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Abstract

Generalized Nash games represent an extension of Nash games in which strategy sets are coupled
across players. The equilibrium conditions of such a game can be compactly stated as a quasi-
variational inequality (QVI), an extension of the variational inequality (VI). Harker [9] showed that
under certain conditions on the maps defining the QVI, a solution to a related VI solves the QVI. This
is a particularly important result, given that variational inequalities are generally far more tractable
than quasi-variational inequalities. This paper investigates the applicability of Harker’s result to
the class of generalized Nash games where the strategy sets are linked through a shared or common
constraint. The application of Harker’s result to the QVI associated with such games proves difficult
because the hypotheses, that require that a set with certain properties exist, can fail to hold even
for simple shared-constraint games. We show these hypotheses are in fact impossible to satisfy in
most settings. But we show that for a modified QVI, whose solution set equals that of the original
QVI, the hypothesis of Harker’s result always hold. This paves the way for applying this result to
shared-constraint games, albeit in an indirect manner. This avenue allows us to recover as a special
case, a result proved by Facchinei et al. [4], in which it is shown that a suitably defined variational
inequality provides a solution to the QVI of a shared-constraint Nash game.

1 Introduction

Variational inequalities (VIs) provide an avenue for compactly articulating equilibrium conditions for
continuous-strategy Nash games. When these games are generalized to allow for coupled strategy sets,
the variational conditions of the resulting games, referred to as generalized Nash games, are given by a
quasi-variational inequality (QVI). In [9], Harker examined this class of games and showed that if a set
satisfying certain conditions exists, a solution to a VI defined over this set provides a solution to the
QVI. Yet, as observed by Facchinei et al. [4], this result is difficult to apply to QVIs that arise from an
important class of generalized Nash games, namely generalized Nash games shared constraints (cf. [14])
in which the strategy sets across players are coupled by a common or shared constraint. The root of
this difficulty is that even for the simplest of shared constraints, a set satisfying Harker’s conditions is
extraordinarily hard to find.

Motivated by these observations, this paper revisits Harker’s conditions in depth to qualify their
applicability to shared constraint games. Specifically, when Harker’s result is applied to QVIs arising
from shared constraint games, we show that there is at most one set that satisfies Harker’s conditions
and has a nonempty interior: it is the set that defines the shared constraint. Furthermore, if this set
satisfies Harker’s conditions, then it has to be cartesian in nature; in other words, Harker’s result cannot
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be directly applied to most nontrivial shared constraint games1. As a result, we are able to formally
explain why it remains a challenge to find a set satisfying Harker’s conditions.

While it appears that Harker’s result has reduced utility in the context of shared-constraint games,
we observe that its applicability to nontrivial shared constraint games can be salvaged through an
application to a ‘modified’ QVI. Specifically, we construct a modified QVI that admits the same solution
set as the original QVI, and for this modified QVI, there always exists a set satisfying Harker’s conditions.
In short, Harker’s result applies to all nontrivial shared constraint games when it is applied through
the modified QVI, though it fails when applied directly. As a corollary we also see that Harker’s result
implies a result provided by Facchinei et al. [4] as an alternative to Harker’s result.

While QVIs are natural tools for modeling game-theoretic problems, these objects are analytically
harder to handle than VIs. Therefore, any results that reduce the analysis to a VI are particularly
important and those provided by Harker and Facchinei et al. are, to the best of our knowledge, the only
ones that enable such a reduction. We believe that our work clarifies their reach, revealing a surprising
relationship between these two results, and allowing for the application of Harker’s result through the
modified QVI.

In Section 2, we introduce generalized Nash games with shared constraints and the associated QVI
and VI. In Section 3, we examine Harker’s conditions in depth and clarifies their shortcomings. Sec-
tion 4 discusses the how application of Harker’s result to a modified QVI avoids these shortcomings.
Additionally, we show how Facchinei et al.’s result may be obtained through this application. Some
concluding remarks are provided in Section 5.

