Almost global attitude stabilization of a rigid body for both internal and external actuation schemes

Ramaprakash Bayadi1 and Ravi N. Banavar1

Presented by
Madhu N. Belur2

1 Systems and Control Engineering,
2 Electrical Engineering,
Indian Institute of Technology Bombay, India.

European Control Conference 2013, Zurich
Outline

Introduction

AGAS with internal actuation

The modified trace function and the spinning top potential

Conclusions
Outline

Introduction

AGAS with internal actuation

The modified trace function and the spinning top potential

Conclusions
The objective is to stabilize the rigid body at a desired orientation.
Attitude stabilization

The objective is to stabilize the rigid body at a desired orientation.

Recently, techniques have been developed which directly use the orientation matrices for the analysis and synthesis of control.
Attitude stabilization

The objective is to stabilize the rigid body at a desired orientation.

Recently, techniques have been developed which directly use the orientation matrices for the analysis and synthesis of control.

This allows a global definition of the control law and thus renders a better understanding of the global behaviour of the closed loop system.
Attitude stabilization

The objective is to stabilize the rigid body at a desired orientation.

Recently, techniques have been developed which directly use the orientation matrices for the analysis and synthesis of control.

This allows a global definition of the control law and thus renders a better understanding of the global behaviour of the closed loop system.

It is well known that there are no smooth time-invariant feedback control torques which can globally stabilize the rigid body at a desired orientation.
The objective is to stabilize the rigid body at a desired orientation.

Recently, techniques have been developed which directly use the orientation matrices for the analysis and synthesis of control.

This allows a global definition of the control law and thus renders a better understanding of the global behaviour of the closed loop system.

It is well known that there are no smooth time-invariant feedback control torques which can globally stabilize the rigid body at a desired orientation.

The notion of almost global stability is what one looks for in this situation.
Almost global stabilization

Definition
In the context of this paper, a system is almost globally asymptotically stable (AGAS) if
Almost global stabilization

Definition
In the context of this paper, a system is almost globally asymptotically stable (AGAS) if
- the system has finite isolated equilibria,
Almost global stabilization

Definition
In the context of this paper, a system is almost globally asymptotically stable (AGAS) if

- the system has finite isolated equilibria,
- only one of the equilibria is asymptotically stable and the others are unstable,
Almost global stabilization

Definition
In the context of this paper, a system is almost globally asymptotically stable (AGAS) if

- the system has finite isolated equilibria,
- only one of the equilibria is asymptotically stable and the others are unstable,
- all points except those on a lower dimensional submanifold converge to the stable equilibrium point.
Almost global stabilization

Definition
In the context of this paper, a system is almost globally asymptotically stable (AGAS) if

- the system has finite isolated equilibria,
- only one of the equilibria is asymptotically stable and the others are unstable,
- all points except those on a lower dimensional submanifold converge to the stable equilibrium point.

Almost global stabilization of a rigid body has been so far addressed only for external actuation.
Outline

Introduction

AGAS with internal actuation

The modified trace function and the spinning top potential

Conclusions
Equations of motion

We consider the rigid body actuated by three orthogonally mounted rotors along the principal axes.

\[R \in SO(3) \] is the orientation matrix, \(\Omega \in \mathbb{R}^3 \) is the angular velocity in the body frame, \(I_s \) is the inertia matrix, \(\mu \in \mathbb{R}^3 \) is the conserved value of the net angular momentum, \(u \) is the torque applied at the rotors.
Equations of motion

We consider the rigid body actuated by three orthogonally mounted rotors along the principal axes.

Using conservation of angular momentum, the equations of motion\(^1\) can be reduced to \(SO(3) \times \mathbb{R}^3\)

\[
\begin{align*}
\dot{R} &= R\hat{\Omega}, \\
I_s \dot{\Omega} &= R^T \mu \times \Omega - u_{int}.
\end{align*}
\]

\(^1\)\(R \in SO(3)\) is the orientation matrix, \(\Omega \in \mathbb{R}^3\) is the angular velocity in the body frame, \(I_s\) is the inertia matrix, \(\mu \in \mathbb{R}^3\) is the conserved value of the net angular momentum, \(u\) is the torque applied at the rotors.
Equations of motion

We consider the rigid body actuated by three orthogonally mounted rotors along the principal axes.

