CHARACTERIZING REACHABLE SETS IN A SPACECRAFT WITH TWO ROTORS: THE LAGRANGE-ROUTH APPROACH

Ramaprakash Bayadi\(^1\), Ravi N Banavar\(^1\)
Dong Eui Chang\(^2\)

\(^1\)Systems and Control Engineering,
IIT Bombay, India

\(^2\)Department of Applied Mathematics,
University of Waterloo, Canada.

August 4, 2012
Outline

Introduction

The setting

Lagrange-Routh equations for a spacecraft with two rotors

Reconstruction

Controllability analysis

References
Outline

Introduction

The setting

Lagrange-Routh equations for a spacecraft with two rotors

Reconstruction

Controllability analysis

References
Attitude control

Attitude control

Controlling the orientation of a spacecraft/aircraft with respect to an inertial frame of reference.
Attitude control

Controlling the orientation of a spacecraft/aircraft with respect to an inertial frame of reference.

Actuating techniques for attitude control

- Gas jet thrusters - cause a change in angular momentum
- Internal momentum exchange devices - angular momentum is redistributed
Attitude control

Attitude control
Controlling the orientation of a spacecraft/aircraft with respect to an inertial frame of reference.

Actuating techniques for attitude control

- Gas jet thrusters - cause a change in angular momentum
- Internal momentum exchange devices - angular momentum is redistributed

Problems in attitude control

- Stationary spacecraft - changing from an initial orientation to a final one.
- Spinning spacecraft - maintaining the direction of the axis of spin fixed as a vector or changing the axis of spin.
- Tracking a particular orientation trajectory.
A spacecraft with internal rotors

Figure: Rigid body model of a spacecraft with rotors.
Attitude control of a spacecraft with rotors

Crouch1 showed that three internal rotors are necessary to achieve global controllability of orientation \textit{and} angular velocity.

Crouch1 showed that three internal rotors are necessary to achieve global controllability of orientation \textit{and} angular velocity.

When there are two rotors, the complete attitude dynamics is small time locally controllable, subject to the condition that the inertial angular momentum is zero2.

Attitude control of a spacecraft with rotors

Crouch\(^1\) showed that three internal rotors are necessary to achieve global controllability of orientation \textit{and} angular velocity.

When there are two rotors, the complete attitude dynamics is small time locally controllable, subject to the condition that the inertial angular momentum is zero\(^2\).

Boyer and Alamir\(^3\) conclude that ‘a five-dimensional subspace of feasible states is potentially reachable’ when the inertial angular momentum is nonzero for a spacecraft with two rotors.

We characterize the reachable sets of a spacecraft with two rotors when the inertial angular momentum is nonzero by making use of Lagrange-Routh reduction4.

The conservation of angular momentum:

\[
\sum_{i=1}^{2} (I_r)_i (\Omega_b + (\Omega_r)_i) + I_s \Omega_b = R^T \mu
\]
The conservation of angular momentum:

$$\sum_{i=1}^{2} (I_r)_i (\Omega_b + (\Omega_r)_i) + I_s \Omega_b = R^T \mu$$

The equations of motion:

$$\dot{R} = R \hat{\Omega}_b, \quad I_s \dot{\Omega}_b = \sum_{i=1}^{2} b_i u_i - \hat{\Omega}_b R^T \mu, \quad \mu = \text{constant}$$
Observations by Crouch

The conservation of angular momentum:

\[
\sum_{i=1}^{2} (I_r)_i (\Omega_b + (\Omega_r)_i) + I_s \Omega_b = R^T \mu
\]

The equations of motion:

\[
\dot{R} = R \hat{\Omega}_b, \quad I_s \dot{\Omega}_b = \sum_{i=1}^{2} b_i u_i - \hat{\Omega}_b R^T \mu, \quad \mu = \text{constant}
\]

Constraint on the tangent bundle \(T^2 Q \):

\[
\langle c, I_s \dot{\Omega}_b + \hat{\Omega}_b R^T \mu \rangle = 0.
\]

Observations by Crouch

The conservation of angular momentum:

\[
\sum_{i=1}^{2} (I_r)_i (\Omega_b + (\Omega_r)_i) + I_s \Omega_b = R^T \mu
\]

