SC 618: Flows, derivatives and brackets

Ravi N Banavar
banavar@iitb.ac.in

1Systems and Control Engineering,
IIT Bombay, India

Geometric Mechanics
Monsoon 2014

September 15, 2014
Outline

1. Linear and nonlinear systems

2. The flow of a vector field

3. Lie groups

4. Push-forward and pull-back

5. The Lie derivative and the Jacobi-Lie bracket

6. Lie algebras

Lectures 3, 4 and 5
Outline

1 Linear and nonlinear systems
2 The flow of a vector field
3 Lie groups
4 Push-forward and pull-back
5 The Lie derivative and the Jacobi-Lie bracket
6 Lie algebras
Linear systems - preliminaries

A linear system with an input

\[\dot{x} = Ax + Bu \quad x(t) \in \mathbb{R}^n \]

\(x(t) \) lives in \(\mathbb{R}^n \), a vector space.

A linear autonomous system

\[\dot{x} = Ax, \quad x(t) \in \mathbb{R}^n \]

\(x(t) \) lives in \(\mathbb{R}^n \), a vector space.
Linear systems - preliminaries

A linear system with an input

\[\dot{x} = Ax + Bu \quad x(t) \in \mathbb{R}^n \]

\(x(t)\) lives in \(\mathbb{R}^n\), a vector space.

A linear autonomous system

\[\dot{x} = Ax, \quad x(t) \in \mathbb{R}^n \]

\(x(t)\) lives in \(\mathbb{R}^n\), a vector space.

The right-hand side of the differential equation is termed a vector field. For the linear system, it is a linear vector field.

Linearity

\[A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 Ax_1 + \alpha_2 Ax_2 \]
Solution and flow

Solution to the set of differential equations

\[x(t) = e^{At} x_0, \quad x(0) = x_0, \quad e^{At} \triangleq I + A + A^2/2! + \ldots \]

The term \(e^{At}x_0 \) is termed the flow associated with the linear vector field \(Ax \).
Nonlinear systems - preliminaries

A nonlinear system with an input

\[\dot{x} = f(x) + g(x)u \quad x(t) \in M \]

\(f(\cdot), g(\cdot) \) are smooth functions, \(x(t) \) lives in \(M \), a smooth manifold.

A nonlinear autonomous system

\[\dot{x} = f(x), \quad x(t) \in \mathbb{R}^n \]

\(x(t) \) lives in \(M \), a smooth manifold.
Nonlinear systems - preliminaries

A nonlinear system with an input

$$\dot{x} = f(x) + g(x)u \quad x(t) \in M$$

$f(\cdot), g(\cdot)$ are smooth functions, $x(t)$ lives in M, a smooth manifold.

A nonlinear autonomous system

$$\dot{x} = f(x), \quad x(t) \in \mathbb{R}^n$$

$x(t)$ lives in M, a smooth manifold.
The right-hand side of the differential equation is a nonlinear vector field.
Nonlinear systems - preliminaries

A nonlinear system with an input

\[\dot{x} = f(x) + g(x)u \quad x(t) \in M \]

\(f(\cdot), g(\cdot) \) are smooth functions, \(x(t) \) lives in \(M \), a smooth manifold.

A nonlinear autonomous system

\[\dot{x} = f(x), \quad x(t) \in \mathbb{R}^n \]

\(x(t) \) lives in \(M \), a smooth manifold. The right-hand side of the differential equation is a nonlinear vector field. Linearity does not hold.

\[f(\alpha_1 x_1 + \alpha_2 x_2) \neq \alpha_1 f(x_1) + \alpha_2 f(x_2) \]
Solution and flow

Solution to the set of differential equations

\[x(t) = \Phi(t, x_0) \quad x(0) = x_0 \]

The term \(\Phi(t, x_0) \) is termed the flow associated with the nonlinear vector field \(f(x) \).
Outline