Using conservation of angular momentum, the equations of motion\(^1\) can be reduced to \(SO(3) \times \mathbb{R}^3\)

\[
\begin{align*}
\dot{R} &= R\dot{\Omega}, \\
I_s\dot{\Omega} &= R^T \mu \times \Omega - u_{int}.
\end{align*}
\]

Equilibria of the uncontrolled system is all of \(SO(3)\).

\(^1\)\(R \in SO(3)\) is the orientation matrix, \(\Omega \in \mathbb{R}^3\) is the angular velocity in the body frame, \(I_s\) is the inertia matrix, \(\mu \in \mathbb{R}^3\) is the conserved value of the net angular angular momentum, \(u\) is the torque applied at the rotors.
Equations of motion

We consider the rigid body actuated by three orthogonally mounted rotors along the principal axes.

Using conservation of angular momentum, the equations of motion\(^1\) can be reduced to \(SO(3) \times \mathbb{R}^3\)

\[
\begin{align*}
\dot{R} & = R\hat{\Omega}, \\
I_s\dot{\Omega} & = R^T \mu \times \Omega - u_{int}.
\end{align*}
\]

Equilibria of the uncontrolled system is all of \(SO(3)\). To fix equilibrium at the desired value, an appropriate feedback torque \(u_{int}(R, \Omega)\) needs to be chosen.

\(^1\)\(R \in SO(3)\) is the orientation matrix, \(\Omega \in \mathbb{R}^3\) is the angular velocity in the body frame, \(I_s\) is the inertia matrix, \(\mu \in \mathbb{R}^3\) is the conserved value of the net angular angular momentum, \(u\) is the torque applied at the rotors.
THE FEEDBACK TORQUE

OBJECTIVE
To stabilize at $R_d \in SO(3)$.
THE FEEDBACK TORQUE

OBJECTIVE
To stabilize at $R_d \in SO(3)$.

POTENTIAL BASED FEEDBACK
We choose the feedback torque of the form $u(R) = dV(R)$, where $V : SO(3) \longrightarrow \mathbb{R}$.

Damping
Add damping so that $u(R) \rightarrow \Omega = C \Omega + dV(R)$, where C is positive definite.
THE FEEDBACK TORQUE

OBJECTIVE
To stabilize at $R_d \in SO(3)$.

POTENTIAL BASED FEEDBACK
We choose the feedback torque of the form $u(R) = dV(R)$, where $V : SO(3) \rightarrow \mathbb{R}$.

DAMPING
Add damping so that $u_{int}(R, \Omega) = C\Omega + dV(R)$, where C is positive definite.
THE CLOSED LOOP SYSTEM AND EQUILIBRIA

EQUATIONS OF MOTION

\[
\begin{align*}
\dot{R} &= R\hat{\Omega}, \\
I_s\dot{\Omega} &= R^T\mu \times \Omega - C\Omega - dV(R).
\end{align*}
\]

THE CLOSED LOOP SYSTEM AND EQUILIBRIA

EQUATIONS OF MOTION

\[\dot{R} = R\hat{\Omega}, \]
\[I_s\dot{\Omega} = R^T\mu \times \Omega - C\Omega - dV(R). \]

EQUILIBRIA
If \(dV(R_d) = 0 \), then \((R_d, 0) \) is an equilibrium of the closed loop system.

\footnote{D. E. Koditschek, Contemporary Mathematics, vol. 97, 1989.}
The closed loop system and equilibria

Equations of motion

\[\dot{R} = R\hat{\Omega}, \]
\[I_s \dot{\Omega} = R^T \mu \times \Omega - C\Omega - dV(R). \]

Equilibria

If \(dV(R_d) = 0 \), then \((R_d, 0)\) is an equilibrium of the closed loop system. However, if \(V \) is smooth, there must be additional equilibria\(^2\).

The closed loop system and equilibria

Equations of motion

\[
\begin{align*}
\dot{R} &= R\hat{\Omega}, \\
I_s\dot{\Omega} &= R^T\mu \times \Omega - C\Omega - dV(R).
\end{align*}
\]

Equilibria

If \(dV(R_d) = 0\), then \((R_d, 0)\) is an equilibrium of the closed loop system. However, if \(V\) is smooth, there must be additional equilibria\(^2\).

The main question

How to choose \(V\) so as to achieve AGAS at \((R_d, 0)\)?