The equations of motion:

\[
\dot{R} = R \hat{\Omega}_b, \quad I_s \dot{\Omega}_b = \sum_{i=1}^{2} b_i u_i - \hat{\Omega}_b R^T \mu, \quad \mu = \text{constant}
\]

Constraint on the tangent bundle \(T^2Q\):

\[
\langle c, I_s \dot{\Omega}_b + \hat{\Omega}_b R^T \mu \rangle = 0.
\]
INTRODUCTION

THE SETTING

LAGRANGE-ROUTH EQUATIONS FOR A SPACECRAFT WITH TWO ROTORS

RECONSTRUCTION

CONTROLLABILITY ANALYSIS

REFERENCES
THE STATE SPACE AND PHASE SPACE

LAGRANGIAN MECHANICS

- Set of all possible configurations of a mechanical system is a smooth manifold Q.
THE STATE SPACE AND PHASE SPACE

LAGRANGIAN MECHANICS

- Set of all possible configurations of a mechanical system is a smooth manifold Q.
- Set of configurations and velocities is the tangent bundle TQ.

HAMILTONIAN MECHANICS

The equations of motion on T^*Q are given by the Hamiltonian vector field corresponding to a Hamiltonian function.
STATE SPACE AND PHASE SPACE

LAGRANGIAN MECHANICS

- Set of all possible configurations of a mechanical system is a smooth manifold Q.
- Set of configurations and velocities is the tangent bundle TQ.
- The equations of motion on TQ are given by the principle of least action applied to a Lagrangian function.
The state space and phase space

Lagrangian mechanics

- Set of all possible configurations of a mechanical system is a smooth manifold Q.
- Set of configurations and velocities is the tangent bundle TQ.
- The equations of motion on TQ are given by the principle of least action applied to a Lagrangian function.

Hamiltonian mechanics

- Set of position and momenta of a mechanical system is the cotangent bundle T^*Q.
The state space and phase space

Lagrangian mechanics

- Set of all possible configurations of a mechanical system is a smooth manifold Q.
- Set of configurations and velocities is the tangent bundle TQ.
- The equations of motion on TQ are given by the principle of least action applied to a Lagrangian function.

Hamiltonian mechanics

- Set of position and momenta of a mechanical system is the cotangent bundle T^*Q.
- The equations of motion on T^*Q are given by the Hamiltonian vector field corresponding to a Hamiltonian function.
The state space and phase space

Lagrangian mechanics

- Set of all possible configurations of a mechanical system is a smooth manifold Q.
- Set of configurations and velocities is the tangent bundle TQ.
- The equations of motion on TQ are given by the principle of least action applied to a Lagrangian function.

Hamiltonian mechanics

- Set of position and momenta of a mechanical system is the cotangent bundle T^*Q
- The equations of motion on T^*Q are given by the Hamiltonian vector field corresponding to a Hamiltonian function.
The Lagrangian and Hamiltonian mechanics represent the same phenomenon, through the Legendre transformation FL.

\[
TQ \quad \quad FL \quad \quad T^*Q
\]
Observation

The kinetic energy of a mechanical system does not depend on the orientation of the frame of reference.
Observation

The kinetic energy of a mechanical system does not depend on the orientation of the frame of reference.

Mathematical language

Mathematically, this fact is equivalent to saying that the Lagrangian function is *invariant under a Lie group action*.

\[L(g \cdot v) = L(v), \ \forall v \in TQ, \ \forall g \in G, \]

where \(G \) is the Lie group.
The momentum map

When such a symmetry is present, there exist conserved quantities. One such important object which leads to conserved quantities is the momentum map

\[J : TQ \rightarrow g^*, \]

where \(g^* \) is the dual of the Lie algebra of \(G \).
The momentum map

When such a symmetry is present, there exist conserved quantities. One such important object which leads to conserved quantities is the momentum map

\[J : TQ \rightarrow g^* , \]

where \(g^* \) is the dual of the Lie algebra of \(G \).

Theorem (Noether)

The value of the momentum map is conserved along the solutions of equations of motion.
The momentum map

When such a symmetry is present, there exist conserved quantities. One such important object which leads to conserved quantities is the momentum map

$$J : TQ \rightarrow g^*,$$

where g^* is the dual of the Lie algebra of G.

Theorem (Noether)

The value of the momentum map is conserved along the solutions of equations of motion.

