk‖2 as a penalty to the objective of (m-trk). This results in a problem similar to the one
in the regularized decomposition method [54]. We leave the question of which trust-region framework may prove
advantageous as future research and focus primarily on extending the approach suggested in [42]. Here onwards
‖ · ‖ denotes the `∞ norm.

Let (Gk,l, gk,l) be an optimality cut obtained from exact solution of all subproblems (dsubω). The model
function, formed by the set of optimality cuts that approximate Q̂(x) at iteration k, l, is denoted as mk,l(x). It
is defined over Rn as follows:

mk,l(x) ≡ 1
2xT Px + cT x + max

(k,l)∈Iopt

{
−GT

k,lx + gk,l

}
= 1

2xT Px + cT x + inf
θ

{
θ : θ ≥ −GT

k,lx + gk,l ∀ (k, l) ∈ Iopt
}

. (15)

Let x̄ be the solution of (m-trk−1,l) or

x̄ = arg min
x

{
mk−1,l(x) : Āx− s = b̄, −∆k−1,le ≤ x− xk−1 ≤ ∆k−1,le, x, s ≥ 0

}
. (16)

If the acceptance test stated below is satisfied, we set xk, the kth major iterate of type 1 , to be equal to x̄. If x̄ is
not a major iterate, it is taken as minor iterate xk−1,l. Note that a major iterate xk is not the 0th minor iterate
xk,0. In fact, xk is a solution to the model function given by mk−1,r where r represents the terminating iterate
of the previous subsequence. In the next subsection, we elaborate on how the model function gets updated.

4.2.1 Model update procedure

If for any first-stage solution xk,l, the dual problem (dsubω) is unbounded for some ω ∈ Ω, we add a feasibility
cut to (m-trk,l) and form (m-trk,l+1). The sequence of minor iterates is then taken to have terminated at xk,l−1.
Denote the solution of (m-trk,l+1) as x1

k,l. If again for x1
k,l any (dsubω) is unbounded, we add another feasibility

cut and generate (m-trk,l+2) and iterate x2
k,l. We continue to do this until for some i, all (dsubω) corresponding

to xi
k,l are bounded. This is taken then we set xk+1 = xi

k,l, as the major iterate of type 2.

Definition 4.5 Let xk,l be the current iterate and suppose for some ω ∈ Ω (dsubω) parameterized by xk,l is
unbounded. Let x1

k,l, x
2
k,l, . . . denote the solutions of subsequent problems formed by the addition of feasibility cuts.

Then xk+1 = xī
k,l, where ī is the smallest i such that all (dsubω) corresponding to xi

k,l are feasible. xk+1 is called
a major iterate of type 2.

Since the number of feasibility cuts that can be added during the algorithm is finite (cf. Lemma 4.10), a major
iterate of type 2 is a well defined entity. We note that LW have assumed ([42], Assumption 1) that their problem
has complete recourse and hence do not require feasibility cuts. The following procedure, similar to that in LW
[42] with modifications made to accommodate feasibility cuts, is used to obtain mk,l+1 from mk,l:

1. If any scenario dual (dsubω) is unbounded, then a feasibility cut is added to (m-trk,l) and no cuts are
deleted. The model function mk,l(x) remains unchanged as no optimality cuts are added.

2. If all (dsubω) are bounded,

(a) all cuts generated at xk are retained.

(b) all cuts active at the solution of (m-trk,l) are retained.

(c) for a given η ∈ [ξ, 1), all cuts generated at previous minor iterates, l̂ during the same major iteration,
that satisfy

mk,l(xk)−mk,l(xk,l) > η
[
Q̂(xk)−mk,l̂(xk,l̂)

]
(17)

are retained.

(d) if a cut does not satisfy (a), (b) or (c) and has been inactive for the past 100 solutions of (m-trk,l),
then it is deleted.
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(e) all optimality cuts arising from the solutions of (dsubω) at xk,l are added to mk,l(x) to get mk,l+1(x).

The algorithm needs to be supplied an initial model function m0,0 which satisfies the following assumptions.

Assumption 4.6 At the starting point x0 we have m0(x0) = Q̂(x0) where m0(x) is a piecewise linear underes-
timate of Q̂(x)

Next, we define the acceptance test for the qualification of xk,l as a major iterate.

4.2.2 Acceptance test

For some fraction ξ ∈ (0, 1/2), the minor iterate xk,l is accepted as xk+1 if and only if

Q̂(xk,l) ≤ Q̂(xk)− ξ (mk,l(xk)−mk,l(xk,l)) . (18)

The trust-region approach limits the step size and thus allows us to solve (m-trk,l) with a limited number of
optimality cuts. As a result, cuts that are inconsequential for the solution of xk,l can be deleted. Which cuts
to delete is a matter of careful choice since incorrect deletion can make us re-evaluate cuts that were deleted
prematurely. For iterates that do not satisfy the acceptance test, LW provides a procedure to update the trust
region which we adopt and describe next.

