THE EULER–POINCARÉ EQUATION FOR A SPHERICAL ROBOT ACTUATED BY A PENDULUM

Sneha Gajbhiye¹, Ravi N Banavar¹

¹Systems and Control Engineering, IIT Bombay, India

August 29, 2012
Outline

Introduction

The Setting

Modeling of spherical robot

Dynamic equation

Equilibrium Configuration

Controllability
Outline

Introduction

The Setting

Modeling of spherical robot

Dynamic equation

Equilibrium Configuration

Controllability
Spherical robot

Construction
A spherical shell with a driving mechanism mounted inside to make the sphere roll.

Figure: Prototype of the spherical robot
Mechanism

Figure: Schematic of the spherical robot

- Sphere rolling on a plane
- Internal driving mechanism consists of a yoke and a pendulum
- Movement of the pendulum causes a change in the CG and the sphere to roll
- Yoke movement may be interpreted as a steering input
BROAD OBJECTIVES AND METHODOLOGY

CONTROL OBJECTIVE

- To move the sphere from one point and orientation to another specified point and orientation.
- Devise motion planning algorithm for the robot to achieve the desired orientation and point.
Broad objectives and methodology

Control objective

- To move the sphere from one point and orientation to another specified point and orientation.
- Devise motion planning algorithm for the robot to achieve the desired orientation and point.

Steps to achieve the objective

- Dynamic model of the robot.
- Study equilibrium configurations.
- Study controllability and devise motion planning algorithms.
Outline

Introduction

The Setting

Modeling of spherical robot

Dynamic equation

Equilibrium configuration

Controllability
Lagrangian Mechanics

- The set of all possible configurations of a mechanical system is a smooth manifold Q.
- The set of configurations and velocities is the tangent bundle TQ.
- The Lagrangian is a map $L : TQ \rightarrow \mathbb{R}$.
- A distribution of velocities is a linear subspace $\mathcal{D} \subset TQ$ (appears in the context of nonholonomic systems.)
- The equations of motion on TQ are given by the principle of least action applied to a Lagrangian function L.
Lagrangian Mechanics

- The set of all possible configurations of a mechanical system is a smooth manifold Q.
- The set of configurations and velocities is the tangent bundle TQ.
- The Lagrangian is a map $L : TQ \rightarrow \mathbb{R}$.
- A distribution of velocities is a linear subspace $\mathcal{D} \subset TQ$ (appears in the context of nonholonomic systems.)
- The equations of motion on TQ are given by the principle of least action applied to a Lagrangian function L.

Symmetry

The Lagrangian function is invariant under a Lie group action

$$L(g \cdot \dot{q}) = L(\dot{q}) \quad \forall \dot{q} \in TQ, \forall g \in G,$$

where G is a Lie group.
Lagrangian reduction

- By *identifying* the group symmetry and utilizing the associated conservation law, the dynamics are expressed on a reduced space.

- Start with Q, define a Lie group G action. If the Lagrangian and distribution are invariant with respect to this group action, express the reduced Lagrangian on TQ/G.

- Factor the *symmetry* on the semidirect product (Euclidean space) to obtain the *Euler-Poincaré equation* on reduced space.

Symmetry Breaking

The full Lie group symmetry is sometimes broken - results in an isotropy subgroup (eg. with a gravity term).

\[^{3}\text{D. D. Holm al: Geometric Mechanics and Symmetry, Oxford Texts, 2009.}\]
\[^{4}\text{Schneider D: Dynamical Systems, pp 87-130, 2002.}\]
Symmetry Breaking

- The full Lie group symmetry is sometimes broken - results in an isotropy subgroup (eg. with a gravity term).
- The Lagrangian function’s G-invariance is now expressed with an advected parameter. (the terminology "advected" finds its source in fluid modeling as invariants of a flow.3)

4Schneider D: *Dynamical Systems*, pp 87-130, 2002.
Symmetry Breaking

- The full Lie group symmetry is sometimes broken - results in an isotropy subgroup (eg. with a gravity term).
- The Lagrangian function’s G-invariance is now expressed with an advected parameter. (the terminology "advected" finds its source in fluid modeling as invariants of a flow.³)
- The equation of motion on a reduced space, given by the principle of least action on a reduced Lagrangian function l, is called the Euler-Poincaré equation (EP).