The mechanical system thus evolves on a level set of the momentum map, $J^{-1}(\mu) \subset TQ$.
More technical machinery - The Routhian

Define the *locked inertia tensor* $\mathbb{I}(q) : \mathfrak{g} \rightarrow \mathfrak{g}^*$:

$$
\langle \mathbb{I}(q)\xi, \eta \rangle = \langle \xi_{Q}(q), \eta_{Q}(q) \rangle_{q}.
$$

(2.1)
Define the *locked inertia tensor* $\mathbb{I}(q) : \mathfrak{g} \to \mathfrak{g}^*$:

$$\langle \mathbb{I}(q)\xi, \eta \rangle = \langle \xi_Q(q), \eta_Q(q) \rangle_q.$$ \hfill (2.1)

The *mechanical connection one form* $A(q) : TQ \to \mathfrak{g}$ as follows,

$$A(q) = \mathbb{I}(q)^{-1}\mathbf{J}.$$ \hfill (2.2)

The *amended potential* $V_\mu(q) : Q \to \mathbb{R}$ is defined as follows

$$\tilde{V}_\mu(q) = V(q) - \langle \mu, \mathbb{I}(q)^{-1}\mu \rangle.$$
Define the *locked inertia tensor* \(\mathbb{I}(q) : \mathfrak{g} \rightarrow \mathfrak{g}^* : \)

\[
\langle \mathbb{I}(q) \xi, \eta \rangle = \langle \xi_Q(q), \eta_Q(q) \rangle_q.
\] (2.1)

The *mechanical connection one form* \(\mathcal{A}(q) : TQ \rightarrow \mathfrak{g} \) as follows,

\[
\mathcal{A}(q) = \mathbb{I}(q)^{-1} \mathbf{J}.
\] (2.2)

The *amended potential* \(V_\mu(q) : Q \rightarrow \mathbb{R} \) is defined as follows,

\[
\tilde{V}_\mu(q) = V(q) - \langle \mu, \mathbb{I}(q)^{-1} \mu \rangle.
\]

\(V_\mu \) is \(G_\mu \)-invariant.
Define the locked inertia tensor $\mathbb{I}(q) : \mathfrak{g} \rightarrow \mathfrak{g}^*$:

$$\langle \mathbb{I}(q)\xi, \eta \rangle = \langle \xi Q(q), \eta Q(q) \rangle_q.$$ \hfill (2.1)

The mechanical connection one form $A(q) : TQ \rightarrow \mathfrak{g}$ as follows,

$$A(q) = \mathbb{I}(q)^{-1}J.$$ \hfill (2.2)

The amended potential $V_\mu(q) : Q \rightarrow \mathbb{R}$ is defined as follows

$$\tilde{V}_\mu(q) = V(q) - \langle \mu, \mathbb{I}(q)^{-1} \mu \rangle.$$ \hfill (2.3)

V_μ is G_μ-invariant.

Using the mechanical connection one form A, the Routhian is defined on $J^{-1}(\mu)$ as

$$R^\mu(v_q) := L(v_q) - A_\mu(v_q).$$
Further reduction from $J^{-1}(\mu)$

Treating $J^{-1}(\mu)$ as a manifold and R^μ as a function over this manifold, the Lie group action by $G_\mu \subset G$ induces further symmetries.
Further reduction from $\mathbf{J}^{-1}(\mu)$

Treating $\mathbf{J}^{-1}(\mu)$ as a manifold and \mathcal{R}^μ as a function over this manifold, the Lie group action by $G_\mu \subset G$ induces further symmetries.

Theorem (Marsden, Ratiu and Scheurle 2000)

The reduced phase space $P_\mu := \mathbf{J}^{-1}(\mu)/G_\mu$ is bundle isomorphic to $T(Q/G) \times_{Q/G} Q/G_\mu \to Q/G$.

Figure: Fiber product

\[T(Q/G) \times_{Q/G} Q/G_\mu \to Q/G \]
FURTHER REDUCTION FROM $J^{-1}(\mu)$

Treating $J^{-1}(\mu)$ as a manifold and R^μ as a function over this manifold, the Lie group action by $G_\mu \subset G$ induces further symmetries.