2 Preliminaries

Let N = {1, 2, . . . , N} be a set of players, m1, . . . ,mN be positive integers and m =
∑N

i=1 mi. For each
i ∈ N , let xi ∈ Rmi be his strategy and ϕi : Rm → R be his objective function. We use the following
notation: by x, we denote the tuple (x1, x2, . . . , xN ), x−i denotes the tuple (x1, . . . , xi−1, xi+1, . . . , xN )
and (yi, x

−i) the tuple (x1, . . . , xi−1, yi, xi+1, . . . , xN ). int(•) and ∂• denote the interior and boundary
of ‘•’ respectively. A shared constraint is a requirement that the tuple x be constrained to lie in a set
C ⊆ Rm. In the generalized Nash game with shared constraint C, player i is assumed to solve the
parameterized optimization problem

Ai(x−i) minimize
xi

ϕi(xi;x−i)

subject to xi ∈ Ki(x−i),

where for each i ∈ N , the set-valued maps Ki :
∏

j 6=iR
mj → 2R

mi and the map K : Rm → 2R
m

, are
defined as

Ki(x−i) :=
{
yi ∈ Rmi | (yi, x

−i) ∈ C
}

, ∀i ∈ N and K(x) :=
∏
i∈N

Ki(x−i) ∀ x ∈ Rm. (1)

Definition 1 (Generalized Nash equilibrium (GNE)) A strategy tuple x ≡ (x1, x2, . . . , xN ) is a
generalized Nash equilibrium of this game if xi ∈ SOL(Ai(x−i)) for all i ∈ N .

Arrow and Debreu [1] were the first to consider games2 where dependence on opposition strategies was
allowed in the constraints. Rosen [14] was the first to study the particular setting where the players’

1Nontrivial shared constraint games allude to games where the set defining the shared constraint is not cartesian or
rectangular.

2Arrow and Debreu termed these games as “abstract economies”.
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strategies were coupled through a common or shared constraint. Shared constraint games have a host
of applications and are a subject of active research (see e.g., [5]).

A quasi-variational inequality is defined by a set-valued map L and a function G and is the following
problem.

Find x ∈ L(x) such that G(x)T (y − x) ≥ 0 ∀y ∈ L(x). (QVI(L,G))

For any closed convex set U ⊆ Rm and function G : U → R
m, the variational inequality VI(U,G) is the

following problem.

Find x ∈ U such that G(x)T (y − x) ≥ 0 ∀y ∈ U . (VI(U,G))

We make the following assumptions throughout the paper.

Assumption 2 For each i ∈ N , the objective function ϕi ∈ C1 and ϕi(xi;x−i) is convex in xi for all
x−i. Unless otherwise mentioned, C is closed and convex set.

A vector x = (x1, . . . , xN ) is a GNE of the above game if and only if it solves the quasi-variational
inequality QVI(K, F ) [6], where

F (x) =

 ∇1ϕ1(x)
...

∇NϕN (x)

 ,

and ∇ = ∂
∂xi

. Critical to all our theorems is the nature of the set-valued map K. This has been
investigated in depth in [11]. Some properties of K that will be useful in the results that follow are
listed below. The proofs for these claims can be found in [11]. They have also been reproduced in the
Appendix.

Lemma 3 Let C be a closed set in Rm and K be as given in (1). Then the following hold:

(a) If C =
∏

i∈N Ci, where Ci ⊆ Rmi for every i ∈ N , are nonempty, not necessarily convex sets,
then K(x) = C for every x in C and is empty otherwise.

(b) For any C, not necessarily convex, x is a fixed point of K if and only if x ∈ C.

(c) If C is closed and convex, K(x) is closed and convex for any x ∈ dom(K).

(d) A point x belongs to the interior of K(x) if and only if x is in the interior of C.

3 Harker’s conditions

We may better understand Harker’s result by seeing it within the history of results on QVIs. The
QVI was first introduced by Bensoussan, Goursat and Lions [2] and is a significantly harder problem
than the VI. Most of the challenges in the analysis of the QVI can be traced to the set-valued map
in its definition. Therefore, many of first existence results on QVIs rested on the well-behavedness of
this map, as evidenced, for e.g., by the results of Ichiishi [10] and Chan and Pang [3] which rely on
the continuity of the set-valued map and compactness of its graph. Unfortunately, continuity is too
stringent a requirement that is seen to fail for many simple settings. In [9], Harker gave an important
result that circumvents the need for continuity by constructing a VI whose solutions solve the QVI.
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Figure 1: A set C, x on the boundary of C and K(x).

Since numerous existence results were known for VIs, these could potentially be leveraged to claim the
existence of a solution to the QVI without invoking the continuity of the set-valued map. We begin our
discussion by reproducing3 Theorem 3 from Harker’s paper [9].