⁴Schneider D: Dynamical Systems, pp 87-130, 2002.
Symmetry Breaking

- The full Lie group symmetry is sometimes broken - results in an isotropy subgroup (eg. with a gravity term).
- The Lagrangian function’s G-invariance is now expressed with an advected parameter. (the terminology "advected" finds its source in fluid modeling as invariants of a flow.\(^3\))
- The equation of motion on a reduced space, given by the principle of least action on a reduced Lagrangian function l, is called the Euler-Poincaré equation (EP).

The Euler-Poincaré framework for the Chaplygin’s sphere where the center of mass coincides with the geometric center of the sphere has been discussed by Schneider\(^4\).

\(^4\)Schneider D: *Dynamical Systems*, pp 87-130, 2002.
The Euler-Poincaré equation - with potential energy terms

- Start with the extended configuration space \tilde{Q} and the associated Lagrangian \tilde{L}, which is assumed invariant under G.
The Euler-Poincaré equation - with potential energy terms

- Start with the extended configuration space \tilde{Q} and the associated Lagrangian \tilde{L}, which is assumed invariant under G.
- System configuration Q is an immersed submanifold of \tilde{Q} and the system Lagrangian is invariant under the isotropy subgroup - G_k.
The Euler-Poincaré equation - with potential energy terms

- Start with the extended configuration space \tilde{Q} and the associated Lagrangian \tilde{L}, which is assumed invariant under G.
- System configuration Q is an immersed submanifold of \tilde{Q} and the system Lagrangian is invariant under the isotropy subgroup - G_k.
- The velocity constraints expressed as a distribution - $D \subset TQ$ - give rise to a reduced constrained-Lagrangian.
The Euler-Poincaré equation - with potential energy terms

- Start with the extended configuration space \tilde{Q} and the associated Lagrangian \tilde{L}, which is assumed invariant under G.
- System configuration Q is an immersed submanifold of \tilde{Q} and the system Lagrangian is invariant under the isotropy subgroup - G_k.
- The velocity constraints expressed as a distribution - $D \subset TQ$ - give rise to a reduced constrained-Lagrangian.
- Incorporating the advection dynamics, we obtain the Euler-Poincaré equation.
Outlining

Introduction

The Setting

Modeling of spherical robot

Dynamic equation

Equilibrium Configuration

Controllability
Coordinate frames

Figure: Coordinate frames for the system
Coordinate frames

Figure: Coordinate frames for the system

Configuration space

\[Q = SO(3) \times \mathbb{R}^2 \times S^1 \times S^1 \]
Notations

- $R_s \in SO(3)$- orientation of the sphere with respect to the inertial frame,
- R_α - orientation of the yoke with respect to the sphere body frame,
- R_φ - orientation of the pendulum with respect to the yoke frame,
- $(\omega_s)^s$, $(\omega_\alpha)^Y$, $(\omega_\varphi)^P$- angular velocity of sphere in sphere frame, angular velocity of yoke in yoke frame and angular velocity of pendulum in pendulum body frame respectively.
- \dot{r}_s - linear velocity of the centre of mass of the sphere.
Lagrangian

\[
L = \frac{1}{2} m_s \| \dot{r}_s \|^2 + \frac{1}{2} \left\langle \mathbb{I} \omega_s^s, \omega_s^s \right\rangle + \frac{1}{2} \left[m_p g l \langle \hat{e}_3, R_s R_\alpha R_\varphi \hat{k}_p \rangle + \langle R_s \omega_s^s + R_s R_\alpha (\omega_\alpha)^Y + R_s R_\alpha R_\varphi (\omega_\varphi)^P \rangle \times R_s R_\alpha R_\varphi \hat{k}_p \rangle \right]^2
\]