4.2.3 Updating the trust-region ∆

Let ρ be defined as

ρ := min(1,∆k,l)

(
Q̂(xk,l)− Q̂(xk)

Q̂(xk)−mk,l(xk,l)

)
. (19)

Then the update of the trust region is carried out as follows:

(1.) If [ρ > 0 for 3 iterations with same ∆k,l and ρ ∈ (1, 3]] or [ρ > 3], then the updated trust region is given by

∆k,l+1 =
1

min(ρ, 4)
∆k,l.

(2.) When the new major iterate xk+1 is obtained, there is a case for increasing the trust region. If

Q̂(xk,l) ≤ Q̂(xk)− 0.5
(
Q̂(xk)−mk,l(xk,l)

)
and ‖xk − x‖∞ = ∆k,l,

then ∆k+1,0 = min (∆hi, 2∆k,l) where ∆hi is a pre-specified upper bound on the trust region.

(3.) If (1.) or (2.) are not satisfied, then ∆k,l is left unchanged.

Finally, given εtol > 0 the algorithm terminates if

Q̂(xk)−mk,l(xk,l) ≤ εtol

(
1 + |Q̂(xk)|

)
. (20)

We now state the complete L-shaped trust-region method (Algorithm 3) for solving stochastic QPs.
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Algorithm 3: Trust-Region L–shaped method
0 initialization k = 1, l = 0;

choose ξ ∈ (0, 1/2), initial point x0,0, initial model m0,0 and initial trust region ∆0,0 ∈ (0,∆hi], εtol < 1;
while Q̂(xk)−mk,l(xk,l) > εtol(1 + |Q̂(xk)|) do

Solve (16) to get xk,l;1

Solve (dsubω) accurately to obtain solution points (u∗ω, v∗ω) for all ω ∈ Ω;2

if (dsubω) is bounded ∀ω then3

Construct (Gk,l, gk,l);
if feasibility cut was added in the previous iteration then

xk+1 = xk,l;
Obtain new model mk+1,0 as per section 4.2.1;
k = k + 1;

end
else

Add feasibility cut and go to step 1;
end
if acceptance test (18) is satisfied then4

Set xk+1 = xk,l;
Obtain the new model mk+1,0 as per section 4.2.1;
Update ∆k+1,0 as per section 4.2.3;
k = k + 1;5

else
Update the model to get mk,l+1 as per section 4.2.1;
Update ∆k,l+1 as per section 4.2.3;6

l = l + 1;7

end
end

4.2.4 Convergence of the trust-region L-shaped method for stochastic QPs

An outline of the main convergence results follows. We begin by noting some results that will used in the proofs
to follow. By definition of optimality cuts

mk,l(x) ≤ Q̂(x), ∀ x. (21)

Recall from section 4.2.1 that all cuts at xk are retained. So we have

mk,l(xk) = Q̂(xk), ∀ k, l. (22)

Recall also that mk,l(x) is a piecewise linear underestimate of Q̂(x). From (16), since xk,l minimizes mk,l(·),
mk,l(xk,l) = Q̂(xk,l) if and only if xk,l ∈ S. In fact, since the cut added at xk,l to form mk,l+1(x) is exact
mk,l+1(xk,l) = Q̂(xk,l).

Since this theory follows portions of that in LW closely, we distinguish our results from theirs when the proofs
either differ or have been extended significantly. The convergence proof relies on showing that for εtol > 0 there
cannot exist an infinite sequence of iterates that do not satisfy (20). For εtol = 0 we show that the major iterates
approach S. The first two results establish that the model function minimum increases with every minor iterate
and provide a bound for such an increase. Next, we prove a boundedness result for the trust-region radius as well
as the finite termination of the subsequence of minor iterates originating from a major iterate. The convergence
theorems will be proved using these results.

Lemma 4.7 If a minor iterate xk,l+1 does not satisfy the acceptance test (18), we have

mk,l(xk,l) ≤ mk,l+1(xk,l+1).

Proof : See Lemma 1 in LW [42].
In Lemma 4.8, we provide a lower bound on the difference between the optimal value of the model function

and the value of the model function at the last major iterate, namely mk,l(xk)−mk,l(xk,l).
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Lemma 4.8 Consider an iterate xk,l derived at a major iteration k and minor iterate l where k, l ≥ 0. Then the
following bound on the change in the model function holds:

mk,l(xk)−mk,l(xk,l) = Q̂(xk)−mk,l(xk,l) ≥ min
(

∆k,l

‖xk − P (xk)‖
, 1
)(

Q̂(xk)− Q̂∗
)

where P (xk) is the projection of xk on S.