1. Linear and nonlinear systems

2. The flow of a vector field

3. Lie groups

4. Push-forward and pull-back

5. The Lie derivative and the Jacobi-Lie bracket

6. Lie algebras

Lectures 3, 4 and 5
Flow of a vector field

Flow of $X(x)$

The flow of the vector field $X(x)$, denoted by $\Phi(t, x_0)$, is a mapping from $(-a, a) \times U \rightarrow \mathbb{R}^n$ (where $a(>0) \in \mathbb{R}$ and U is an open region in the state-space) and satisfies the differential equation

$$\frac{d\Phi(t, x_0)}{dt} = X(\Phi(t, x_0)) \quad \forall t \in (-a, a), x(0) = x_0 \in U.$$

over the interval $(-a, a)$ and with initial conditions starting in the region U.

Lectures 3, 4 and 5
Figure: Flow of a vector field
Properties of flows

The group structure
Denote
\[\Phi_t(x_0) \triangleq \Phi(t, x_0) \]

The set of transformations \(\{ \Phi_t \} \) : \(U \to \mathbb{R}^n \) satisfies the following properties.

- \(\Phi_{t+s}x_0 = \Phi_t \circ \Phi_s x_0 \quad \forall t, s, t + s \in (-a, a) \) (the group binary operation.)
- \(\Phi_0x_0 = x_0 \) (the group identity.)
- For a fixed \(t \in (-a, a) \) we have \(\Phi_t \Phi_{-t} x_0 = x_0 \Rightarrow [\Phi_t]^{-1} = \Phi_{-t} \) (existence of an inverse.)
The flow of a linear system

The group property

Remark

The three properties mentioned above impart a group structure to the set \(\{ \Phi_t \} \). This set is called a one-parameter (time) group of diffeomorphisms (\(\Phi_t \) and its inverse are smooth mappings).
The flow of a linear system

The group property

Remark

The three properties mentioned above impart a group structure to the set \(\{ \Phi_t \} \). This set is called a one-parameter (time) group of diffeomorphisms (\(\Phi_t \) and its inverse are smooth mappings).

Linear flow

Remark

For a linear system described by

\[
\dot{x} = Ax \quad A \in \mathbb{R}^{n \times n}
\]

the flow \(\Phi_t x_0 = e^{At} x_0 \) where \(\{ e^{At} : t \in (-\infty, \infty) \} \) constitutes the one-parameter group of diffeomorphisms.
Outline

1. Linear and nonlinear systems
2. The flow of a vector field
3. Lie groups
4. Push-forward and pull-back
5. The Lie derivative and the Jacobi-Lie bracket
6. Lie algebras

Lectures 3, 4 and 5
A group

Definition
A group is a set G with a binary operation $+$ such that

- For any $x, y \in G$, $x + y \in G$ (Closure) and $(x + y) + z = x + (y + z)$ (Associativity)

- There exists a unique $i \in G$ such that $x + i = i + x = x$ for every $x \in G$ (Existence of the identity element)

- For every $x \in G$ there exists a unique $y \in G$ such that $x + y = i$. (Existence of inverse)
A Lie group

Definition
A smooth manifold M together with a group structure is called a **Lie group** G if the group operation $+$ is **smooth**.

$$(g, h) \rightarrow g + h \quad (\forall g, h \in G) \quad \text{is smooth}$$

- The identity element of the Lie group is usually denoted by e.
- **Left translation** of a group
 $$L_g : G \rightarrow G \quad h \rightarrow g + h$$
- **Right translation** of a group
 $$R_g : G \rightarrow G \quad h \rightarrow h + g$$
Examples of Lie groups

- \mathbb{R} or multiple copies of \mathbb{R} (as \mathbb{R}^n) with the binary operation being the usual component-wise addition $+$.

- The unit circle S^1 with elements denoted as $\theta (\in [0, 2\pi])$ and the binary operation being the usual addition. Similarly, multiple copies of S^1 (as $S^1 \times \ldots \times S^1$).

- The set of $n \times n$ invertible matrices with real entries with the binary operation being matrix multiplication. This group is called $GL(n, \mathbb{R})$.