\(\text{K.E. of sphere}\)
\(\text{P.E. of pendulum}\)
\(\text{K.E. of pendulum}\)

Rolling constraint: \(\dot{r}_s = (\omega_s^I)^T \times r \hat{e}_3 \quad \Rightarrow \quad \dot{r}_s = (\hat{\omega}_s)^I r \hat{e}_3 \)
Lagrangian

\[L = \frac{1}{2} m_s \| \dot{r}_s \| ^2 + \frac{1}{2} \langle \omega_s^s, \omega_s^s \rangle + m_p gl \langle \hat{e}_3, R_s R_\alpha R_\varphi \hat{k}_p \rangle \]

\[\frac{1}{2} m_p \| \dot{r}_s + [R_s \omega_s^s + R_s R_\alpha (\omega_\alpha)^Y + R_s R_\alpha R_\varphi (\omega_\varphi)^P] \times R_s R_\alpha R_\varphi \hat{k}_p \| ^2 \]

Rolling constraint: \(\dot{r}_s = (\omega_s)^I \times r \hat{e}_3 \quad \Rightarrow \quad \dot{r}_s = (\hat{\omega}_s)^I r \hat{e}_3 \)

Symmetry

- Left group action, \(G = SO(3) \ltimes \mathbb{R}^3 \) on manifold \(Q \).
Lagrangian

\[
L = \frac{1}{2} m_s \| \dot{r}_s \|^2 + \frac{1}{2} \langle \hat{\omega}_s^s, \omega_s^s \rangle + m_g l \langle \hat{e}_3, R_s R_\alpha R_\varphi \hat{k}_p \rangle \\
K.E. of sphere \\
P.E. of pendulum
\]

\[
+ \frac{1}{2} m_p \| \dot{r}_s + [\dot{R}_s \omega_s^s + \dot{R}_s R_\alpha (\omega_\alpha)^Y + R_s R_\alpha R_\varphi (\omega_\varphi)^P] \times R_s R_\alpha R_\varphi \hat{k}_p \|^2
\]

K.E. of pendulum

Rolling constraint: \(\dot{r}_s = (\omega_s)^I \times r\hat{e}_3 \quad \Rightarrow \quad \dot{r}_s = (\hat{\omega}_s)^I r\hat{e}_3 \)

Symmetry

- Left group action, \(G = SO(3) \times \mathbb{R}^3 \) on manifold \(Q \).
- \(L \) and \(D \) are invariant when \(R_1^T \hat{e}_3 = \hat{e}_3 \). (Remain unchanged if we translate the inertial frame anywhere on the XY-plane and rotate it about \(\hat{e}_3 \), the direction of gravity.)
Lagrangian

\[L = \frac{1}{2} m_s \| \dot{r}_s \|^2 + \frac{1}{2} \langle \mathbb{I} \omega^s_s, \omega^s_s \rangle + m_p g l \langle \hat{e}_3, R_s R_\alpha R_\phi \hat{k}_p \rangle \\
\underbrace{\text{K.E. of sphere}} + \underbrace{\text{P.E. of pendulum}} \\
+ \frac{1}{2} m_p \| \dot{r}_s + [R_s \omega^s_s + R_s R_\alpha (\omega_\alpha)^Y + R_s R_\alpha R_\phi (\omega_\phi)^P] \times R_s R_\alpha R_\phi \hat{k}_p \|^2 \\
\underbrace{\text{K.E. of pendulum}} \\
\]

Rolling constraint: \(\dot{r}_s = (\omega_s)^I \times r \hat{e}_3 \implies \dot{r}_s = (\hat{\omega}_s)^I r \hat{e}_3 \)

Symmetry

- Left group action, \(G = SO(3) \rtimes \mathbb{R}^3 \) on manifold \(Q \).
- \(L \) and \(D \) are invariant when \(R^T_1 \hat{e}_3 = \hat{e}_3 \). (Remain unchanged if we translate the inertial frame anywhere on the XY-plane and rotate it about \(\hat{e}_3 \), the direction of gravity.)
- Symmetry group
 \[G_{\hat{e}_3} = \{(R_s, b) \in SO(3) \rtimes \mathbb{R}^3 | R^T_s \hat{e}_3 = \hat{e}_3 \} = SO(2) \rtimes \mathbb{R}^2. \]
- The advected quantity here is \(\Gamma(t) = R^T_s \hat{e}_3 \)
Mappings