Proof : The equality in the claim follows from (22). We show that the inequality holds. Since xk,l is the
solution of (m-trk,l), for all x that are feasible for (m-trk,l), we have

mk,l(xk,l) ≤ mk,l(x). (23)

In particular, this holds for

x̂ = xk + βk,l(P (xk)− xk) where βk,l = min
(

∆k,l

‖P (xk)− xk‖
, 1
)

.

To see this, recall that (m-trk,0) and (m-trk,l) differ only in the optimality cuts. Hence xk is feasible for (m-trk,l).
P (xk) ∈ S, so it also is feasible for (m-trk,l). Since the constraints of (m-trk,l) are linear, x̂ is feasible.

Combining with (23), it follows that

mk,l(xk,l) ≤ mk,l (xk + βk(P (xk)− xk))

≤ Q̂ ((1− βk)xk + βkP (xk)) ,

≤ (1− βk)Q̂(xk) + βkQ̂(P (xk)) = Q̂(xk) + βk(Q̂∗ − Q̂(xk)),

where the second inequality follows from (21), the third inequality follows since βk,l ≤ 1 and from convexity and
Q̂(P (xk)) = Q̂∗. Rearranging, we obtain the required result.

Next, we prove that the trust-region is bounded away from 0 for all iterates xk,l /∈ S.

Lemma 4.9 Suppose Ek, Fk and β are defined as

Ek ≡ min
k̄=0,1,...,k

‖xk̄ − P (xk̄)‖∞, Fk ≡ min
k̄=0,1,...,k,xk̄ /∈S

Q̂(xk̄)− Q̂∗

‖xk̄ − P (xk̄)‖∞
,

β = sup ‖g‖, g ∈ ∂Q̂(x), x feasible for (m-trk,l)

Suppose there exists k̃ such that min(Ek̃, Fek/β) < ∆hi. Then for all k > k̃ and for all l, the trust-region ∆k,l

satisfies
∆k,l ≥ (1/4) min(Ek, Fk/β).

Proof : See Lemma 3 in LW [42].
Lemma 4.10 is a result distinct from that proved by LW. It shows that the algorithm can have only finitely

many feasibility cuts.

Lemma 4.10 The subsequence of major iterates of type 2 terminates finitely.

Proof : Recall that a feasibility cut is added when one of the dual problem (dsubω) is unbounded. The region
of unboundedness of each (dsubω) is spanned by the set of extreme rays. Since the dimensionality of (dsubω) is
finite, the number of extreme rays is clearly finite as well. Each feasibility cut corresponds to one and only one
extreme ray. Since |Ω| < ∞, the total number of feasibility cuts added by Algorithm 3 is finite. It follows that
the subsequence of major iterates of type 2 cannot be infinite.

The next set of results require specifying the tolerance εtol in the algorithm for which we consider two cases:

(1) εtol = 0: Here, we show that the sequence of major iterates either terminates finitely in a point in S or
converges to a point in S.

(2) εtol > 0: In this instance, we show that the algorithm terminates to a point satisfying the termination
criterion (20).
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Lemma 4.11 proves that the sequence of minor iterates either produces an iterate that satisfies the acceptance
test or produces a minor iterate that results in a strict reduction in mk,l(xk)−mk,l(xk,l).

Lemma 4.11 Let εtol ≥ 0 and ξ be given where ξ specifies the relative improvement in the acceptance test in
(18). Let η be the parameter used for specifying the deletion of cuts as per (17). For some major iterate k of type
1 and minor iterate l1, suppose xk,l1 fails the acceptance test given by (18). Then the sequence of minor iterates
generates an xk,l2 that satisfies (18) or there is an index l2 that satisfies

Q̂(xk)−mk,l2(xk,l2) ≤ η
[
Q̂(xk)−mk,l1(xk,l1)

]
. (24)

Proof : We consider two cases:

(a) εtol = 0: See Lemma 4 in LW [42] .

(b) εtol > 0: This result holds by observing that the relation

ζ :=
η − ξ

β
[Q̂(xk)−mk,l(xk,l)] > 0,

in expression (52) of LW [42] holds even when εtol > 0.

For the final convergence statement, we first consider the case εtol = 0. Combining the implications of Lemma
4.11 with Lemma 4.8 we can show that, if xk /∈ S, then it produces a minor iterate xk,l that satisfies the acceptance
test. This is the result of Theorem 4.12.

Theorem 4.12 Suppose εtol = 0. Then the following hold:

(1) If xk /∈ S then there exists an l ≥ 0 such that xk,l satisfies (18)

(2) If xk ∈ S then either the algorithm terminates finitely or
(
Q̂(xk)−mk,l(xk,l)

)
decreases monotonically to

zero.