- The set of $n \times n$ real-orthogonal matrices $O(n)$, a subset of $GL(n, \mathbb{R})$. The set of $n \times n$ rotation matrices $SO(n)$, a subset of $O(n, \mathbb{R})$.
Rigid body motion

Definition
Rigid body motion is characterized by two properties

- The distance between any two points remains invariant
- The orientation of the body is preserved. (A right-handed coordinate system remains right-handed)
Two groups which are of particular interest to us in mechanics and control are $SO(3)$ - the special orthogonal group that represents rotations - and $SE(3)$ - the special Euclidean group that represents rigid body motions. These are Lie groups.

Elements of $SO(3)$ are represented as 3×3 real matrices and satisfy

$$R^T R = I$$

with $\det(R) = 1$.

An element of $SE(3)$ is of the form (p, R) where $p \in \mathbb{R}^3$ and $R \in SO(3)$.

$SO(3)$ and $SE(3)$
Frames of reference or coordinate frames

- In describing rigid body motions we always fix two frames of reference. One is called the **body frame** that remains fixed to the body and the other is the **inertial frame** that remains fixed in inertial space.

![Frame Diagram](image)

Figure: Rigid body motion
Rigid body motions and groups

- Suppose \(q_a \) and \(q_b \) are coordinates of a point \(q \) relative to frames \(A \) and \(B \), respectively.

\[
q_a = p_{ab} + R_{ab} q_b
\]

Here \(p_{ab} \) represents the position of the origin of the frame \(B \) with respect to frame \(A \) in frame \(A \) coordinates and \(R_{ab} \) is the orientation of frame \(B \) with respect to frame \(A \).

- Appending a ”1” to the coordinates of a point (to render the group operation as the usual matrix multiplication)

\[
\bar{q} = \begin{pmatrix} q_a \\ 1 \end{pmatrix} = \begin{pmatrix} R_{ab} & p_{ab} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} q_b \\ 1 \end{pmatrix} = \bar{g}_{ab} \bar{q}_b
\]
Two results on rotations

Rotation in a plane

Claim
The rotation group $SO(2)$ can be identified with S^1 (the unit circle).

Proof:

$S^1 = \{ x \in \mathbb{R}^2 : \|x\| = 1 \}$

Parametrize the elements of S^1 in terms of $\theta \in [0, 2\pi]$. For each $\theta \in [0, 2\pi]$, the counter-clockwise rotation of the vectors $\{(1,0), (0,1)\}$ in \mathbb{R}^2 (these form a basis) by the angle θ

$$(1,0) \rightarrow (\cos \theta \quad \sin \theta) \quad (0,1) \rightarrow (-\sin \theta \quad \cos \theta)$$

is given by the matrix

$$R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

which is an element of $SO(2)$.
Conversely, take an element of $SO(2)$ of the form

$$R = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$$

Then from the properties of an element of $SO(2)$, we have

$$a_1a_4 - a_2a_3 = 1; \quad a_1^2 + a_3^2 = 1; \quad a_2^2 + a_4^2 = 1; \quad a_1a_2 + a_3a_4 = 0$$

It is possible to find a $\theta \in [0, 2\pi]$ such that that R can be represented in the form R_θ. \(\square \)
Euler’s theorem

Theorem
(Euler’s theorem)

Every $A \in SO(3)$ *is a rotation through an angle* $\theta \in S^1$ *about an axis* $\omega \in \mathbb{R}^3$.

Proof: Since 1 is an eigen value of A, we have $Aw = w$ where $w \in \mathbb{R}^3$ is an eigen vector. Choose two vectors e_1 and e_2 that are orthogonal to each other as well as w. So

$$< w, e_1 > = 0, \quad < w, e_2 > = 0, \quad < e_1, e_2 > = 0$$

The two vectors $\{e_1, e_2\}$ lie in the plane perpendicular to w and it follows that $\{w, e_1, e_2\}$ form a basis for \mathbb{R}^3. Since A is orthogonal, the matrix of A in this basis is of the form

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & a_1 & a_3 \\
0 & a_2 & a_4
\end{bmatrix}.$$
Proof (contd.)