Adjoint and Co-adjoint operation for \(SE(3) = SO(3) \ltimes \mathbb{R}^3 \)

- \(\text{Ad}_{(R,x)}(\xi, \upsilon) = (R\xi R^{-1}, R\upsilon - R\xi R^{-1}x) \)
- \(\text{Ad}^*_{(R,x)}(\mu, \beta) = (R\mu R^{-1} + x \diamond (R\beta), R\beta) \)

where \((\xi, \upsilon) \in \mathfrak{se}(3) = \mathfrak{so}(3) \ltimes \mathbb{R}^3\), \((\mu, \beta) \in \mathfrak{se}^*(3) = \mathfrak{so}^*(3) \ltimes (\mathbb{R}^3)^*\). \(R\beta \) denote the induced left action of \(R \) on \(\beta \) i.e. the left action of \(SO(3) \) on \(\mathbb{R}^3 \) induces a left action of \(SO(3) \) on \((\mathbb{R}^3)^* \).

Adjoint and Co-adjoint action of \(\mathfrak{se}(3) = \mathfrak{so}(3) \ltimes \mathbb{R}^3 \)

- \(\text{ad}_{(\eta, \upsilon)}(\xi, \upsilon) = ([\eta, \xi], \eta \upsilon - \xi \upsilon) \)
 where induced action of \(\mathfrak{so}(3) \) on \(\mathbb{R}^3 \) is denoted by \(\eta \upsilon \).
- \(\text{ad}^*_{(\eta, \upsilon)}(\mu, \beta) = (-[\eta, \mu] + \beta \diamond \upsilon, -\eta \beta) \).
Lagrangian reduction

- Configuration space $S = SO(3) \times \mathbb{R}^3 \times S^1 \times S^1$
Lagrangian reduction

- Configuration space $S = SO(3) \times \mathbb{R}^3 \times S^1 \times S^1$

 Original Lagrangian $\quad L : T(SO(3) \times \mathbb{R}^2 \times S^1 \times S^1) \to \mathbb{R}$

 Reduced Lagrangian $\quad l : t \times M \times S^1 \times S^1 \to \mathbb{R} \quad t \in so(3) \times \mathbb{R}^3$

 Constrained Lagrangian $\quad l_c : \mathfrak{h} \times M \times S^1 \times S^1 \to \mathbb{R} \quad \mathfrak{h} \in so(3)$

Rolling constraint $\bar{\mathcal{Y}} = r^\mathfrak{h} \hat{\omega} s^s \Gamma$. $\hat{\omega} s^s = R^T s \dot{R} s$ is the (left-invariant) sphere-body angular velocity.
Lagrangian Reduction

- Configuration space $S = SO(3) \times \mathbb{R}^3 \times S^1 \times S^1$

 Original Lagrangian
 $$L : T(SO(3) \times \mathbb{R}^2 \times S^1 \times S^1) \longrightarrow \mathbb{R}$$

 Reduced Lagrangian
 $$l : t \times M \times S^1 \times S^1 \longrightarrow \mathbb{R} \quad t \in so(3) \times \mathbb{R}^3$$

 Constrained Lagrangian
 $$l_c : \mathfrak{h} \times M \times S^1 \times S^1 \longrightarrow \mathbb{R} \quad \mathfrak{h} \in so(3)$$

- M is the orbit space of $G/G_{\hat{e}_3}$ acting on \hat{e}_3 in \mathbb{R}^3.