Proof : See Theorem 1 in LW [42].
Theorem 4.13 shows that the sequence of major iterates approaches a solution.

Theorem 4.13 Suppose εtol = 0. The sequence of major iterations is either finite terminating at some xk ∈ S
or infinite with ‖xk − P (xk)‖∞ → 0.

Proof : See Theorem 2 in LW [42].
We conclude our convergence results with a finite termination result for the case where εtol > 0. This result

was claimed in LW to be easy to prove and skipped. But since our algorithm differs from LW’s to a certain extent
we prove this result here for completeness.

Theorem 4.14 For εtol > 0, the algorithm terminates finitely at a solution satisfying (20)

Proof : Assume in accordance with Lemma 4.10 that all feasibility cuts have been added. From Lemma 4.11,
for some minor iterate l that fails the acceptance test (18), the sequence of minor iterates either yields an iterate
that satisfies test (18) or an iterate satisfying (24). Let xk,l1 be an iterate that does not satisfy test (18). Two
cases arise:

(a) Suppose that the sequence of minor iterates emerging from major iterate k never satisfies the acceptance
test. Then for l2 > l3 > . . . lr we have

Q̂(xk)−mk,lr (xk,lr ) ≤ η
(
Q̂(xk)−mk,lr−1(xk,lr−1)

)
≤ . . . ≤ ηr−1

(
Q̂(xk)−mk,l1(xk,l1)

)
.

This indicates that for sufficiently large, but finite r, the term Q̂(xk)−mk,lr (xk,lr ) can be reduced enough
to satisfy (20), implying the finite termination of the algorithm.
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(b) Suppose the test (18) is satisfied for some l1. This results in a new major iterate xk+1. If for any k̄ ≥ k
the sequence of minor iterates xk̄,l, l ≥ 0 behave as in case (a), then convergence follows from the argument
in (a). So suppose that for all k̄ ≥ k the minor iterate sequence xk̄,l, l ≥ 0 does not behave as in case (a).
This means that for all k̄ ≥ k the acceptance test is satisfied for some xk̄,l, l ≥ 0. For major iterates that
have not terminated we have

Q̂(xk̄)−mk̄,l(xk̄,l) > εtol(1 + |Q̂(xk̄)|).

Hence every major iterate causes a reduction in Q̂ of at least ξεtol as seen below

Q̂(xk̄)− Q̂(xk̄,l) ≥ ξ
(
Q̂(xk̄)−mk̄,l(xk̄,l)

)
≥ ξεtol.

Since a solution exists to the minimization problem (StQP), Q̂(xk̄) is bounded below. This further implies
that the minimum of (StQP) is achieved in finitely many major iterations and (20) has been satisfied.

4.3 Recovering the multipliers

We begin by recalling that the multipliers of the original problem (SNLP) are updated using a standard SQP
multiplier update (see section 3.3). This update requires the multipliers of the QP approximation, as specified
by (StQP). Note that in comparison with (StQP), the master problem has an extra variable (θ), has some new
constraints (arising from the optimality/feasibility cuts) while having lost some constraints (these correspond
to Byω = bω − Aωx which now constrain the feasible region of the second-stage scenario-specific subproblem).
Furthermore, the objective of the master problem has been modified. Thus, the multiplier set of the master
does not immediately give us the multipliers of (StQP) since these problems, based on the above discussion, vary
significantly. In particular the multipliers corresponding to the constraint Ax = b and x ≥ 0 in (StQP) may be
different from the multipliers corresponding to these constraints in the master. This section is dedicated to our
procedure for recovering the “true multipliers”, i.e. multipliers corresponding to these constraints in (StQP).

We observe below, that a subset of all the multipliers of (StQP) can be obtained directly through the cutting
plane method. As a consequence, for the dual problem of (StQP), which has all multipliers as its variables, we
know a portion of the optimal solution. Thus the dual problem can be reduced to a problem of smaller dimension,
whose solution is precisely the true multipliers we wish to recover. It is primarily this observation that leads to a
tractable means of obtaining the required multipliers. Importantly, this dual problem is a quadratic program of
the size of the first-stage constraints and can be solved readily.

To explain this elaborately, let us compare the KKT conditions of the QP approximation (StQP), the master
problem and the subproblems. All variables below with an asterisk as superscript pertain to the KKT point of
(StQP). The conditions for optimality of (StQP) are given as

Px∗ + c−AT λx∗ −
∑
ω

AT
ωλω∗ − µx∗ = 0

pω [Dωyω∗ + dω]−BT
ω λω∗ − µω∗ = 0 ∀ ω ∈ Ω

Ax∗ = b

Bωyω∗ = bω −Aωx∗ ∀ ω ∈ Ω
0 ≤ µx∗ ⊥ x∗ ≥ 0
0 ≤ µω∗ ⊥ yω∗ ≥ 0 ∀ ω ∈ Ω.