Theorem (Marsden, Ratiu and Scheurle 2000)

The reduced phase space $P_\mu := J^{-1}(\mu)/G_\mu$ is bundle isomorphic to $T(Q/G) \times_{Q/G} Q/G_\mu \longrightarrow Q/G$.

Lagrange-Routh equations give the equations of motion over $T(Q/G) \times_{Q/G} Q/G_\mu$.

Figure: Fiber product $T(Q/G) \times_{Q/G} Q/G_\mu \longrightarrow Q/G$.
Given the dynamics on P_μ, how does one reconstruct the dynamics on $J^{-1}(\mu)$?
Reconstruction

Given the dynamics on P_μ, how does one reconstruct the dynamics on $J^{-1}(\mu)$?

Figure: Reconstruction procedure [Taken from *Foundation of Mechanics* by Abraham and Marsden].

Given a curve y on Q/G_μ, find a curve d in Q that projects to y.
Reconstruction

Given the dynamics on P_μ, how does one reconstruct the dynamics on $J^{-1}(\mu)$?

Figure: Reconstruction procedure [Taken from *Foundation of Mechanics* by Abraham and Marsden].

Given a curve y on Q/G_μ, find a curve d in Q that projects to y.
Reconstruction

Given the dynamics on P_μ, how does one reconstruct the dynamics on $J^{-1}(\mu)$?

Figure: Reconstruction procedure [Taken from Foundation of Mechanics by Abraham and Marsden].

Given a curve y on Q/G_μ, find a curve d in Q that projects to y.
OUTLINE

INTRODUCTION

THE SETTING

LAGRANGE-ROUTH EQUATIONS FOR A SPACECRAFT WITH TWO ROTORS

RECONSTRUCTION

CONTROLLABILITY ANALYSIS

REFERENCES
Lagrangian-Routh equations for a spacecraft with two rotors

The configuration space is $Q = SO(3) \times \mathbb{T}^2$. The Lagrangian is

$$L(\dot{R}, \dot{\Theta}_i) = \frac{1}{2} \int_B \| \dot{R}X \|^2 \, dV + \frac{1}{2} \sum_{i=1}^2 \left[\int_{r_i} \| R\dot{\Theta}_i X + \dot{R}\Theta_i X \|^2 \, dV \right].$$

The Lagrangian is invariant under the Lie group action of $SO(3)$, given by $\phi_P(R, \Theta) = (PR, \Theta)$.
The reduced phase space $\mathbf{J}^{-1}(\mu)/G_\mu$

For a spacecraft with rotors, $\mathbf{J}^{-1}(\mu) \cong SO(3) \times T(\mathbb{T}^2)$.
The reduced phase space $\mathbf{J}^{-1}(\mu)/G_\mu$

For a spacecraft with rotors, $\mathbf{J}^{-1}(\mu) \cong SO(3) \times T(\mathbb{T}^2)$.

It follows that $\mathbf{J}^{-1}(\mu)/G_\mu = SO(3)/G_\mu \times T(\mathbb{T}^2) \cong \mathcal{O}_\mu \times T(\mathbb{T}^2)$.
The reduced phase space $J^{-1}(\mu)/G_\mu$

For a spacecraft with rotors, $J^{-1}(\mu) \cong SO(3) \times T(\mathbb{T}^2)$.

It follows that $J^{-1}(\mu)/G_\mu = SO(3)/G_\mu \times T(\mathbb{T}^2) \cong O_\mu \times T(\mathbb{T}^2)$.

The isotropy subgroup G_μ

For a given $\mu \in \mathfrak{so}(3)^* \cong \mathbb{R}^3$, G_μ is given by

$$G_\mu = \{ R \in SO(3) \mid R\mu = \mu \}.$$

For $\mu \neq 0$, $G_\mu \cong S^1$.
The reduced phase space $J^{-1}(\mu)/G_\mu$

For a spacecraft with rotors, $J^{-1}(\mu) \cong SO(3) \times T(\mathbb{T}^2)$. It follows that $J^{-1}(\mu)/G_\mu = SO(3)/G_\mu \times T(\mathbb{T}^2) \cong O_\mu \times T(\mathbb{T}^2)$.

The isotropy subgroup G_μ
For a given $\mu \in \mathfrak{so}(3)^* \cong \mathbb{R}^3$, G_μ is given by

$$G_\mu = \{ R \in SO(3) \mid R\mu = \mu \}.$$

For $\mu \neq 0$, $G_\mu \cong S^1$.