\[
L(R_s, \hat{e}_3, \dot{R}_s, \dot{X}, R_\alpha, R_\varphi, \dot{R}_\alpha, \dot{R}_\varphi) = l(e, R_s^T \dot{R}_s, R_s^T \dot{X}, R_s^T \hat{e}_3, R_\alpha, R_\varphi, \dot{R}_\alpha, \dot{R}_\varphi),
\]

\[
= l(\hat{\omega}_s^s, \bar{Y}, \Gamma, R_\alpha, R_\varphi, \dot{R}_\alpha, \dot{R}_\varphi),
\]

\[
= l_c(\hat{\omega}_s^s, r\hat{\omega}_s^s \Gamma, \Gamma, R_\alpha, R_\varphi, \dot{R}_\alpha, \dot{R}_\varphi).
\]

- Rolling constraint
 $$\bar{Y} = r\hat{\omega}_s^s \Gamma.$$

- $\hat{\omega}_s^s = R_s^T \dot{R}_s$ is the (left-invariant) sphere-body angular velocity.
Outline

Introduction

The Setting

Modeling of spherical robot

Dynamic equation

Equilibrium Configuration

Controllability
The Euler-Poincaré equation

\[
\frac{d}{dt} \left(\frac{\partial l_c}{\partial \omega_s^s} \right) - ad^*_{\omega_s^s} \left(\frac{\partial l_c}{\partial \omega_s^s} \right) = - \left(\frac{\partial l}{\partial \bar{Y}} \diamond \dot{\Gamma} \right) + \left(\frac{\partial l}{\partial \Gamma} \diamond \Gamma \right),
\]

\[
\frac{d}{dt} \left(\frac{\partial l}{\partial \dot{\alpha}} \right) - \frac{\partial l}{\partial \alpha} = 0,
\]

\[
\frac{d}{dt} \left(\frac{\partial l}{\partial \dot{\phi}} \right) - \frac{\partial l}{\partial \phi} = 0,
\]

\[\dot{\Gamma} = -\omega_s^s \times \Gamma.\]

The diamond operator

\[\rho_v : \mathfrak{s}\mathfrak{o}(3) \to \mathbb{R}^3 \quad \rho_v^* : \mathfrak{s}\mathfrak{o}^*(3) \to \mathbb{R}^3^*\]

\[\mathbb{R}^3 \times \mathbb{R}^3^* \to \mathfrak{s}\mathfrak{o}^*(3) : (v, w) \to v \diamond w \triangleq \rho_v^*(w)\]
Carrying out the differentials, the dynamic equation is represented as

\[
M(\Gamma, \alpha, \varphi) \begin{bmatrix}
\dot{\omega}_s \\
\ddot{\alpha} \\
\ddot{\varphi}
\end{bmatrix} = -\frac{d}{dt}(M(\Gamma, \alpha, \varphi)) \begin{bmatrix}
\omega_s \\
\dot{\alpha} \\
\dot{\varphi}
\end{bmatrix} + \begin{bmatrix}
ad^*_{\omega_s} \left(\frac{\partial l_c}{\partial \omega_s} \right) \\
\frac{\partial T(\Gamma, \alpha, \varphi)}{\partial \alpha} \\
\frac{\partial T(\Gamma, \alpha, \varphi)}{\partial \varphi}
\end{bmatrix}
\begin{bmatrix}
\omega_s \\
\dot{\alpha} \\
\dot{\varphi}
\end{bmatrix}
+ \begin{bmatrix}
\frac{\partial l}{\delta \Gamma} \times \Gamma \\
-\frac{\partial V(\Gamma, \alpha, \varphi)}{\partial \alpha} \\
-\frac{\partial V(\Gamma, \alpha, \varphi)}{\partial \varphi}
\end{bmatrix}
+ \begin{bmatrix}
-(\frac{\partial l}{\partial Y}) \times \dot{\Gamma} \\
0 \\
0
\end{bmatrix}
+ \begin{bmatrix}
0 \\
\tau_\alpha \\
\tau_\varphi
\end{bmatrix}.
\]
Outline

Introduction

The Setting

Modeling of spherical robot

Dynamic equation

Equilibrium Configuration

Controllability
Equilibrium Configuration

Figure: Equilibrium configuration manifolds: a) downright position of pendulum b) upright position.