(why ?) Now

\[
\begin{bmatrix}
a_1 & a_3 \\
a_2 & a_4
\end{bmatrix}
\]

is an element of $SO(2)$ and hence there exists a $\theta \in [0, 2\pi]$ such that

\[
\begin{bmatrix}
a_1 & a_3 \\
a_2 & a_4
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

It follows that A is a rotation about w through the angle θ.
Outline

1. Linear and nonlinear systems
2. The flow of a vector field
3. Lie groups
4. Push-forward and pull-back
5. The Lie derivative and the Jacobi-Lie bracket
6. Lie algebras

Lectures 3, 4 and 5
The "star" map \((f_*)\) associated with a smooth function \(f\)

Consider a smooth map \(f : X \to Y\). At each \(p \in X\) we define a linear transformation as follows

\[
f_*p : T_p(X) \to T_{f(p)}(Y)
\]
called the derivative of \(f\) at \(p\), which is intended to serve as a "linear approximation to \(f\) near \(p\).” Visualize this as follows.

- Choose a parametrized curve \(c(\cdot) : (-\epsilon, \epsilon) \to X\) with \(c(0) = p\) and \(\frac{dc}{dt}\big|_{t=0} = v_p\).
- Construct the curve \(f \circ c\). Then define

\[
f_*p(v_p) \triangleq T_p f \cdot v_p = \frac{d}{dt}\big|_{t=0}(f \circ c)(t)
\]

- The rank of \(f\) at \(p\) is the rank of the Jacobian matrix at \(x(p)\) and this is independent of the choice of coordinates \(x\).
Push-forward and pull-back of a function

Push-forward

Pull-back

ϕ_t is the flow associated with the vector field X.

Figure: Pull-back and push-forward of functions
Push-forward and pull-back of a function

- Suppose X is a vector field on M and $f : M \to \mathbb{R}$ is a smooth function. Then the *push-forward* of the function f on M by the flow of X is the function $\Phi_t^* f$ defined by
 \[(\Phi_t^* f)(x) \triangleq f \circ \Phi_t^{-1}(x) \hspace{1em} \forall x \in M\]

- Suppose X is a vector field on M and $f : M \to \mathbb{R}$ is a smooth function. Then the *pull-back* of the function f on M by the flow of X is the function $\Phi_t^* f$ defined by
 \[(\Phi_t^* f)(x) \triangleq f \circ \Phi_t(x) \hspace{1em} \forall x \in M\]
Push-forward and pull-back of a vector field

\[\phi_t^* \] is associated with \(X \).

\[Y(\phi_t^{-1}x) \]

\[(\phi_t Y)(x) = D\phi_t(Y(\phi_t^{-1}x)) \]

\[\text{Push-forward of a vector field } Y \text{ by } X. \]
Push-forward of a vector field by another vector field

Push-forward

• Suppose $\Phi_t : M \to M$ is the flow associated with a vector field X, then the *push-forward of a vector field* Y on M by f is the vector field (Φ_t*Y) on M defined by

$$(\Phi_t*Y)(x) = T(\Phi_t^{-1}x)[Y(\Phi_t^{-1}x)] \quad \forall x \in M$$

• In coordinates

$$(\Phi_t*Y)(x) = (D\Phi_t)(Y(\Phi_t^{-1}x))$$
Push forward of vector fields under a diffeomorphism f
Push-forward of vector fields under a diffeomorphism \(f \)

Push-forward

- Suppose \(f : M \to N \) is a diffeomorphism, then the push-forward of a vector field \(X \) on \(M \) by \(f \) is the vector field \(f_*X \) on \(N \) defined by

\[
(f_*X)(f(x)) = T_x f (X(x)) \quad \forall x \in M
\]