The coadjoint orbit O_μ
For a given $\mu \in \mathfrak{so}(3)^* \cong \mathbb{R}^3$, O_μ is given by

$$O_\mu = \{ \text{Ad}_R^*\mu, \ R \in SO(3) \}.$$

Therefore $O_\mu \cong S^2$.
The reduced phase space $J^{-1}(\mu)/G_{\mu}$

The reduced phase space $J^{-1}(\mu)/G_{\mu}$ is thus diffeomorphic to $S^2 \times T(T^2) \cong (S^2 \times \mathbb{R}^2) \times T^2$.

Figure: $(S^2 \times \mathbb{R}^2) \times T^2$ as a fiber bundle over T^2
Lagrange-Routh equations for a spacecraft with two rotors

The Lagrange-Routh equations on $S^2 \times T(\mathbb{T}^2)$ are given by

$$\dot{\Pi}(t) = \Pi(t) \times I_L^{-1}\Pi(t) - \Pi(t) \times A_s\Omega_r(t),$$

$$A_s(I_L - I_r)\dot{\Omega}_r(t) = -A_s\dot{\Pi}(t) - u,$$

$$\dot{\Theta} = \Omega_r,$$

where u is the torque on the rotors.
Lagrange-Routh equations for a spacecraft with two rotors

The Lagrange-Routh equations on $S^2 \times T(\mathbb{T}^2)$ are given by

$$
\dot{\Pi}(t) = \Pi(t) \times I_L^{-1}\Pi(t) - \Pi(t) \times A_s \Omega_r(t),
$$

$$
A_s(I_L - I_r)\dot{\Omega}_r(t) = -A_s\dot{\Pi}(t) - u,
$$

$$
\dot{\Theta} = \Omega_r,
$$

where u is the torque on the rotors.

Since the rotor angles Θ are not important for the problem, we restrict our attention to the first two of the above equations, which evolve over $S^2 \times \mathbb{R}^2$.
Lagrange-Routh equations for a spacecraft with two rotors

Define

\[(\Pi, l) := (\Pi, A_s [\Pi + (I_L - I_r)\Omega_r])\]

The first two of the above equations are the same as

\[
\dot{\Pi} = \Pi \times \tilde{I}(\Pi - l),
\]
\[
\dot{l} = u.
\]
Lagrange–Routh equations for a spacecraft with two rotors

Define

$$(\Pi, l) := (\Pi, A_s [\Pi + (I_L - I_r)\Omega_r])$$

The first two of the above equations are the same as

$$\dot{\Pi} = \Pi \times \tilde{l}(\Pi - l),$$
$$\dot{l} = u.$$

Here l represents the angular momentum of the rotors alone.
Outline

Introduction

The setting

Lagrange-Routh equations for a spacecraft with two rotors

Reconstruction

Controllability analysis

References
Reconstruction procedure

Lagrange-Routh procedure gives equations that describe a curve over the reduced space $S^2 \times T^2$.

Figure: The curve in $S^2 \times T^2$ obtained through Lagrange-Routh equations and the original curve in $SO(3) \times T^2$ that projects to it.
Reconstruction procedure

Lagrange-Routh procedure gives equations that describe a curve over the reduced space $S^2 \times T^2$.

The curve we are interested is in $SO(3) \times T^2$, that projects to the above curve and has a momentum μ.

![Diagram showing the curves and the projection](image-url)
Reconstruction procedure

The orientation \(R \in SO(3) \) needs to be determined through the reconstruction equation.
Reconstruction procedure

The orientation $R \in SO(3)$ needs to be determined through the reconstruction equation.

The projection is given by $\pi : SO(3) \times \mathbb{T}^2 \rightarrow S^2 \times \mathbb{T}^2$, $\pi(R, \Theta) = (R^T \mu, \Theta)$.
Reconstruction procedure

The orientation $R \in SO(3)$ needs to be determined through the reconstruction equation.

The projection is given by $\pi : SO(3) \times \mathbb{T}^2 \rightarrow S^2 \times \mathbb{T}^2$, $\pi(R, \Theta) = (R^T \mu, \Theta)$.