Set \((\omega^s, \dot{\alpha}, \dot{\phi}) \equiv 0\), and assuming constant holding torques \(\tau_\alpha\) and \(\tau_\varphi\),

\[
m_p g l \chi \times \Gamma_e = 0 \implies \chi \times \Gamma_e = 0,
\]

\[
\frac{\partial V(\Gamma, \alpha, \varphi)}{\partial \alpha} = \tau_\alpha; \quad \frac{\partial V(\Gamma, \alpha, \varphi)}{\partial \varphi} = \tau_\varphi.
\]

\[
\chi = R_\alpha R_\varphi \hat{k}
\]
Observations on equilibria

- Vector \mathcal{X} is collinear with the gravity vector $R_s^T \hat{e}_3$ in sphere-body frame.
Observations on equilibria

- Vector \mathcal{X} is collinear with the gravity vector $R_s^T \hat{e}_3$ in sphere-body frame.
- Fix α, φ: all configurations obtained by a rotation around the vertical axis passing through the point of contact, constitute the equilibrium manifold.
Observations on equilibria

- Vector \mathbf{X} is collinear with the gravity vector $R_s^T\hat{e}_3$ in sphere-body frame.
- Fix α, φ: all configurations obtained by a rotation around the vertical axis passing through the point of contact, constitute the equilibrium manifold.
- If R_{se} is an arbitrary orientation, then any $\alpha \& \varphi$ such that \mathbf{X} is in the downright or upright position constitutes an equilibrium.
Observations on equilibria

- Vector \mathcal{X} is collinear with the gravity vector $R_s^T \hat{e}_3$ in sphere-body frame.
- Fix α, φ: all configurations obtained by a rotation around the vertical axis passing through the point of contact, constitute the equilibrium manifold.
- If R_{se} is an arbitrary orientation, then any α & φ such that \mathcal{X} is in the downright or upright position constitutes an equilibrium.
- The control equilibrium of the reduced system is given as

$$\{(R_s, \alpha, \varphi)|\Gamma \times \mathcal{X} = 0\} \Rightarrow \{(R_s, \alpha, \varphi)|R_{\alpha}R_{\varphi} = R_s^T\}$$

where $\Gamma = R_s^T \hat{e}_3$ and $\mathcal{X} = R_{\alpha}R_{\varphi}\hat{k}$.
Outline

Introduction

The Setting

Modeling of spherical robot

Dynamic equation

Equilibrium Configuration

Controllability
Vector fields on the reduced space

The control vector fields on the reduced space $T(SO(3) \times S^1 \times S^1)$ are

$$\tilde{Y}_i = M^{-1}(\Gamma, \alpha, \varphi) \begin{bmatrix} 0 \\ y_i \end{bmatrix}$$

The potential vector field on the reduced space $T(SO(3) \times S^1 \times S^1)$ is

$$(\text{grad}V)^\sim = M^{-1}(\Gamma, \alpha, \varphi) \begin{bmatrix} m_pg \Gamma \times \mathcal{X} \\ 0 \end{bmatrix}$$

where $i = \alpha, \varphi$ and y_i is a $T^*(S^1 \times S^1)$-valued function.
Computational Procedure

- Calculate the symmetric product $\langle \tilde{Y}_i : \tilde{Y}_j \rangle$.
- Evaluate the iterated symmetric product of $Sym(\mathcal{Y}) = \{\mathcal{Y} \cup (\text{grad}V)\}$.
- The system is local configuration accessible at equilibrium if the rank of $\text{Lie}(Sym(\mathcal{Y})) = \text{dim}(Q)$ at q_0.
- Every bad symmetric product from $\{\mathcal{Y} \cup (\text{grad}V)\}$ is the linear combination of lower degree good symmetric products, then the system is small time local configuration controllable.
D. Schneider, *Non-holonomic Euler-Poincaré equations and stability in Chaplygin’s sphere*, Dynamical Systems, 2002, pp.87-130

THANK YOU