The solutions of the subproblems (dsubω) are denoted by a superscript s, and at a given x they satisfy their
respective KKT conditions

pω [Dωyωs + dω]−BT
ω λωs − µωs = 0

Bωyωs = bω −Aωx

0 ≤ µωs ⊥ yωs ≥ 0, ∀ ω ∈ Ω.
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The master problem solution (for the inexact L-shaped method) is denoted by a superscript m. Assume for
simplicity that there are only optimality cuts. If 1 represents the column of ones, then the KKT point of the
master satisfies

Pxm + c−
∑

j

Gjγm
j −AT λxm = 0

1−
∑

j

γm
j = 0

Axm = b

0 ≤ γm
j ⊥ GjT xm + θm − gj ≥ 0

0 ≤ µm ⊥ x ≥ 0.

At the optimal solution generated by the L-shaped method, we have xm = x∗ (this follows from the con-
vergence theory of the previous sections). Yet, (StQP) and the master problem differ significantly in terms of
the constraints, the objectives and the set of decision variables. Consequently, (λx∗, µx∗), the multipliers of the
(StQP), are not necessarily equal to (λxm, µxm), the corresponding multipliers of the master. This is further
reinforced by observing that the multiplier λxm satisfies a different set of equations from λx∗. Note, however,
that since the linear independence constraint qualification holds for (StQP) (in this case requiring that Bω has
full row rank for each ω ∈ Ω), when yωs = yω∗, it follows that λωs = λω∗ and µωs = µω∗, ∀ ω ∈ Ω. In effect,
the Benders procedure provides us with a subset of the multipliers to (StQP). Indeed, these observations are
supported by our numerical experiments. Next, we describe a procedure for recovering the remaining multipliers,
namely (λx∗, µx∗).

Let z,Q, q,M, h, λ and µ be defined as

z :=


x
y1

...
y|Ω|

 Q :=



P 0 . . . . . . 0

0 p1D1
. . . 0

0 0 p2D2
. . .

...
...

...
. . . . . . 0

0 . . . . . . 0 p|Ω|D|Ω|


q :=


cT

p1d1

...
p|Ω|d|Ω|

 M :=


A 0 . . . 0
A1 B1 . . . 0
...

. . . 0
A|Ω| 0 . . . B|Ω|



h :=


b
b1

...
b|Ω|

 λ :=


λx

λ1

...
λ|Ω|

 µ :=


µx

µ1

...
µ|Ω|

 , respectively.

Using this, write (StQP) as

StQP minimize
z

1
2zT Qz + qT z

subject to
Mz = h : λ

z ≥ 0 : µ

Let

N =
(

MQ−1MT Q−1MT

MQ−1 Q−1

)
η =

(
MQ−1q + h

Q−1q

)
and ν =

(
λ
µ

)
.

The Lagrange dual of (StQP) is

StQPdual maximize
λ,µ

− 1
2νT Nν + ηT ν − 1

2qT Q−1q

subject to µ ≥ 0,

where p = dim(b) +
∑

ω dim(bω). The optimal solution of (StQPdual) is λ = (λx∗, λ1∗, . . . , λ|Ω|∗) and µ =
(µx∗, µ1∗, . . . , µ|Ω|∗). As discussed above the L-shaped method provides us with values of λω∗, µω∗, ω ∈ Ω. The
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required multipliers (λx∗, µx∗) can be obtained as solutions of a smaller QP, (mult), formed from (StQPdual)
by plugging in the optimal values for variables λω, µω, for all ω ∈ Ω. Thus multipliers λx∗, µx∗ are recovered as
solutions of the following problem.

mult maximize
λx,µx

(
λx

µx

)T

Ñ

(
λx

µx

)
+ η̃T

(
λx

µx

)
subject to µx ≥ 0

where

Ñ =
(

AP−1AT P−1AT

P−1AT P−1

)
and η̃ =

(
−AP−1

∑
AT

ωλω∗ + b + AP−1c− P−1
∑

Aωµω∗

P−1c

)
.

It is noteworthy that this procedure of recovering λx∗ and µx∗ involves solving only one more QP for every SQP
iteration and hence does not significantly impact the overall performance of the algorithm.

5 Numerical Results

This section discusses the numerical performance of our algorithm from a variety of standpoints. We begin by
examining the behavior of the algorithm with both subproblem solvers on a set of stochastic nonlinear program-
ming test problems. Next, we discuss the impact of changing key parameters associated with the workings of the
subproblem solvers. Finally, this is followed by a comparative study between the performances of the inexact cut
and the trust-region variants of our proposed algorithm.

5.1 Scalability of the algorithm

There is no standard stochastic NLP test problem set available. Chen and Womersley [14] have developed test
problems for stochastic quadratic programs. We use this set to generate two sets of test problems (convex and
general nonlinear) as follows.