Given a curve $y = (\Pi, \Theta)$ in $Q/G_\mu \cong S^2 \times \mathbb{T}^2$, have to choose a curve $\bar{q} = (\bar{R}, \bar{\Theta})$ in $SO(3) \times \mathbb{T}^2$ such that $(\bar{R}^T \mu, \Theta) = (\Pi, \Theta)$.
Reconstruction procedure

The orientation $R \in SO(3)$ needs to be determined through the reconstruction equation.

The projection is given by $\pi : SO(3) \times \mathbb{T}^2 \longrightarrow S^2 \times \mathbb{T}^2$, $\pi(R, \Theta) = (R^T \mu, \Theta)$.

Given a curve $y = (\Pi, \Theta)$ in $Q/G_\mu \cong S^2 \times \mathbb{T}^2$, have to choose a curve $\bar{q} = (\bar{R}, \bar{\Theta})$ in $SO(3) \times \mathbb{T}^2$ such that $(\bar{R}^T \mu, \Theta) = (\Pi, \Theta)$.

We have to choose the curve \bar{R}, the lift of Π, such that $\bar{R}(t)$ rotates $\Pi(t)$ to μ.
Construction of \tilde{R}

$\pi : SO(3) \longrightarrow S^2$ is a principal fiber bundle with S^1 as fibers.
Construction of \tilde{R}

$\pi : SO(3) \rightarrow S^2$ is a principal fiber bundle with S^1 as fibers.

Local sections
A map $K : S^2 \rightarrow SO(3)$ which satisfies $\pi \circ K = \text{id}_{S^2}$ is called a local section of the fiber bundle.
Construction of \tilde{R}

$\pi: SO(3) \to S^2$ is a principal fiber bundle with S^1 as fibers.

Local sections

A map $K: S^2 \to SO(3)$ which satisfies $\pi \circ K = \text{id}_{S^2}$ is called a *local section* of the fiber bundle.

Given a curve Π on S^2 and a local section K, $K \circ \Pi$ qualifies to be a lift of Π.
Construction of \bar{R}

$\pi : SO(3) \rightarrow S^2$ is a principal fiber bundle with S^1 as fibers.

Local sections
A map $K : S^2 \rightarrow SO(3)$ which satisfies $\pi \circ K = \text{id}_{S^2}$ is called a *local section* of the fiber bundle.

Given a curve Π on S^2 and a local section K, $K \circ \Pi$ qualifies to be a lift of Π.

Example
$K(\Pi) = \exp \widehat{w_1(\Pi)}$, where

$$w_1(\Pi) = \varphi \frac{\Pi \times \mu}{\| \Pi \times \mu \|}, \quad \cos \varphi = \frac{(\Pi \cdot \mu)}{\| \mu \|^2}.$$
Local sections induce parameterization of $SO(3)$ on the product $S^1 \times S^2$.
Local sections induce parameterization of $SO(3)$ on the product $S^1 \times S^2$.

Thus, in terms of a parameterization $(\alpha, \Pi, l) \in S^1 \times S^2 \times \mathbb{R}^2$, the following equations give a local representative of the dynamics over $J^{-1}(\mu)$:

\[
\begin{align*}
\dot{\alpha} &= (\Pi - p(\Pi)) \cdot \tilde{I}(\Pi - l) \\
\dot{\Pi} &= \Pi \times \tilde{I}(\Pi - l), \\
\dot{l} &= u,
\end{align*}
\]

(4.1)

where $p(\Pi)$ is a function dependent on the local section.
OUTLINE

INTRODUCTION

THE SETTING

LAGRANGE-ROUTH EQUATIONS FOR A SPACECRAFT WITH TWO ROTORS

RECONSTRUCTION

CONTROLLABILITY ANALYSIS

REFERENCES
Control affine systems

A control system on a smooth manifold M of the form

$$\dot{x} = f_0(x) + \sum_{i=1}^{m} u_i f_i(x)$$

are called control affine systems. The vector field f_0 is called the drift vector field and f_i are called the controlled vector fields.
CONTROL AFFINE SYSTEMS

A control system on a smooth manifold M of the form

$$\dot{x} = f_0(x) + \sum_{i=1}^{m} u_i f_i(x)$$ \hspace{1cm} (5.1)

are called control affine systems. The vector field f_0 is called the drift vector field and f_i are called the controlled vector fields.