Theorem 4 (Harker [9]) Let F and L be respectively point-to-point and point-to-set mappings from
R

m to itself. Suppose that there exists a nonempty closed, convex set A such that

(i) L(x) ⊆ A for all x ∈ A and

(ii) x ∈ L(x) for all x ∈ A.

Then any solution to the variational inequality VI(A,F ) is a solution of QVI(L,F )

It is easy to see what Harker is attempting to do: in (ii) he seeks that all points in the set A are feasible
for the QVI and in (i) he requires that A be large enough to subsume the moving set L(x) for each x
in A. The continuity of L does not appear in the picture.

Theorem 4 is not limited to QVIs arising from generalized Nash games with shared constraints. i.e.
L, in Theorem 4, is not required to be of the form specified in (1) for K. However, problems emerge
when one tries to apply it with L = K. Consider the following: any set A satisfying (ii) must be a
subset of C. But combining this with (i) implies that K(x) must be a subset of C for all x ∈ A. In
the trivial setting where C is rectangular (or cartesian, cf. Lemma 3(a)), K(·) ≡ C and (i) and (ii)
obviously hold. But when C is not rectangular, K(x) appears to routinely include points outside C for
any x in C. For e.g., in Fig. 1, for a given x ∈ C, one of the corners of K(x) lies outside C. Even in
the simple case where C is polyhedral, K does not stay confined within C. This was also observed by
Facchinei et al. [4] through the following example.

Example 1. (Facchinei et al. [4]) Suppose C is defined as

C , {(x1, x2) ∈ R2 | x1 + x2 ≤ 2, x2 − x1 ≥ 0, x1, x2 ≥ 0}.

Then C is a triangle in R2 with vertices (0, 0), (1, 1) and (0, 2). Let A = C and consider (0, 1) ∈ C.
Then, we have

K(0, 1) = [0, 1]× [0, 2].
3Theorem 4 is a slight modification Harker’s Theorem 3 in [9]. Harker’s version also requires that the set ‘A’ in Theorem

4 to be compact, whereas we have required only closedness on A. Compactness is imposed presumably in keeping with the
assumption prevailing in [9] that each player has compact strategy sets. It is trivial to check that the result is valid even
under the closedness A.
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Clearly, K(0, 1) is a rectangle that includes in it the triangle C, implying that Theorem 4 (i) is not
satisfied. 2

Consequently, when L = K, finding a set A satisfying (i) and (ii) proves extraordinarily difficult and
one is led to the question of whether there exists any nontrivial C for which Theorem 4 can be applied
with this L.

The goal of this section is to show that if one also requires A to have a interior, the trivial setting
where C is rectangular is indeed the only setting where Theorem 4 applies with L = K. We show
this through a combination of two results, the first of which is Theorem 5. Theorem 5 says that when
L = K, there is at most one closed convex set A that satisfies (i), (ii) and has a nonempty interior and
this set has to be C itself. The second result is Theorem 6 which says that if C has a nonempty interior
and satisfies (i), (ii) with L = K, then C has to be rectangular.

Theorem 5 Let C ⊆ Rm be closed and convex with nonempty interior and K be as defined in (1). Let
A ⊆ Rm and consider the following three conditions:

(a) A is closed, convex, and has nonempty interior

(b) K(x) ⊆ A for all x ∈ A

(c) x ∈ K(x) for all x ∈ A.

If A satisfies (a), (b), and (c), then A = C. Therefore,

1. If C satisfies the above three conditions, it is the only set satisfying these conditions.

2. If C does not satisfy these conditions, there does not exist any set that satisfies them.

Proof : Let A satisfy conditions (a), (b), (c). If A = C, it is easy to see that claims (1) and (2) follow
logically. So we will prove A = C.

(c) says that every point in A is a fixed point of K. So by Lemma 3(b) we must have A ⊆ C.
It follows that int(A) ⊆ int(C). We will first show that ∂A ∩ int(C) = ∅ and use that to conclude
A = C. If ∂A ∩ int(C) 6= ∅, we can pick any x ∈ int(C) ∩ ∂A and construct a ball B around x such
that B ⊆ int(C)∩ int(K(x)) (this is ensured by Lemma 3(d)). But using (b), we see that B, which is a
subset of K(x), has to be included in A. Since a ball around x is included in A, this means that x is in
the interior of A. But this contradicts the assumption that x lies on the boundary of A. So ∂A∩ int(C)
must be empty and that ∂A must be included in ∂C.