- In coordinates

\[
y = f(x) \quad (f_*X)(y) = Df(x).X(x) = \frac{dy}{dx} \cdot X(x)
\]
Pull back of a vector field under a diffeomorphism f
Pull-back of vector fields under a diffeomorphism f

The pull-back

- Suppose $f : M \to N$ is a diffeomorphism, then the **pull-back** of a vector field Y on N by f is the vector field $f^* Y$ on M defined by

$$f^* Y = (f^{-1})_* Y = T f^{-1} \circ Y \circ f$$

- In coordinates

$$y = f(x) \quad (f_* X)(y) = Df(x).X(x) = \frac{dy}{dx} \cdot X(x)$$
Outline

1. Linear and nonlinear systems
2. The flow of a vector field
3. Lie groups
4. Push-forward and pull-back
5. The Lie derivative and the Jacobi-Lie bracket
6. Lie algebras
Operations on vector fields

The Gradient
Consider a smooth function $g(\cdot) : U \rightarrow \mathbb{R}$. The gradient of such a function, denoted by ∇g, is defined as

$$\nabla g(x) = \left[\frac{\partial g}{\partial x_1} \quad \cdots \quad \frac{\partial g}{\partial x_n} \right]$$

alternate notation: $\text{grad}(g)$.
The Lie derivative of a function

The Lie derivative
The Lie derivative of a function f along X is

$$(L_X f)(x) = \frac{d}{dt} |_{t=0} (\Phi_t^* f)(x) = \frac{d}{dt} |_{t=0} f \circ \Phi_t(x)$$

In coordinates we have the familiar

$$(L_X f)(x) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n} \right] X(x)$$
The Lie derivative of a function

The Lie derivative
The Lie derivative of a function \(f \) along \(X \) is

\[
(L_X f)(x) = \frac{d}{dt}\bigg|_{t=0} (\Phi_t^* f)(x) = \frac{d}{dt}\bigg|_{t=0} f \circ \Phi_t(x)
\]

In coordinates we have the familiar

\[
(L_X f)(x) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n} \right] X(x)
\]

Alternate notation

\[
(X f)(x) = \frac{d}{dt}\bigg|_{t=0} f \circ \Phi_t(x) = \lim_{t \to 0} \frac{f(\Phi_t(x)) - f(x)}{t}
\]
High school physics

The cross product

- Vector space \mathbb{R}^3 and the cross-product operation \times.
 - $(\alpha_1 a_1 + \alpha_2 a_2) \times b = \alpha_1 (a_1 \times b_1) + \alpha_2 (a_2 \times b_2) -$ linearity. (*holds in the second argument as well.*)
 - $a \times b = -b \times a -$ skew-commutative.
 - $a \times (b \times c) + c \times (a \times b) + b \times (c \times a) = 0 -$ the Jacobi-Lie identity.

Comment: the cross-product of two linearly independent vectors in \mathbb{R}^3 yields a vector in a new direction.
High school physics

The cross product

- Vector space \mathbb{R}^3 and the cross-product operation \times.
 - $(\alpha_1 a_1 + \alpha_2 a_2) \times b = \alpha_1 (a_1 \times b_1) + \alpha_2 (a_2 \times b_2)$ - linearity. (holds in the second argument as well.)
 - $a \times b = -b \times a$ - skew-commutative.
 - $a \times (b \times c) + c \times (a \times b) + b \times (c \times a) = 0$ - the Jacobi-Lie identity.

Comment: the cross-product of two linearly independent vectors in \mathbb{R}^3 yields a vector in a new direction.