NONWANDERING POINTS AND WPPS VECTOR FIELDS

- A point $x \in M$ is called a nonwandering point of a vector field f if for every $T > 0$ and every neighbourhood V_x of x, there exists a $t > T$ such that $\phi_t(V_x) \cap V_x \neq \emptyset$.
CONTROL AFFINE SYSTEMS

A control system on a smooth manifold M of the form

$$\dot{x} = f_0(x) + \sum_{i=1}^{m} u_i f_i(x)$$

are called control affine systems. The vector field f_0 is called the drift vector field and f_i are called the controlled vector fields.

NONWANDERING POINTS AND WPPS VECTOR FIELDS

- A point $x \in M$ is called a nonwandering point of a vector field f if for every $T > 0$ and every neighbourhood V_x of x, there exists a $t > T$ such that $\phi_t(V_x) \cap V_x \neq \emptyset$.
- A vector field f is said to be weakly positively Poisson stable (WPPS) if the set of nonwandering points of f is the entire manifold.
Weak positive Poisson stability

Recall the vector fields in our case

$$f_0(x) = \begin{pmatrix} (\Pi - p(\Pi)) \cdot \tilde{I}(\Pi - l) \\ \Pi \times \tilde{I}(\Pi - l) \\ 0 \end{pmatrix}, \quad f_i = \begin{pmatrix} 0 \\ 0_{3 \times 1} \\ e_i \end{pmatrix}$$
Weak positive Poisson stability

Recall the vector fields in our case

\[
f_0(x) = \begin{pmatrix}
(\Pi - p(\Pi)) \cdot \tilde{I}(\Pi - l) \\
\Pi \times \tilde{I}(\Pi - l) \\
0
\end{pmatrix},
\]

\[
f_i = \begin{pmatrix}
0 \\
0_{3 \times 1} \\
e_i
\end{pmatrix}
\]

The vector field \(X_l := \Pi \times \tilde{I}(\Pi - l) \) on \(S^2 \) is WPPS since it is the Hamiltonian vector field corresponding to the Hamiltonian \(H = 1/2(\Pi - l)^T \tilde{I}(\Pi - l) \).
Recall the vector fields in our case

\[f_0(x) = \begin{pmatrix} (\Pi - p(\Pi)) \cdot \tilde{I}(\Pi - l) \\ \Pi \times \tilde{I}(\Pi - l) \\ 0 \end{pmatrix}, \quad f_i = \begin{pmatrix} 0 \\ 0_{3 \times 1} \\ e_i \end{pmatrix} \]

The vector field \(X_l := \Pi \times \tilde{I}(\Pi - l) \) on \(S^2 \) is \(WPPS \) since it is the Hamiltonian vector field corresponding to the Hamiltonian \(H = 1/2(\Pi - l)^T \tilde{I}(\Pi - l) \).

\textit{Almost all} of the integral curves of \(X_l \) on \(S^2 \) are periodic.
Lie algebraic rank condition and WPPS

Proposition

The vector field

\[
\begin{pmatrix}
(\Pi - p(\Pi)) \cdot \tilde{I}(\Pi - l) \\
\Pi \times \tilde{I}(\Pi - l)
\end{pmatrix}
\]

on \(S^1 \times S^2\) is WPPS.

Definition

The control system (5.1) is said to satisfy the LARC if at every \(x \in M\), the smallest Lie algebra generated by \(\{f_0, f_1, \ldots, f_m\}\) spans \(T_x M\), the tangent space at \(x\).
Proposition

The vector field

\[
\begin{pmatrix}
(\Pi - p(\Pi)) \cdot \tilde{I}(\Pi - l) \\
\Pi \times \tilde{I}(\Pi - l)
\end{pmatrix}
\]

on \(S^1 \times S^2\) is WPPS.

Definition

The control system (5.1) is said to satisfy the LARC if at every \(x \in M\), the smallest Lie algebra generated by \(\{f_0, f_1, \ldots, f_m\}\) spans \(T_x M\), the tangent space at \(x\).