So we have A ⊆ C with int(A) ⊆ int(C) and ∂A ⊆ ∂C. We now show that this implies A = C.
The argument goes via contradiction. Suppose that there is a point y ∈ C which is not in A. Take
some other point z ∈ int(A) ⊆ int(C) and consider the segment joining y and z. It is known (see [13,
Theorem 6.1]) that the points {ty + (1− t)z, t ∈ [0, 1)} lie in int(C). If we can show that the segment
{ty + (1− t)z | t ∈ (0, 1)} crosses the boundary4 of A, it will contradict ∂A ∩ int(C) = ∅ and complete
the proof. Suppose the set {ty + (1 − t)z | t ∈ (0, 1)} does not cross the boundary of A. Then the
interval (0, 1) is the disjoint union of the following sets

T0 = {t ∈ (0, 1) | ty + (1− t)z ∈ int(A)} and T1 = {t ∈ (0, 1) | ty + (1− t)z ∈ Ac}.

Recall that z ∈ int(A) and y ∈ Ac. Since A is convex, int(A) is convex. So T0 is a convex subset of
(0, 1). Furthermore, T0 is open at 0 and open at the other end. i.e. T0 = (0, α) for some α ∈ (0, 1).

4While this may seem intuitively obvious, it is nontrivial. In the most general setting the result is called “Jordan
separation theorem” [7]. We have given an argument based on completeness of reals, inspired by [8, page 38–40].
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Consequently T1 = [α, 1). But since T1 is open at both ends, this is a contradiction. So the segment
{ty +(1− t)z | t ∈ (0, 1)} intersects the boundary of A. This contradicts our conclusion that int(C) and
the ∂A are disjoint. So our assumption that there exists a y ∈ C ∩Ac is incorrect, and we must indeed
have A = C.

Therefore, if we apply Theorem 4 with L = K by also requiring that the set A have a nonempty
interior, then there is at most one choice for A: C itself. Consequently, if C does not satisfy Theorem
4(i),(ii), it is not possible to find an A with nonempty interior satisfying Theorem 4(i),(ii). Next,
one may ask what kind of a set may C be so as to satisfy conditions (a), (b) and (c) in Theorem
5. The following theorem shows if C satisfies these conditions then C has to be rectangular. This is
an important finding in that we can essentially claim that Harker’s result cannot be applied to many
non-trivial shared constraint games.

Theorem 6 Suppose C ⊆ Rm and let K be as defined in (1). If A = C satisfies (a), (b), (c) from
Theorem 5, then there exist for each i ∈ N , sets Ci ⊆ Rmi such that C =

∏
i∈N Ci.

Proof : It suffices to show that int(C) is rectangular. We show this through a series of steps that follow
the following argument. The first step claims that the union

⋃
x∈int(C) int(K(x)) is the set int(C). Steps

2,3 together show that K is locally constant on int(C). In Step 4, sing the convexity of int(C) we show
that K is in fact constant on int(C). Combining this with the first step gives the result.

Step 1.
⋃

x∈int(C) int(K(x)) = int(C).

Proof: From (b) in Theorem 5, int(K(x)) ⊆ int(C) and thus
⋃

x∈int(C) int(K(x)) ⊆ int(C). But from
Lemma 3(d), we get int(C) ⊆

⋃
x∈int(C) int(K(x)), whereby the claim follows.

Step 2. If x, y ∈ C, then y ∈ K(x) ⇐⇒ x ∈ K(y).

Proof: Let y ∈ K(x). It follows that yi ∈ Ki(x−i) and xi ∈ Ki(x−i) for all i. Therefore for all i,
(xi, y

−i) ∈ K(x). But Theorem 5 implies that if (xi, y
−i) ∈ K(x) then (xi, y

−i) ∈ C. Therefore
by (1), x ∈ K(y). Since x and y are arbitrary, the equivalence y ∈ K(x) ⇐⇒ x ∈ K(y) follows.

Step 3. If x, y ∈ C and y ∈ K(x), then K(y) = K(x).

Proof: As a consequence of Step 2, we have that if y ∈ K(x), then x ∈ K(y). We first proceed to
show that K(x) ⊆ K(y). Let z be a point in K(x). For each i, (zi, y

−i) ∈ K(x). Arguing as in
Step 2, (b) implies that z ∈ K(y), whereby K(x) ⊆ K(y). Proceeding in an identical fashion from
x ∈ K(y), we have that K(y) ⊆ K(x). It follows that K(y) = K(x).