• Convex problems: The objective function was taken to be the norm function (of 2nd and higher order),
parametrized by the scenario number ω. The constraints were taken from the Chen and Womersley set for
the corresponding number of realizations. This way we ensure that we have the required recourse properties
on the subproblems. Specifically, the objective function is given by

f(x) = 1
2xT Hx + cT x + d + (1 +

∑
(x(i)− ai(ω)))1/p

where H � 0, p = 2, 4, . . . and ai(ω) is a function of ω.

• Nonlinear problems: In this case we used the first stage objective as a function from the Hock–Schittkowski
set [33] and the second stage objective as a convex function. The constraints were again taken from the Chen
and Womersley set. Following are the two problems we used along with their index in the Hock–Schittkowski
set.

f(x) = (x(1)− x(2))2 + (x(3)− 1)2 + (x(4)− 1)4 + (x(5)− 1)6 (Prob.35)

f(x) = (x(1)− 1)2 + (x(1)− x(2))2 + (x(2)− x(3))2 + (x(3)− x(4))4 + (x(4)− x(5))4 (Prob.58).

In the results that follow, “ILS solver” means Algorithm 2 and “TR solver” means Algorithm 3. We first
present some representative problems to show the effect of changing |Ω| and the comparative behavior of the two
algorithms. cpu denotes the CPU time in seconds and maj denotes the number of outer SQP iterations, cuts is
the number of optimality cuts added and kkt is the KKT residual in `∞ norm. For every case, the first stage
variable x and the second stage variable yω had dimension 5. The constraints were linear, with 4 rows for the first
stage constraint and 5 rows for the second stage constraints. Thus the number of variables = 5 × |Ω| + 5. The
number of constraints = 5× |Ω|+ 4, in addition to 5× |Ω|+ 5 nonnegativity constraints. Unless otherwise stated
in the tables, all algorithmic parameters (like inexactness update, ∆hi etc.) were held constant across problems.
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The convex problems were solved using exact Hessians, while the nonlinear problems used our update rule.
In most cases, the KKT residual desired to satisfy (11) is about 10−5. The reader may observe that for several
instances the KKT residual obtained has been greater than this number. This is because the algorithm has been
terminated because of minimal progress. A detailed assessment of this phenomenon will follow later.

Table 1: Computational effort for the ILS solver – with convex costs (p = 2, ai(ω) = ω/|Ω| ∀ i, u = 2)

Prob |Ω| cpuils majils cutsils qpsils kktils

1 729 2432 6 348 254046 2.2E-04
2 1000 1446 5 150 150155 6.0E-05
3 1225 3793 4 321 393229 1.0E-06
4 1600 1293 3 83 132886 2.7E-05
5 2187 3643 5 174 380717 1.9E-04
6 6561 14967 5 217 1423959 3.8E-04
7 16384 74734 5 430 7045555 9.6E-05
8 32768 63300 4 189 6193345 1.1E-04
9 59049 218836 4 354 20903704 2.1E-05
10 65536 64599 3 87 5701722 3.0E-06

Table 2: Computational effort for TR solver – with convex costs (p = 2, ai(ω) = ω/|Ω| ∀ i, ∆hi = 10)

Prob |Ω| cputr majtr cutstr qpstr kkttr

1 729 2676 6 377 275216 1.0E-08
2 1000 1697 8 172 172180 1.5E-04
3 1225 13868 12 1165 1428302 2.4E-05
4 1600 1026 3 65 104068 2.4E-04
5 2187 4368 4 208 455108 1.6E-04
6 6561 11141 6 174 1141794 1.0E-06
7 16384 35145 3 223 3653858 7.4E-05
8 32768 27764 3 81 2654292 1.1E-04
9 59049 285652 6 482 28462106 4.8E-05
10 65536 51568 3 70 4587593 1.3E-04

Table 3: Computational effort for the ILS solver – nonlinear costs (Prob. 35, u = 2)

Prob |Ω| cpuils majils cutsils qpsils kktils

1 729 7336 23 1010 737323 9.4E-03
2 1000 3842 24 385 385409 2.4E-04
3 1225 5266 13 430 527193 4.6E-05
4 1600 5435 29 337 539566 9.2E-04
5 2187 10844 26 501 1096214 5.2E-04

Table 4: Computational effort for the TR solver – nonlinear costs (Prob. 35, ∆hi = 10 )

Prob |Ω| cputr majtr cutstr qpstr kkttr

1 729 11254 31 1589 1159970 5.0E-06
2 1000 4706 27 474 474474 3.0E-03
3 1225 5549 23 460 563960 1.5E-05
4 1600 12607 50 791 1266391 1.3E-04
5 2187 16843 39 787 1721956 1.3E-04

It is notable that both TR and ILS algorithms show good scaling with |Ω|. We have noted some problems to
show have taken far less effort than expected which we can regard as being exceptions from the broad linearity
seen otherwise. From our tables it can be seen that for convex problem

max
{

qp1/qp2

|Ω1|/|Ω2|

}
≈

{
2, ILS
3, TR.

