
The required proposed algorithms are given here without detailed explanation.

1 Algorithm for B-spline coefficient computation

1.1 Algorithm for knot vector generation

Algorithm Knotvector generation:

Knotvector (1 : (2× n) + k + 1) = Knotvector generation (n, k,xr)

Inputs: Degree n of the polynomial, number of segments k and domain xr :=[xr,xr].

Output: The knot vector as an output.

BEGIN Algorithm

1. Set a = inf(xr), b = sup(xr)

2. Knot vector(1, 1)=a

3. For i= 1 : k − 1

(a) Knot vector (1, i+ 1) =a+ (i× (b− a)�k)

4. End (for i-loop)

5. Knot vector(1, k + 1)=b

6. Knot vector (1, (2× n) + k + 1) = [Knot vector(1,1)n,Knot vector,Knot vector(1,k+1)n]

7. RETURN Knotvector=Knot vector

END Algorithm

1.2 Algorithm for Pi matrix

Algorithm Pi matrix:

Pi (1 : n+ k, 1 : (n+ 1)) = Pi matrix(Knotvector, k, n)

Inputs: Degree n of the polynomial, segment number k and Knotvector.

Output: The matrix Pi.

BEGIN Algorithm

1. For j = 1 : (n+ k)

(a) {Compute knotpart} as follows
knotpart = Knotvector(1, j + 1 : j + n)

(b) For d = 1 : n+ 1

i. {Compute symmetric polynomial value}
σ value = Symmetric polynomial value (knotpart, d)

ii. Pi′(j, d) = σ value�
(
n
d

)
iii. End (for d-loop)

(c) End (for j-loop)

2. RETURN Pi = Pi′

END Algorithm

1



1.3 Algorithm for Symmetric polynomial value

Algorithm Symmetric polynomial value:

σ value = Symmetric polynomial value(Knotpart, d)

Inputs: knotpart and degree d of symmetric polynomial.

Output: The value of symmetric polynomial σ value.

BEGIN Algorithm

1. Set A = knotpart
2. If A = ∅ and d = 1
σ′ = 1

3. Else σ′=

(
A
d

)
4. σ′=

∑
{
∏

(σ′(1 : end, :))}
5. RETURN σ value = σ′

END Algorithm

1.4 Algorithm for B-spline coefficient matrix

Algorithm B-spline coefficient matrix:

D(x) = B-spline coefficient matrix (A,N,K,x)
Inputs: Matrix A of coefficients of polynomial in power form, degree N of polynomial, segment number
K, and the s - dimensional domain box x.
Output: The B-spline coefficient matrix D(x).
BEGIN Algorithm

1. For i = 1:s
(a) {Compute Knotvector}

Knotvectori(1 : (2× ni) + ki + 1) = Knotvector generation (ni, ki,xi)
(b) {Compute Pi matrix}

Pii(1 : ni + ki, 1 : (ni + 1)) = Pi matrix(Knotvectori, ki, ni)
2. End (for i-loop)
3. For j = 1:s

(a) A = Pij(1 : n+ k, 1 : n+ 1)×A(0 : n, 0 : (n+ 1)s−1 − 1)
(b) Transpose A
(c) Reshape A to the required matrix shape.

4. End (for j-loop)
5. RETURN D(x) = A

END Algorithm

2 A basic B-spline constrained global optimization algorithm

In this subsection, we present the basic B-spline algorithm for constrained global optimization of multi-
variate nonlinear polynomials.

This basic algorithm uses the polynomial coefficients of the objective function, the inequality con-
straints, and the equality constraints. The inputs to the algorithm are the polynomial degrees and the
initial search box, while the outputs are the global minimum and global minimizers. The polynomial
degree is used to compute the B-spline segment number, as the B-spline is constructed with number of

2



segments equal to order of the B-spline plus one. As equality constraints hj(x) = 0 are difficult to verify
on computers with finite precision, the equality constraints hj(x) = 0 are replaced by relaxed constraints
hj(x) ∈ [−εzero, εzero], j = 1, 2, . . . , q, where εzero > 0 is a very small number.

The basic algorithm works as follows. We start the algorithm by computing the B-spline segments for
each variable occurring in the objective, inequality and equality polynomials. That is, as Ko,Kgi and Khj ,
where K = [k1, . . . , ks]. We keep it as order+1 for each variable, giving K = [n1+2, . . . , ns+2]. Then, we
compute the B-spline coefficients of objective, inequality and equality constraint polynomials on the initial
search box. We store them in arrays Do(x), Dgi(x) and Dhj

(x) respectively. We initialize the current
minimum estimate p̃ to the maximum B-spline coefficient of the objective function on x. Next, we initialize
a flag vector F with each component to zero, a working list L with the item {x, Do(x), Dgi(x), Dhj

(x), F},
and a solution list Lsol to the empty list.

We then pick the last item from the list L and delete its entry from L. For this item, we subdivide
the box x along the longest width direction creating two subboxes b1 and b2. We compute the B-spline
coefficients arrays {br, Do(br), Dgi(br), Dhj

(br)}, r = 1, 2 for b1,b2 and the B-spline range enclosures
Do(br),Dgi(br) and Dhj

(br) of objective, inequality and equality constraint polynomials respectively.
We check the feasibility of the inequality and equality constraints for b1, b2 using the B-spline coefficients
of the constraint polynomials functions by doing the following tests:

– If Dgi(br) ≤ 0,0 ∈ Dhj (br),Dhj (br) ⊆ [−εzero, εzero] for all i = 1, 2, . . . , p and j = 1, 2, . . . , q, then
br is a feasible box.