Step 4. K is constant on int(C).

Proof: We proceed to show this result by first showing that K is constant over a line segment [x, y]
where x, y ∈ int(C). Since C is convex the segment joining x and y, [x, y] lies in the interior of C.
For any z ∈ [x, y], let Bz be an open ball contained in C ∩K(z) (cf Lemma 3(d)). It follows that

V := {Bz | z ∈ [x, y]},

is an open cover of [x, y]. Since [x, y] is compact, there exists a finite subcollection, U , of V such
that

[x, y] ⊆
⋃

B ∈ U
B.
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We number balls in U inductively such that at any stage of numbering, K is constant over the
union of the numbered balls. Since U has finitely many balls, this process will end with K being
constant over U . To begin, choose an arbitrary ball from U and call it B1. By Step 3, K is
constant on B1 with value K(z1), where z1 is such that Bz1 = B1. Now suppose that ` balls have
been numbered, where 1 ≤ ` ≤ |U| and K is constant over ∪`

j=1Bj and let Ū` be the set of balls
that are yet to be numbered. The unions ∪`

j=1Bj and ∪B∈Ū`
B are open sets. If these unions are

disjoint, we would get that [x, y] is disconnected, which is absurd, since [x, y] is convex. Therefore
there exists a ball B`+1 where in Ū` such that B`+1 ∩ ∪`

j=1Bj 6= ∅. It follows that K is constant
over B1, . . . , B`+1. Continuing in this manner we get K is constant over ∪B∈UB, and in particular,
over [x, y]. Since x and y were arbitrary points in int(C), we get K is constant over int(C).

Step 5. int(C) is rectangular.

Proof: Since K is constant over int(C), the conclusion of Step 1 degenerates to int(C) = int(K(x)) for
each x ∈ int(C). But since K is rectangular, int(C) is rectangular.

We may summarize the conclusions of Theorems 5 and 6 as follows. When L = K, Theorem 5 limits
our choice for sets A with nonempty interior that satisfy Harker’s conditions to only the set C. But
Theorem 6 goes to show that C cannot be a choice for A for verifying Harker’s conditions with L = K
unless C is rectangular. But in this case, C isn’t really a shared constraint at all and the QVI(K, F ) is
the same as VI(C, F ). It is therefore safe to conclude that taking L = K is not the best way to apply
Theorem 4 to shared constraint games. Section 4 presents an alternative way of applying Theorem 4.

Some technical remarks are worth mentioning at this juncture regarding the above proof. First, it
is well known (see, e.g., p. 114, [12]) that a locally constant function on a connected space is constant.
Presumably, such a result also holds for set-valued maps and Step 4 could potentially be claimed through
this result. Unfortunately, we are not aware of any such result.

Secondly, we note some caveats about Theorem 5 and Theorem 6. That the set A sought by Theorem
5 must have an interior is an important ingredient for the validity of Theorem 5. The argument, that
any line joining a point inside A to a point outside A must cross the boundary, used in proving Theorem
5 holds only when A has an interior. In fact we have an example in [11] of an A without an interior
that satisfies Harker’s conditions for a specific C. The set C is such a point x∗ ∈ ∂C exists, for which
K(x∗) is the singleton {x∗}. Clearly one may take A = {x∗} to verify Harker’s conditions. We have
reproduced the relevant portions of the example here.

Example 2. Fig. 2 shows C ⊆ R2 and a point x∗ ∈ ∂C with the property that the image of x∗ under
K is a singleton, namely x∗ itself. In Fig. 2, dotted lines depict axes with their origin shifted to x∗. If
y ∈ K(x∗), the points (y1, x

∗
2) and (x∗1, y2) lie in on these ‘axes’. Notice that since these ‘axes’ intersect

C at only one point, x∗, K(x∗) = {x∗}. 2

The nonemptiness of int(C) is also essential to Theorem 6, as seen in the following example.