A comparison with external actuation

Equations of motion in case of external actuation

\[
\begin{align*}
\dot{R} &= R\dot{\Omega}, \\
I\dot{\Omega} &= I\Omega \times \Omega + u_{ext},
\end{align*}
\]

where \(u \) is the externally applied torque.
A comparison with external actuation

Equations of motion in case of external actuation

\[
\dot{R} = R\hat{\Omega}, \\
I\dot{\Omega} = I\Omega \times \Omega + u_{ext},
\]

where \(u \) is the externally applied torque.

With the feedback torque \(u_{ext}(R, \Omega) = -u_{int}(R, \Omega) \), the closed loop system is

\[
\dot{R} = R\hat{\Omega}, \\
I\dot{\Omega} = I\Omega \times \Omega - C\Omega - dV(R).
\]
A comparison with external actuation

Equations of motion in case of external actuation

\[\dot{R} = R\dot{\Omega}, \]
\[I\dot{\Omega} = I\Omega \times \Omega + u_{ext}, \]

where \(u \) is the externally applied torque.

With the feedback torque \(u_{ext}(R, \Omega) = -u_{int}(R, \Omega) \), the closed loop system is

\[\dot{R} = R\dot{\Omega}, \]
\[I\dot{\Omega} = I\Omega \times \Omega - C\Omega - dV(R). \]

AGAS has already been addressed for external actuation. Since the equations in case of external and internal actuation are so similar, why not apply the same analysis to this case?
The main task to show AGAS is to prove stability of R_d and instability of the other undesired equilibria.
The difference

The main task to show AGAS is to prove stability of R_d and instability of the other undesired equilibria.

External actuation

For external actuation, the closed loop system can be derived using a Riemannian metric on $SO(3)$. Stability or instability is shown by linearizing the Riemannian structure.
The difference

The main task to show AGAS is to prove stability of R_d and instability of the other undesired equilibria.

External actuation
For external actuation, the closed loop system can be derived using a Riemannian metric on $SO(3)$. Stability or instability is shown by linearizing the Riemannian structure.

Internal actuation
It is *not possible* to endow the closed loop system for internal actuation with such an additional structure since
The main task to show AGAS is to prove stability of R_d and instability of the other undesired equilibria.

EXTERNAL ACTUATION
For external actuation, the closed loop system can be derived using a Riemannian metric on $SO(3)$. Stability or instability is shown by linearizing the Riemannian structure.

INTERNAL ACTUATION
It is not possible to endow the closed loop system for internal actuation with such an additional structure since

- the equations we work with in this case are obtained by reduction,
The difference

The main task to show AGAS is to prove stability of R_d and instability of the other undesired equilibria.

External actuation
For external actuation, the closed loop system can be derived using a Riemannian metric on $SO(3)$. Stability or instability is shown by linearizing the Riemannian structure.

Internal actuation
It is not possible to endow the closed loop system for internal actuation with such an additional structure since

- the equations we work with in this case are obtained by reduction,
- there is a further elimination of the rotor variables.
The difference

The main task to show AGAS is to prove stability of R_d and instability of the other undesired equilibria.

External actuation
For external actuation, the closed loop system can be derived using a Riemannian metric on $SO(3)$. Stability or instability is shown by linearizing the Riemannian structure.

Internal actuation
It is not possible to endow the closed loop system for internal actuation with such an additional structure since

- the equations we work with in this case are obtained by reduction,
- there is a further elimination of the rotor variables.

Therefore to analyze stability for internal actuation, we resort to a general linearization procedure on the nonlinear manifold $SO(3) \times \mathbb{R}^3$.
Suppose X is a vector field on a manifold M with $X(x_0) = 0$. How to determine stability of x_0 by linearizing?
Suppose X is a vector field on a manifold M with $X(x_0) = 0$. How to determine stability of x_0 by linearizing?

Suppose $\psi : \mathbb{R}^n \rightarrow M$ is a local parameterization of M around x_0 ($\psi(0) = x_0$). Define

$$Y := \psi_* X,$$

the pull back of X on \mathbb{R}^n. Stability of X can be studied by studying Y, which is a vector field on \mathbb{R}^n.
Suppose X is a vector field on a manifold M with $X(x_0) = 0$. How to determine stability of x_0 by linearizing?