– If Dgi(br) > 0 for some i, then br is a infeasible box and can be deleted.
– If 0 /∈ Dhj (br),Dhj (br) * [−εzero, εzero] for some j, then br is a infeasible box and can be deleted.

If br survives these tests and if each component of the flag vector F r (see Remark 1 below) is equal to
unity, we update the current minimum estimate p̃, and add the item {br, Do(br), Dgi(br), Dhj

(br), F r}
to the list L , and sort the list in descending order of the minimum of the B-spline coefficients of the
objective function. Next, we discard item(s) {y, Do(y), Dgi(y), Dhj (y), F} from the list L, if minDo(y) >
p̃. The last item in the list L is picked for further processing. If the width of the box and the width of
the B-spline range enclosure of the objective polynomial are within the desired accuracy, then we put
this item in the solution list Lsol, else we continue the algorithm until the list L becomes empty.

Remark 1. The flag vector F is used to make the algorithm more efficient. Consider, ith inequality
constraint is satisfied for x ∈ b i.e. gi(x) ≤ 0 for x ∈ b. Then there is no need to check again gi(x) ≤ 0
for any subbox b0 ⊆ b. The same holds true for hj(x). To handle this information we use flag vector
F = (F1, . . . , Fp, Fp+1, . . . , Fp+q), where the components Ff , takes the value 0 or 1, as follows

– Ff = 1 if the f th inequality or equality constraint is satisfied for the box.
– Ff = 0 if the f th inequality or equality constraint is not yet been verified for the box.

Algorithm : Basic Algorithm for constrained global optimization

[p̂, z(i)] = Basic (Ac,Nc,Kc,x, ε, εzero)

Inputs: Here Ac is a cell structure containing the coefficients array of objective and all the constraints
polynomial, Nc is a cell structure, containing degree vector N for objective and all constraints. Where
elements of degree vector N defines the degree of each variable occurring in objective and all constraints
polynomial, Kc is a cell structure containing vectors corresponding to objective polynomial, Ko and all
constraints, i.e. Kgi ,Khj

. Where elements of this vector define the number of B-spline segments in each
variable direction, the initial box x ∈ IRs, the tolerance limit ε and tolerance parameter εzero to which
the equality constraints are to be satisfied.

Outputs: Global minimum p̂ and all the global minimizers z(i) in the initial search box x to the specified
tolerance ε.

BEGIN Algorithm

1. {Compute the B-spline segment numbers}
For each entry of K in Kc, compute K = N + 2.

3



2. {Compute the B-spline coefficients}
Compute the B-spline coefficients array for objective and constraints polynomial on initial search
domain x i.e. Do(x), Dgi(x) and Dhj

(x) respectively.
3. {Initialize current minimum estimate}

Initialize the current minimum estimate p̃ = maxDo(x).
4. {Set flag vector}

Set F = (F1, . . . , Fp, Fp+1, . . . , Fp+q) := (0, . . . , 0)
5. {Initialize lists}

Set L ← {x, Do(x), Dgi(x), Dhj
(x), F}, Lsol ← {}.

6. {Sort the list L }
Sort the list L in descending order of (minDo(x)).

7. {Start iteration}
If L is empty go to step 12. Otherwise pick the last item from L, denote it as {b, Do(b), Dgi(b), Dhj

(b), F},
and delete this item entry from L.

8. {Perform cut-off test}
Discard the item {y, Do(y), Dgi(y), Dhj (y), F} if minDo(y) > p̃ and return to step 7.

9. {Subdivision decision}
If

(wid b) & (maxDo(b)−minDo(b)) < ε

then add the item {b,min D0(b)} to Lsol and go to step 7. Else go to step 10.
10. {Generate two sub boxes}

Choose the subdivision direction along the longest direction of b and the subdivision point as the
midpoint. Subdivide b into two subboxes b1 and b2 such that b = b1 ∪ b2 .

11. For r = 1, 2

(a) {Set flag vector}
Set F r = (F r

1 , . . . , F
r
p , F

r
p+1, . . . , F

r
p+q) := F

(b) {Compute B-spline coefficients and corresponding B-spline range enclosure for br }
Compute the B-spline coefficient arrays of objective and constraints polynomial on box br and
compute corresponding B-spline range enclosure Do(br),Dgi(br) and Dhj

(br) for objective and
constraints polynomial.

(c) {Set local current minimum estimate}
Set p̃local = min(Do(br)).

(d) If p̃local > p̃ go to sub step i.
(e) for i = 1, . . . , p if Fi = 0 then

i. If Dgi(br) > 0 then go to sub step f.
ii. If Dgi(br) ≤ 0 then set F r

i = 1.

(f) for j = 1, . . . , q if Fp+j = 0 then

i. If 0 /∈ Dhj
(br) then go to sub step i.

ii. If Dhj
(br) ⊆ [−εzero, εzero] then set F r

p+j = 1

(g) If F r = (1, . . . , 1) then set p̃ := min(p̃,max(Do(br))).
(h) Enter {br, Do(br), Dgi(br), Dhj

(br), F r} into the list L.
(i) end (of r-loop)

12. {Compute the global minimum}
Set the global minimum to the current minimum estimate, p̂ = p̃.

13. {Compute the global solution}
Find all those items in Lsol for which minDo(b) = p̂. The first entries of these items are the global
minimizer(s) z(i).

14. Return the global minimum p̂ and all the global minimizers z(i) found above.
END Algorithm

4