Example 3. Let C = {(x1, x2) ∈ R2 | (x1 = x2)}. Suppose C is a line in R2 and has no interior. For
any x ∈ C, we have K(x) = {x}. Clearly A = C satisfies (b) and (c) from Theorem 5, but it does not
satisfy (a). 2

4 Applying Harker’s conditions to the modified QVI

Facchinei et al. have rightly observed in [4, section 4] that Harker’s result is hard to use if L = K. In [4,
p. 162], the authors state “The problem with this (Harker’s) result is, we believe, that it is not simple to
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Figure 2: An example where K(x∗) = {x∗}.

give classes of problems for which (i) and (ii) are satisfied for some easily calculated A. Rosen’s setting
(i.e. generalized Nash games with shared constraints) analyzed in this paper is certainly not covered
(when A = C, as suggested in Harker’s paper for polyhedral C). In fact, in Rosen’s setting, condition
(ii) is obviously always satisfied, but condition (i) need not, except when C is a rectangle.” and provide
Example 1 to illustrate this difficulty.

As an alternative to Harker’s result, Facchinei et al. gave a result that prescribed a VI associated
with a shared-constraint game that provided a solution to the original QVI ([4, Theorem 2.1]). We
present this result next.

Theorem 7 (Facchinei et al. [4]) Let F be continuous and K be as defined by (1). Then every
solution of VI(C, F ) is a solution of QVI(K, F ).

Unlike Harker’s result, this result is more direct and clearly applies to all shared constraint games.
It is evident from [4] and Example 1 that the observations made by Facchinei et al. were based on

taking L to be the map K defined in (1). Indeed, our results from Section 3 formalize and substatiante
their observations. But despite the results from Section 3, Harker’s result is still of relevance to shared
constraint games. Our contention is that the difficulty of applying Harker’s result arises from taking
L = K and in assuming that this is the only way to apply Harker’s result. Harker’s result is better
applied to a modified QVI(K ∩ C, F ) as opposed to a direct application to QVI(K, F ). When applied
in this manner, Harker’s result implies the Theorem 7 of Facchinei et al. We elaborate on this in this
section. Consider QVI(K ∩ C, F ) defined as

Find x ∈ K(x) ∩ C such that F (x)T (y − x) ≥ 0 ∀y ∈ K(x) ∩ C. (QVI(K ∩ C, F ))

This seemingly weaker QVI is in fact equivalent to QVI(K, F ).

Proposition 8 Let F be continuous and K be as defined by (1). Then, we have

SOL(QV I(K, F )) = SOL(QV I(K ∩ C, F )).

Proof : “⊆” If x solves QVI(K, F ), we have x ∈ K(x) and F (x)T (y − x) ≥ 0 ∀ y ∈ K(x). It follows
that x ∈ C and hence x ∈ K(x) ∩ C. It is easy to see that F (x)T (y − x) ≥ 0 for every y ∈ K(x) ∩ C.
Thus x solves QVI(K ∩ C, F ).

“⊇” Let x ∈ K(x) ∩C solve QVI(K ∩C, F ) and let y ∈ K(x) be arbitrary. By definition in (1), for
every i ∈ N , the point (yi, x

−i) ∈ C. Furthermore, since x ∈ K(x), the point (yi, x
−i) also belongs to

K(x) for each i ∈ N . Thus for each i ∈ N , (yi, x
−i) ∈ K(x)∩C. Since x solves QVI(K ∩C, F ), we have

F (x)T ((yi, x
−i)− x) ≥ 0, i.e., Fi(x)T (yi − xi) ≥ 0, (2)
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for each i ∈ N . Summing (2) over all i ∈ N we get F (x)T (y − x) ≥ 0. Since y was an arbitrary point
in K(x), x solves QVI(K, F ).

It is easy to see the issue arising in Example 1 does not arise when L(·) ≡ K(·) ∩ C. Indeed
L(·) = K(·)∩C satisfies Harker’s conditions, i.e. (i), (ii) from Theorem 4, with A = C. Thus for shared
constraint games Theorem 4 always applies to QVI(K ∩ C, F ). And when Theorem 4 is applied with
L(·) = K(·) ∩ C, one obtains immediately Theorem 7 of Facchinei et al..

Theorem 9 Let F be continuous and K be as defined by (1). Then every solution of VI(C, F ) is a
solution of QVI(K, F ).

Proof : In Theorem 4, take L(·) := K(·) ∩ C. It is not hard to see that A = C satisfies conditions
Theorem 4(i),(ii) with this L:

(i) K(x) ∩ C ⊆ C for all x ∈ C

(ii) x ∈ K(x) ∩ C for all x ∈ C (cf. Lemma 3(b))

Now applying Theorem 4 gives

SOL(V I(C, F )) = SOL(V I(A,F )) ⊆ SOL(QV I(L,F )) = SOL(QV I(K ∩ C, F )).