Theorem (WPPS vector fields and global controllability [8])

If the drift vector field is WPPS, then global controllability is equivalent to the Lie algebra rank condition (LARC).
The main result

Proposition

The control system satisfies the LARC at every point on $S^1 \times S^2 \times \mathbb{R}^2$.
The main result

Proposition
The control system satisfies the LARC at every point on $S^1 \times S^2 \times \mathbb{R}^2$.

Theorem (Global controllability)
The control system (4.1) is globally controllable over $S^1 \times S^2 \times \mathbb{R}^2$.

Recall that $(\alpha, \Pi, l) \in S^1 \times S^2 \times \mathbb{R}^2$ gives a local representation for $(R, l) \in SO(3) \times \mathbb{R}^2$. This means that any combination of the orientation and rotor angular momentum can be achieved.

Corollary
The (left trivialized) reachable sets of $TSO(3)$ of a spacecraft with two rotors is $(R, I - l L(R^T \mu - I r \Omega r))$ where $R \in SO(3)$ and $\Omega r \in \mathbb{R}^2$.
The main result

Proposition
The control system satisfies the LARC at every point on $S^1 \times S^2 \times \mathbb{R}^2$.

Theorem (Global controllability)
The control system (4.1) is globally controllable over $S^1 \times S^2 \times \mathbb{R}^2$.

Recall that $(\alpha, \Pi, l) \in S^1 \times S^2 \times \mathbb{R}^2$ give a local representation for $(R, l) \in SO(3) \times \mathbb{R}^2$. This means that any combination of the orientation and rotor angular momentum can be achieved.
The main result

Proposition

The control system satisfies the LARC at every point on $S^1 \times S^2 \times \mathbb{R}^2$.

Theorem (Global controllability)

The control system (4.1) is globally controllable over $S^1 \times S^2 \times \mathbb{R}^2$.

Recall that $(\alpha, \Pi, l) \in S^1 \times S^2 \times \mathbb{R}^2$ give a local representation for $(R, l) \in SO(3) \times \mathbb{R}^2$. This means that any combination of the orientation and rotor angular momentum can be achieved.

Corollary

The (left trivialized) reachable sets of $T_{SO(3)}$ of a spacecraft with two rotors is $(R, I_L^{-1}(R^T \mu - I_r \Omega_r))$ where $R \in SO(3)$ and $\Omega_r \in \mathbb{R}^2$.
Interpreting the result

The set of reachable angular velocities at R is just the translation of $(\Omega_b)_1 - (\Omega_b)_2$ plane by the vector $I_L^{-1}R^T \mu$.

Figure: Reachable set of body angular velocity Ω_b at a particular orientation.
Parameters of UoSAT-12 [9]:
$I_L = \text{diag}(40.45, 42.09, 40.36)$, $I_r = \text{diag}(8 \times 10^{-3}, 7.7 \times 10^{-3}, 0)$ in kg m2.
Parameters of UoSAT-12 [9]:
$I_L = \text{diag}(40.45, 42.09, 40.36), \ I_r = \text{diag}(8 \times 10^{-3}, 7.7 \times 10^{-3}, 0)$ in kg m2.

For $\mu = (0, 0, 10)$ kg ms$^{-1}$, at an R making an angle 45 degrees with the x axis, all possible angular velocities have the third component as 0.1752 rad s$^{-1}$.
THANK YOU
OUTLINE

INTRODUCTION

THE SETTING

LAGRANGE-ROUTH EQUATIONS FOR A SPACECRAFT WITH TWO ROTORS

RECONSTRUCTION

CONTROLLABILITY ANALYSIS

REFERENCES
Crouch, PE:
Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models,

Krishnan, H, McClamroch, NH:
Attitude stabilization of a rigid spacecraft using two momentum wheel actuators,

Boyer, A, Alamir, M:
Further results on the controllability of a two wheeled satellite,

Marsden JE, Ratiu TS and Schuerle J:
Reduction theory and the Lagrange-Routh equations,

Jalnapurkar S, Marsden JE:
Reduction of Hamilton’s Variational principle,

Marsden JE and Ratiu TS:
Introduction to Mechanics and Symmetry, 2nd Edition,

Marsden JE:
Lectures on Mechanics, 2nd Edition,

Lian, K-Y, Wang, L-S and Fu, L-C:
Controllability of Spacecraft Systems in a Central Gravitational Field,

Horri, NM, Hodgart, MS:
Attitude control of an underactuated small satellite,