Suppose $\psi : \mathbb{R}^n \longrightarrow M$ is a local parameterization of M around x_0 ($\psi(0) = x_0$). Define

$$Y := \psi_* X,$$

the pull back of X on \mathbb{R}^n. Stability of X can be studied by studying Y, which is a vector field on \mathbb{R}^n.

Linearization of Y

The linearization of Y at 0 can be obtained as follows:

$$DY(0) \gamma := \frac{d}{dt} \bigg|_{t=0} Y(t\gamma).$$

This is equivalent to linearizing X at x_0.
LINEARIZATION USING EXPONENTIAL COORDINATES

THE EXPONENTIAL COORDINATES FOR $SO(3)$

To linearize around the equilibrium $(R_e, 0)$, define
$$\psi : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow SO(3) \times \mathbb{R}^3$$

as $\psi = (R_e \circ \exp, \text{id})$, where \exp is the usual matrix exponential map.

THE EXPONENTIAL COORDINATES FOR $SO(3)$

To linearize around the equilibrium $(R_e, 0)$, define

$\psi : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow SO(3) \times \mathbb{R}^3$ as $\psi = (R_e \circ \exp, \text{id})$, where \exp is the usual matrix exponential map.

This is a refinement of a similar derivation in Chaturvedi et al.3

Linearization using exponential coordinates

The exponential coordinates for $SO(3)$

To linearize around the equilibrium $(R_e, 0)$, define
\[\psi : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow SO(3) \times \mathbb{R}^3 \] as $\psi = (R_e \circ \exp, \text{id})$, where \exp is the usual matrix exponential map.

This is a refinement of a similar derivation in Chaturvedi et al.3

This refinement is required so as to

- rigorously establish the correspondence between the stability or instability of the linear system and the original system on the manifold,

Linearization using exponential coordinates

The exponential coordinates for $SO(3)$

To linearize around the equilibrium $(R_e, 0)$, define
\[\psi : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow SO(3) \times \mathbb{R}^3 \] as $\psi = (R_e \circ \exp, \text{id})$, where \exp is the usual matrix exponential map.

This is a refinement of a similar derivation in Chaturvedi et al.\(^3\)

This refinement is required so as to

- rigorously establish the correspondence between the stability or instability of the linear system and the original system on the manifold,

- analyze the feedback torque of the form $u = C\Omega + dV(R)$ for any general $V : SO(3) \rightarrow \mathbb{R}$.

The linearized dynamics

Linearized dynamics
The linearization around \((R_e, 0)\) is

\[
I_s \ddot{\eta} + \left(C - \overrightarrow{R_e} \mu \right) \dot{\eta} - \delta^2 \tilde{V}(R_e) \eta = 0.
\]

\(^4\text{P. C. Hughes, Spacecraft Attitude Dynamics, 1986.}\)
The linearized dynamics

Linearized dynamics
The linearization around \((R_e, 0)\) is

\[
I_s \ddot{\eta} + \left(C - \overrightarrow{R_e} \mu \right) \dot{\eta} - \delta^2 \tilde{V}(R_e) \eta = 0.
\]

This is a linear gyroscopic mechanical system with damping.

The linearized dynamics

Linearized dynamics
The linearization around \((R_e, 0)\) is

\[
I_s \ddot{\eta} + \left(C - \widetilde{R}_e^T \mu \right) \dot{\eta} - \delta^2 \tilde{V}(R_e) \eta = 0.
\]

This is a linear gyroscopic mechanical system with damping.

Theorem (Kelvin-Tait-Chetaev\(^4\))

The origin of the system \((\eta, \dot{\eta}) = (0, 0)\) is

- asymptotically stable if both \(\delta^2 \tilde{V}\) and \(C\) are positive definite,

The linearized dynamics

Linearized dynamics
The linearization around \((R_e, 0)\) is

\[
I_s \ddot{\eta} + \left(C - \tilde{R}_e^T \mu \right) \dot{\eta} - \delta^2 \tilde{V}(R_e) \eta = 0.
\]

This is a linear gyroscopic mechanical system with damping.

Theorem (Kelvin-Tait-Chetaev\(^4\))

The origin of the system \((\eta, \dot{\eta}) = (0, 0)\) is

- asymptotically stable if both \(\delta^2 \tilde{V}\) and \(C\) are positive definite,
- unstable if \(K\) is not positive definite and \(C\) is positive definite.