But by Proposition 8, SOL(QV I(K ∩ C, F )) = SOL(QV I(K, F )). Consequently

SOL(V I(C, F )) ⊆ SOL(QV I(K, F )),

which is the result of Theorem 7.

In other words Harker’s approach, with an application to QVI(K ∩ C, F ), in fact subsumes the
approach of Facchinei et al.. The interested reader may also check that Theorem 5 applies even with
‘K(x)’ replaced by ‘K(x)∩C’ in Theorem 5(b),(c). (The proof requires an exact repetition of the steps
used to prove Theorem 5.) Thus for the QVI(K ∩ C, F ) too, the only set with a nonempty interior
satisfying Harker’s conditions is C itself.

5 Concluding remarks

Equilibria of generalized Nash games are wholly captured by quasi-variational inequalities. However,
such objects are analytically less tractable. Accordingly, Harker [9] presented a result which showed that
a suitable variational inequality gives a solution to the original QVI. Unfortunately, the direct application
of this result to the class of shared-constraint Nash games proves challenging for its hypothesis are hard
to satisfy. We examine this issue more carefully and show that under mild assumptions, it is, in fact,
impossible to satisfy the hypothesis of Harker’s result, when it is applied in a direct manner. In fact, we
provide a formal result to support observations made by Facchinei et al. [4]; in particular, they suggested
that Harker’s result was only applicable to shared-constraint Nash games when C was rectangular.

We proceed to show that Harker’s result can indeed be applied to this class of games, albeit in an
indirect manner, by an application to a modified QVI for which the hypothesis are always satisfied. The
modified QVI has the same solution set as the original QVI and allows us to independently derive an
analogous result of Facchinei et al. [4].
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A Proof of Lemma 3

(a) Take any i ∈ N and consider an x ∈ Rm. Note from (1) and the cartesian nature assumed on
C that Ki(x−i) = {yi ∈ Rmi |(yi, x

−i) ∈ C} = {yi ∈ Rmi |yi ∈ Ci, xj ∈ Cj , j 6= i}, which is
nonempty if xj ∈ Cj ,∀j 6= i. Thus K(x) =

∏
Ki(x−i) 6= ∅ if and only if x ∈ C. Similarly, for

x ∈ C, we have y ∈ K(x) if and only if y ∈ C. Therefore K(x) = C if and only if x ∈ C.

(b) Let x ∈ K(x) implying that xi ∈ Ki(x−i), ∀i ∈ N , and therefore (xi, x
−i) ∈ C, ∀i ∈ N and x ∈ C.

The converse follows by noting that x ∈ C is equivalent to (xi, x
−i) ∈ C ∀i, i.e. xi ∈ Ki(x−i), ∀i

and therefore x ∈ K(x).

(c) Let x ∈ dom(K) and y, z ∈ K(x), i.e. for each i ∈ N , (yi, x
−i) and (zi, x

−i) ∈ C. The convexity of
K(x) follows by noting that since C is convex, ((αyi +(1−α)zi), x−i) ∈ C for each i and α ∈ [0, 1].

To show closedness, consider a sequence {yk} ⊆ K(x) with limit point ȳ. By closedness of C, for
each i, the sequence {(yk

i , x−i)} ⊆ C and lim(yk
i , x−i) = (ȳi, x

−i) ∈ C. Thus K(x) is closed.

(d) Suppose x ∈ int(C). Then there exist open sets Oi ⊆ Rmi containing xi such that x ∈ O :=∏
i∈N Oi ⊆ C. Then (Oi, x

−i) := ∪yi∈Oi(yi, x
−i) ⊆ C, so that Oi ⊆ Ki(x−i), for each i ∈ N . It

follows that O ⊆ K(x).

For the converse, let int(K(x)) be nonempty and x ∈ int(K(x)). Then for each i ∈ N , xi belongs
the interior of Ki(x−i) (where Ki(x−i) is considered a set in Rmi). Thus there exist open sets
R

mi ⊇ Oi ⊆ Ki(x−i) containing xi for all i. It follows that (Oi, x
−i) ⊆ C for all i ∈ N . Now since

C is convex, the average of these sets is contained in C, i.e.

A :=
∑
i∈N

(Oi, x
−i)

N
=

1
N

∏
i∈N

Oi +
N − 1

N
x ⊆ C.

Since xi ∈ Oi, A contains x. Furthermore, A is open, implying that x ∈ int(C).
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