Expectedly the performance on nonlinear problems is worse, though still linear. We also observed that for convex
problems, the both solvers showed little change in the number of major SQP iterations. For nonlinear problems,
we found no such trend. An important insight obtained from the results was that TR solver provided better KKT
points (lower residuals) than the ILS method, but the ILS method converged faster.

28



5.2 Modifying the TR update

An interesting trend emerges for the trust-region method when the maximum trust region ∆hi is varied. Recall
that at any iteration we must have ∆k,l ≤ ∆hi. Let us denote ∆∞ = maxk,l{∆k,l} as the largest trust region
used by the algorithm during an implementation with ∆hi = ∞. We carried out tests for a fixed convex problem
by increasing ∆hi from 5 to 500. The results are tabulated in table 5.

It was seen that an increase in ∆hi lead to greater number of cuts and longer CPU times. This behaviour is
expected. In the implementation of the trust region method, we begin with a trust region of size 10−3. Such a
small trust region often leaves the initial point infeasible. In such a situation we increase the trust region gradually
until a feasible point is obtained. This trust region is ∆0,0. After the first iterate the trust region is increased
only when a new major iterate is found and the model update rule for this case is satisfied. If ∆hi is large, the
model update rule permits a large ∆k,l leaving the algorithm with a large region to be approximated by cuts,
leading to more cuts. After a certain value an increase in ∆hi does not make any difference to the performance
since we get max

k,l
{∆k,l} = ∆∞ � ∆hi.

Table 5: Variation of computational effort and accuracy with ∆hi for TR method

Prob |Ω| ∆hi cpu maj cuts qps ∆∞ kkt

1 729 5 3157 6 240 175200 5 1.0E-08
2 729 10 2676 6 377 275216 10 1.0E-08
3 729 15 5947 8 456 332880 15 2.0E-06
4 729 20 9056 10 685 500050 16.38 1.0E-06
5 730 30 9013 10 685 500735 16.38 1.0E-06
6 729 50 8971 10 685 500050 16.38 1.0E-06
7 729 500 9097 10 685 500050 16.38 1.0E-06

5.3 Comparing ILS and TR

In this section, we present two types of performance profiles [21] which are plotted in Fig. 1:

1. with the performance metric as the number of QPs solved, shown in Fig. 1(a)

2. with the performance metric as the KKT residual (note that the x−axis is plotted in logarithmic scale),
shown in Fig. 1(b).

Our termination criteria for the algorithm were very strict, with τP = τD = 10−6 in criteria (11), while the
termination criteria for the inner stochastic QPs were identical for both methods: τ = 10−10 for the ILS method
and εtol = 10−10 for TR.

It is clear that while the two methods are comparable purely on the basis of the number of QPs solved, the TR
algorithm finds KKT points with lower residuals. Some explanations can be offered for this observed behaviour.
The “acceptance test” in the TR method (18) is essentially a sufficient descent criterion. Theorem 4.12 shows
that the convergence of

Q̂(xk)−mk,l(xk,l)

is monotone. The ILS method on the other hand offers no monotonicity guarantee. This is the crucial differ-
ence between the methods. While iterates of the ILS method might hover around the optimal point, the TR
method proceeds steadily towards it, often leading to a more accurate KKT point of (SNLP). In the practical
implementation of the algorithm we found that the Benders-SQP method may terminate due to the step length
α obtained from the linesearch becoming arbitrarily small. As a consequence, the algorithm cannot make any
further progress. Our understanding is that the latter becomes a possibility when the stochastic QPs are not
solved to desired accuracy. As a result the multipliers obtained by solving problem (mult) are not compatible
with the primal solution, and what results is not a KKT point of the stochastic QP. This error propagates and
eventually the algorithm ends up at a point from where it can neither make any progress, nor satisfy criterion
(11). In such a situation we declare the algorithm to have terminated. Indeed, we have observed that tightening
the termination criteria for the stochastic QPs results in better (lower) KKT residuals for (SNLP).
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(a) QPs solved (b) KKT residual

Figure 1: Performance profiles

5.4 Comparison with alternate schemes

An important question that remains is how our framework compares to other methods. Such comparisons gen-
erally require a set of standard testproblem sets, such as those for nonlinear programming [33], mathematical
programming with equilibrium constraints (MPECs) [39] and others. Further, one requires access to the relevant
solvers. For instance in the context of solving NLPs and MPECs, this necessitates access to solvers such as
SNOPT [25], KNITRO [13] and others. However, stochastic nonconvex nonlinear programming is at a nascent stage
where neither off-the-shelf solvers nor testproblem sets exist.