The choice of V

Choose V so that

- dV vanishes at isolated points in $SO(3)$,
The choice of V

Choose V so that

- dV vanishes at isolated points in $SO(3)$,
- the Hessian of V is positive definite only at a single critical point R_d, and non-singular at the other critical points.
The choice of V

Choose V so that

- dV vanishes at isolated points in $SO(3)$,
- the Hessian of V is positive definite only at a single critical point R_d, and non-singular at the other critical points.

By KTC theorem, the linearized closed loop system is stable at $(R_d, 0)$ and unstable at the others.
The choice of V

Choose V so that

- dV vanishes at isolated points in $SO(3)$,
- the Hessian of V is positive definite only at a single critical point R_d, and non-singular at the other critical points.

By KTC theorem, the linearized closed loop system is stable at $(R_d,0)$ and unstable at the others.

Theorem

The closed loop system is AGAS at $(R_d,0)$.
A COMPARISON THEOREM

Suppose V is chosen appropriately as indicated. Then,
A COMPARISON THEOREM

Suppose V is chosen appropriately as indicated. Then,

Theorem

- The control law of the form

 $$u_{ext}(R, \Omega) = -C\Omega - dV(R)$$

 almost globally stabilizes the equilibrium point $(R_d, 0)$ for the externally actuated system.

- The control law of the form

 $$u_{int}(R, \Omega) = C\Omega + dV(R)$$

 almost globally stabilizes the equilibrium point $(R_d, 0)$ for the internally actuated system.

However, it does not follow that if any $u(R, \Omega)$ applied internally stabilizes $(R_d, 0)$, then $-u(R, \Omega)$ applied externally stabilizes the same. Counterexamples can be constructed.
A COMPARISON THEOREM

Suppose V is chosen appropriately as indicated. Then,

Theorem

- The control law of the form

 $$u_{\text{ext}}(R, \Omega) = -C\Omega - dV(R)$$

 almost globally stabilizes the equilibrium point $(R_d, 0)$ for the externally actuated system.

- The control law of the form

 $$u_{\text{int}}(R, \Omega) = C\Omega + dV(R)$$

 almost globally stabilizes the equilibrium point $(R_d, 0)$ for the internally actuated system.

However..

It does not follow that if any $u(R, \Omega)$ applied internally stabilizes $(R_d, 0)$, then $-u(R, \Omega)$ applied externally stabilizes the same. *Counterexamples can be constructed.*
Outline

Introduction

AGAS with internal actuation

The modified trace function and the spinning top potential

Conclusions
The modified trace function

Modified trace functions\(^5\) (MTF) have been used earlier in connection with rigid body stabilization. It is defined as

\[\text{trm}_P(R) = \text{trace}(PR), \]

where \(P\) is a symmetric matrix.

The modified trace function

Modified trace functions\(^5\) (MTF) have been used earlier in connection with rigid body stabilization. It is defined as

\[
\text{trm}_P(R) = \text{trace}(PR),
\]

where \(P\) is a symmetric matrix.

Lemma

If \(P\) is a symmetric \(3 \times 3\) matrix with distinct eigenvalues \(\pi_1, \pi_2, \pi_3\) and if

\[
(\pi_1 + \pi_2)(\pi_2 + \pi_3)(\pi_3 + \pi_1) \neq 0,
\]

then there are exactly four critical points of \(\text{trm}_P(.)\).

The modified trace function

Modified trace functions\(^5\) (MTF) have been used earlier in connection with rigid body stabilization. It is defined as

\[\text{trm}_P(R) = \text{trace}(PR), \]

where \(P\) is a symmetric matrix.

Lemma

*If \(P\) is a symmetric 3 \(\times\) 3 matrix with distinct eigenvalues \(\pi_1, \pi_2, \pi_3\) and if

\[(\pi_1 + \pi_2)(\pi_2 + \pi_3)(\pi_3 + \pi_1) \neq 0,\]

then there are exactly four critical points of \(\text{trm}_P(.)\).*

It further follows that \(\delta^2V\) is positive definite at only one of the critical points; nonsingular at the others.

Modified trace functions\(^5\) (MTF) have been used earlier in connection with rigid body stabilization. It is defined as

\[
\text{trm}_P(R) = \text{trace}(PR),
\]

where \(P\) is a symmetric matrix.