An alternate notation

$$a \times b \leftrightarrow \hat{a}b$$

$$\hat{a} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$
The Lie derivative of a vector field

The pull back of a vector field

The Lie derivative of Y along X is

$$\mathcal{L}_X Y \triangleq \frac{d}{dt} \big|_{t=0} \Phi_t^* Y$$

where Φ is the flow of X.
The Lie derivative of a vector field

The pull back of a vector field
The Lie derivative of Y along X is

$$\mathcal{L}_X Y \triangleq \frac{d}{dt} \bigg|_{t=0} \Phi_t^* Y$$

where Φ is the flow of X.
Explicitly

$$(\mathcal{L}_X Y)(x) = \frac{d}{dt} \bigg|_{t=0} (D\Phi_t(x))^{-1} \cdot Y(\Phi_t(x))$$

The Lie bracket
In coordinates we have the familiar expression

$$\frac{d}{dt} \bigg|_{t=0} (D\Phi_t(x))^{-1} \cdot Y(\Phi_t(x)) = \frac{\partial Y}{\partial x} X(x) - \frac{\partial X}{\partial x} Y(x) = [X, Y](x)$$
The Jacobi-Lie bracket

The Jacobi-Lie bracket of two vector fields is an operation between two vector fields that yields another vector field. For two vector fields X and Y, both defined from U to \mathbb{R}^n, it is defined as

$$[X, Y] = (\mathcal{L}_XY) = (DY) \cdot X - (DX) \cdot Y$$

and satisfies the following properties (for any three vector fields X, Y, Z)

- $[\alpha X + \beta Y, Z] = \alpha[X, Z] + \beta[Y, Z]$ - linearity in the first argument (also hold for the second argument)
- $[X, [Y, Z]] + [Z, [X, Y]] + [Y, [X, Z]] = 0$ - the Jacobi-Lie identity
More properties

The Jacobi-Lie bracket
Let X generate the flow $\{\Phi_t\}$ and Y generate the flow $\{\Psi_t\}$. Then $[X, Y] = 0$ if and only if $\Phi_t \circ \Psi_s = \Psi_s \circ \Phi_t$ for all $s, t \in \mathbb{R}$.

Lectures 3, 4 and 5
Outline

1. Linear and nonlinear systems
2. The flow of a vector field
3. Lie groups
4. Push-forward and pull-back
5. The Lie derivative and the Jacobi-Lie bracket
6. Lie algebras

Lectures 3, 4 and 5
The Lie algebra - $\mathfrak{so}(3)$

3×3 skew-symmetric matrices

Recall

$\omega \times x \leftrightarrow \hat{\omega}x \quad \hat{\omega} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$

The eigen values of $\hat{\omega}$ are $0, \pm \|\omega\| i$ (Hint: The trace of a matrix is the sum of its eigen values.)

Claim

Exponential of a skew-symmetric matrix is a rotation matrix

To show $e^{\hat{\omega}} \in SO(3)$

$$(e^{\hat{\omega}})(e^{\hat{\omega}})^T = (e^{(\hat{\omega}-\hat{\omega})}) = I \Rightarrow \det(e^{\hat{\omega}}) = \pm 1$$

Now from $\omega = 0$, $e^{\hat{\omega}} = I$ and $\det(I) = 1$. The determinant is a continuous function of the elements of the matrix

$\Rightarrow \det(e^{\hat{\omega}}) = 1$
Properties of the Lie algebra - $\mathfrak{so}(3)$

It is a vector space of dimension 3.
The tangent space of the identity of $SO(3)$ i.e. $T_e SO(3) = \mathfrak{so}(3)$.
The bracket operation $[\cdot, \cdot] : \mathfrak{so}(3) \times \mathfrak{so}(3) \rightarrow \mathfrak{so}(3)$ satisfies

- $[\alpha \hat{x} + \beta \hat{y}, \hat{z}] = \alpha [\hat{x}, \hat{z}] + \beta [\hat{y}, \hat{z}]$ - linearity in the first argument (also hold for the second argument)
- $[\hat{x}, \hat{z}] = -[\hat{z}, \hat{x}]$ - skew-commutative.
- $[\hat{x}, [\hat{y}, \hat{z}]] + [\hat{z}, [\hat{x}, \hat{y}]] + [\hat{y}, [\hat{z}, \hat{x}]] = 0$ - the Jacobi-Lie identity

Notice that the cross product relates as

$$[\hat{x}, \hat{z}] = \hat{x} \times \hat{z}$$