Suppose [14] is used as a starting point; this reference presents a problem generator for two-stage stochastic
quadratic programs and provides a foundation for generating stochastic nonlinear convex and nonconvex programs
(as we have done in section 5.1). In [14], the authors compare several schemes for solving the stochastic QPs,
two of them being projection schemes and splitting methods. Unfortunately, all of these methods can generally
be employed for solving convex quadratic, or at best, general convex programs. The nonconvexity cannot be
addressed systematically and therefore, a direct comparison is rather challenging to make. It should be said that
these schemes could be employed for solving QP subproblems instead of our Benders approach. Note that our
interest was in a more general set of stochastic programs (NLPs) and such a comparison would be more relevant
in a paper dedicated to scalable schemes for stochastic QPs.

Yet, if we did indeed follow such an avenue, we expect that the schemes in [14] will bear a strong similarity
in terms of the scalability of effort (linear) with |Ω|. But, the applicability of these schemes is not always
straightforward and may not always prove advantageous as we explain further in the next two points:

1. For instance, splitting methods, as suggested in [14] are applied to a primal-dual form that arises from a pure
(as opposed to mixed) complementarity formulation of the QP. Convergence of splitting methods [15], par-
ticularly in asymmetric settings, is not immediate even when considering the complementarity formulation
of the underlying strictly convex QP. Instead, one needs a two-level scheme that requires a regularization.
Convergence of the overall scheme can then be obtained by Tikhonov schemes. In addition, a splitting
method requires solving a set of scenario-specific monotone linear complementarity problems (LCPs), in
contrast with solving sparse stochastic convex QPs (as is the case with our dual decomposition scheme).

2. In [14], the authors discuss a parallel projection method for stochastic QPs. Projection methods [23], as is
well known, often require strong convexity (or a strong monotonicity property in the context of variational
inequalities) and Lipschitzian properties to ensure a contraction. The resulting steplength in constant
steplength schemes are restricted by a function of the monotonicity and Lipschitz constants. Consider for
instance if a mapping is close to monotone ( i.e. monotonicity constant is close to zero), then the resulting
steplengths are small, implying that the convergence properties are poor. Extensions of such schemes to
parallel settings generally require solving the projection problem efficiently. For instance, if the set being
projected upon is Rn

+, then the projection is easily computed; otherwise, it needs the solution of a quadratic
program. Note that in our setting, we do impose strict (not strong) convexity (see our related work in [57]
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that relaxes this assumption) but the crucial difference is that the convergence properties do not hinge on
either the monotonicity or Lipschitz constant. Furthermore, when using active-set or interior-point schemes
for solving QPs, the local convergence behavior in the vicinity of the solution of the QP is superlinear or
quadratic.

Yet, in many settings, these schemes are worth considering and their examination and implementation remain
an integral part of our future research. We see our current work as providing one of the first data points for
conducting such a comparison and plan to make our code/testproblem sets available for future comparisons.

6 Summary and future directions

This paper has made two contributions to stochastic nonlinear programming. The first is a characterization of
the set of almost-sure feasible solutions of (SNLP) for general measure spaces and convex objective functions
with bounded level sets. We showed that if the “W-condition” holds, x is almost sure feasible for (SNLP) if
and only if (RNLP(x;ω)) is feasible for all ω ∈ Υ̃. We derived such W-conditions for problems with linear and
nonlinear constraints. Using such conditions, sufficient conditions for complete and relatively-complete recourse
were presented in this setting. We were also able to derive interesting insights in the implementation of L-shaped
methods where we showed that if the W-condition holds feasibility cuts in L-shaped method need be added only
for scenarios ω ∈ Υ̃.

The second is a novel technique of solving stochastic nonlinear programs. The suggested method displays global
convergence and superlinear local convergence properties, while numerical results have shown that it possesses
scalability and is consequently capable of solving problems of a few hundred thousand variables. Our scheme,
while inspired by SQP methods, has three crucial differences: (1) a sparse quasi-Newton update that takes
advantage of the structure of the problem, (2) the use of two variants of cutting-plane methods for effectively
solving the stochastic QP approximations, and finally (3) a means of obtaining multiplier estimates by solving a
single sparse QP.

We consider this work the first step in the development of algorithms for solving large-scale multiperiod
nonlinear stochastic optimization problems. Many questions however still persist. For instance, do immediate
extensions of the proposed framework to the multiperiod domain exist? Our view is that Benders framework has
provided much by way of solving multistage LPs [8, 7]. Through QP extensions to such approaches, we believe
that large-scale multistage stochastic NLPs could be solvable by Benders-SQP techniques.
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