Lemma

If \(P\) is a symmetric \(3 \times 3\) matrix with distinct eigenvalues \(\pi_1, \pi_2, \pi_3\) and if

\[
(\pi_1 + \pi_2)(\pi_2 + \pi_3)(\pi_3 + \pi_1) \neq 0,
\]

then there are exactly four critical points of \(\text{trm}_P(.)\).

It further follows that \(\delta^2V\) is positive definite at only one of the critical points; nonsingular at the others. *Thus, MTFs are tailor-made for AGAS.*

The spinning top potential

Our aim is to construct a potential function that can be used to achieve AGAS, motivated by the gravitational potential of a spinning top.
The spinning top potential

Our aim is to construct a potential function that can be used to achieve AGAS, motivated by the gravitational potential of a spinning top.

The gravitational potential of a spinning top can be written as:

\[V(R) = -mglk \cdot Rk, \quad k \in \mathbb{R}^3 \]

under a suitable choice of the body frame.

In fact, potential functions of the form:

\[V(R) = -k \cdot Rk, \quad k \in \mathbb{R}^3 \]

have been used earlier to stabilize relative equilibria.

However, \(\delta^2 V(e) \), where \(e \in SO(3) \) is the identity, is positive semidefinite.

If we modify so that:

\[V(R) = -k_1 \cdot Rk_1 - k_2 \cdot Rk_2, \quad k_1, k_2 \in \mathbb{R}^3 \]

are linearly independent unit vectors and not orthonormal, then \(\delta^2 V(e) \) is positive definite.
The spinning top potential

Our aim is to construct a potential function that can be used to achieve AGAS, motivated by the gravitational potential of a spinning top.

The gravitational potential of a spinning top can be written as
\[V(R) = -mglk \cdot Rk, \quad k \in \mathbb{R}^3 \]
under a suitable choice of the body frame.

In fact, potential functions of the form
\[V(R) = -k_1 \cdot Rk_1 - k_2 \cdot Rk_2, \quad k_1, k_2 \in \mathbb{R}^3 \]
are linearly independent unit vectors and not orthonormal, then \(\delta^2 V(e) \) is positive definite.

In fact, potential functions of the form \(V(R) = -k \cdot Rk, \quad k \in \mathbb{R}^3 \) have been used earlier to stabilize relative equilibria.
The spinning top potential

Our aim is to construct a potential function that can be used to achieve AGAS, motivated by the gravitational potential of a spinning top.

The gravitational potential of a spinning top can be written as $V(R) = -mglk \cdot Rk$, $k \in \mathbb{R}^3$ under a suitable choice of the body frame.

In fact, potential functions of the form $V(R) = -k \cdot Rk$, $k \in \mathbb{R}^3$ have been used earlier to stabilize relative equilibria.

However, $\delta^2 V(e)$, where $e \in SO(3)$ is the identity, is positive semidefinite.
The spinning top potential

Our aim is to construct a potential function that can be used to achieve AGAS, motivated by the gravitational potential of a spinning top.

The gravitational potential of a spinning top can be written as

\[V(R) = -mgk \cdot Rk, \quad k \in \mathbb{R}^3 \]

under a suitable choice of the body frame.

In fact, potential functions of the form

\[V(R) = -k \cdot Rk, \quad k \in \mathbb{R}^3 \]

have been used earlier to stabilize relative equilibria.

However, \(\delta^2 V(e) \), where \(e \in SO(3) \) is the identity, is positive semidefinite.

If we modify so that \(V(R) = -k_1 \cdot Rk_1 - k_2 \cdot Rk_2, \quad k_1, k_2 \in \mathbb{R}^3 \) are linearly independent unit vectors and not orthonormal, then \(\delta^2 V(e) \) is positive definite.
Proposition

There exists a \(P \in \text{sym}(3 \times 3) \) such that

\[
V(R) = -k_1 \cdot Rk_1 - k_2 \cdot Rk_2 = -\text{trace}(PR),
\]

where \(P \) is diagonalizable to \(\text{diag}(a_1, a_2, 0) \), \(a_1, a_2 > 0 \).
Getting a modified trace function

Proposition
There exists a $P \in \text{sym}(3 \times 3)$ such that

$$V(R) = -k_1 \cdot Rk_1 - k_2 \cdot Rk_2 = -\text{trace}(PR),$$

where P is diagonalizable to $\text{diag}(a_1, a_2, 0)$, $a_1, a_2 > 0$.

Thus, V is indeed a MTF and can be used to achieve AGAS. It can be shown,

$$dV(R) = k_1 \times R^Tk_1 - k_2 \times R^Tk_2$$
Getting a modified trace function

Proposition
There exists a $P \in \text{sym}(3 \times 3)$ such that

$$V(R) = -k_1 \cdot Rk_1 - k_2 \cdot Rk_2 = -\text{trace}(PR),$$

where P is diagonalizable to $\text{diag}(a_1, a_2, 0)$, $a_1, a_2 > 0$.

Thus, V is indeed a MTF and can be used to achieve AGAS. It can be shown,

$$dV(R) = k_1 \times R^T k_1 - k_2 \times R^T k_2$$

Proposition
The feedback control torque

$$u_{int}(R, \Omega) = C\Omega - k_1 \times R^T k_1 - k_2 \times R^T k_2$$

achieves AGAS at $(e, 0)$ for the internally actuated system.
Getting a modified trace function

Proposition

There exists a $P \in \text{sym}(3 \times 3)$ such that

$$V(R) = -k_1 \cdot Rk_1 - k_2 \cdot Rk_2 = -\text{trace}(PR),$$

where P is diagonalizable to $\text{diag}(a_1, a_2, 0)$, $a_1, a_2 > 0$.

Thus, V is indeed a MTF and can be used to achieve AGAS. It can be shown,

$$dV(R) = k_1 \times R^T k_1 - k_2 \times R^T k_2$$

Proposition

The feedback control torque

$$u_{int}(R, \Omega) = C\Omega - k_1 \times R^T k_1 - k_2 \times R^T k_2$$

achieves AGAS at $(e, 0)$ for the internally actuated system.

These results can be generalized to achieve AGAS at any $(R_d, 0)$.
Simulations

\[R_d = e. \]

Control law

We consider the potential

\[V(R) = c_1 e_1 \cdot Re_1 + c_2 e_2 \cdot Re_2, \]

where \(c_1 = 1, \ c_2 = 1.2. \)
$R_d = e.$

Control law
We consider the potential

$$V(R) = c_1 e_1 \cdot Re_1 + c_2 e_2 \cdot Re_2,$$

where $c_1 = 1$, $c_2 = 1.2$.

Model and control parameters
$I_s = \text{diag}(40, 45, 42.5) \ kg \ m^2$, $C = 10I_{3 \times 3}$, $c_1 = 1$, $c_2 = 1.2$, $C = 10I_{3 \times 3}$.
Simulations

\(R_d = e. \)

Control law

We consider the potential

\[
V(R) = c_1 e_1 \cdot Re_1 + c_2 e_2 \cdot Re_2,
\]

where \(c_1 = 1, \ c_2 = 1.2. \)

Model and control parameters

\(I_s = \text{diag}(40, 45, 42.5) \ kg \ m^2, \ C = 10I_{3 \times 3}, \ c_1 = 1, \ c_2 = 1.2, \ C = 10I_{3 \times 3}. \)

Initial conditions

\(R_0 = R_x(\pi/6)R_y(\pi/8)R_z(5\pi/12) \) and \(\mu = (1, 1.5, -2) \)
Simulation results

Figure: Error norm of R and the rigid body angular velocity Ω
Simulation Results

Figure: Torque in Nm applied at the three rotors
Simulation results

Figure: Angular velocity in RPM of the three rotors
Outline

Introduction

AGAS with internal actuation

The modified trace function and the spinning top potential

Conclusions
Conclusions

We investigated the properties of potential functions that can achieve AGAS for a rigid body with internal actuation.
Conclusions

We investigated the properties of potential functions that can achieve AGAS for a rigid body with internal actuation.

We showed that if an externally applied control torque derived from a potential can stabilize a desired equilibrium, then the negative of the same torque applied internally can stabilize the same equilibrium.
Conclusions

We investigated the properties of potential functions that can achieve AGAS for a rigid body with internal actuation.

We showed that if an externally applied control torque derived from a potential can stabilize a desired equilibrium, then the negative of the same torque applied internally can stabilize the same equilibrium.

We also showed that the classical spinning top potential can be used as a motivation for deriving such a stabilizing potential, which leads to the MTF.
Thank You