Chapter 2: Non-Linear Systems

1 Multivariable Calculus

Let $f : \mathbb{R}^n \to \mathbb{R}$, also written $f(x_1, x_2, \ldots, x_n)$. The partial derivative $\frac{\partial f}{\partial x_i}$ at $a = (a_1, a_2, \ldots, a_n)$ is

$$\left. \frac{\partial f}{\partial x_i} \right|_a = \lim_{h \to 0} \frac{f(a_1, \ldots, a_i + h, \ldots, a_n) - f(a_1, \ldots, a_i, \ldots, a_n)}{h}.$$

f is differentiable at a if $\exists b \in \mathbb{R}^n$, such that in a nghd U_a of a,

$$f(x) = f(a) + b^T (x - a) + \|x - a\| r(x, a)$$

such that $\lim_{x \to a} r(x, a) = 0$. If all $\frac{\partial f}{\partial x_i}$ are continuous is a nghd U_a, we say f is C^1. Note C^1 implies differentiable with $b_i = \left. \frac{\partial f}{\partial x_i} \right|_a$.

proof:

$$f(a+h) - f(a) = \sum_i g_i, \quad g_i = f(a_1, \ldots, a_{i-1}, a_i + h_i, \ldots, a_n + h_n) - f(a_1, \ldots, a_i, a_{i+1} + h_{i+1}, \ldots, a_n + h_n)$$

$$g_i = \left. \frac{\partial f}{\partial x_i} \right|_{a + \hat{h}_i} h_i$$

$$f(a + h) - f(a) = \sum \left. \frac{\partial f}{\partial x_i} \right|_a h_i + \|h\| \sum_i \left(g_i - \left. \frac{\partial f}{\partial x_i} \right|_a \right) h_i \underbrace{\|h\|}_{r(h)}.$$

Since f is C^1 we have $\lim_{h \to 0} r(h) = 0$. Hence the proof. If all partial derivatives of order r are continuous is a nghd U_a, we say f is C^r. If partial derivatives of all order are continuous is a nghd U_a, we say f is C^∞.

Let $c(t) = f(a + th)$. Then $dc/dt|_{t=0} = \sum \left. \frac{\partial f}{\partial x_i} \right|_a h_i$. My mean value theorem

$$c(1) - c(0) = f(a + h) - f(a) = \sum \left. \frac{\partial f}{\partial x_i} \right|_{a + \hat{h}_i} h_i, \quad \hat{i} \in [0, 1].$$
Now let \(F : \mathbb{R}^n \to \mathbb{R}^m \), where, \(F = \begin{pmatrix} f_1(x_1, \ldots, x_n) \\ \vdots \\ f_m(x_1, \ldots, x_n) \end{pmatrix} \). We say \(F \) is differentiable when \(f_i \) are. \(F \) is \(C^r \) when \(f_i \) are. For \(C^1 \), \(F \), we have,

\[
F(a + h) - F(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} + \|h\|r(h)
\]

where \(\lim_{h \to 0} r(h) = 0 \). \(DF(a) \) is called Jacobian of mapping \(F \) at \(a \).

Lemma 1 Chain Rule: For \(F, G : \mathbb{R}^n \to \mathbb{R}^m, C^1 \), we have

\[
D(F \circ G(a)) = DF(G(a))DG(a).
\]

proof: Let’s see for scalar case when \(f : \mathbb{R} \to \mathbb{R}, C^1 \), we have

\[
\frac{f(g(a + h)) - f(g(a))}{h} = f'(y) \frac{g(a + h) - g(a)}{h},
\]

where \(y \in [g(a), g(a + h)] \). Taking the \(\lim_{h \to 0} \), we obtain \((f \circ g)'(a) = f'(g(a)) \cdot g'(a)\) . Now when \(f : \mathbb{R}^n \to \mathbb{R}, C^1 \), we have

\[
\frac{f(G(a + h_k)) - f(G(a))}{h_k} = \sum_i \frac{\partial f}{\partial x_i}(y) \frac{g_i(a + h) - g_i(a)}{h_k},
\]

where \(y \) on line joining \(G(a), G(a + h_k) \). Taking the \(\lim_{h \to 0} \), we obtain \(\frac{\partial (f \circ G)}{\partial x_k}(a) = \sum_i \frac{\partial f}{\partial x_i}(G(a)) \frac{\partial g_i}{\partial x_k}(a) \). Then \(D(F \circ G(a)) = DF(G(a))DG(a) \).

Corollary 1 For \(F : \mathbb{R}^n \to \mathbb{R}^n \), and \(x(t) \in \mathbb{R}^n \), we have

\[
\frac{d}{dt} F(x(t)) = DF(x(t)) \dot{x}
\]

1.1 Inverse Mapping Theorem

Theorem 1 For \(F, C^1 \), let \(b = F(a) \). If \(DF(a) \) is invertible then \(F \) maps a nghd \(U_a \) one to one and onto nghd \(V_b = F(U_a) \), such that \(F^{-1} \) on \(V_b \) is \(C^1 \).
Proof: Note determinant is a continuous fn. Since say \(\text{det}(DF(a)) > 0 \), we choose a nghd of \(a, U_a(r_o) \) of radius \(r_o \) such that \(\text{det}(F(x)) > \epsilon \) for \(x \in U_a(r_o) \). For \(x \) and \(y \) in \(U_a(r_o) \), we have \(F(x) - F(y) = DF(z)(x - y) \), where \(z \) lies on line joining \(x \) and \(y \). Since \(\text{det}(DF(z)) > \epsilon \), we have \(F \) injective of \(U_a(r_o) \).

Furthermore choose \(U_a(r_o) \) such that \(\|DF^{-1}(x)\| < \frac{\epsilon}{4} \) and \(r(x,y) < \frac{\epsilon}{2} \) for \((x,y) \in U_a(r_o) \). For \(y \in U_b(r_o) \), let \(x_1 = DF^{-1}(a)(y_1 - b) \). Then \(\|x_1\| < \frac{r_o}{2} \). Let \(y_2 = F(a + x_1) \), the \(\|y_1 - y_2\| < \frac{r_o}{4} \). Now define \(x_2 = DF^{-1}(x_1)(y_1 - y_2) \), then \(\|x_2\| < \frac{r_o}{4} \). We can continue \(y_k = F(a + \sum_{i=1}^{k-1} x_i) \) and \(\|y_1 - y_k\| < \frac{r_o}{2^k} \) and \(x_k = DF^{-1}(x_1)(y_1 - y_k) \) and \(\|x_k\| < \frac{r_o}{2^k} \). Then \(F(a + \sum x_i) \) converges to \(y_1 \) and \(a + \sum x_i \in U_a(r_o) \). Infact we have shown that \(V_b = F(U_a(r_o)) \) is open. We show \(G = F^{-1} \) is continuous on \(V_b \). At \(b \), we can get to within \(r_o \) of \(a = G(b) \) by choosing \(y_1 \), within \(r_1 \) of \(b \). Similarly at other points. By chain rule \(DG(y) = (DF(G(y)))^{-1} \). Since \(F \) is \(C^1 \) and \(G \) continuous, we have \(G \) as \(C^1 \).

1.2 Implicit Function Theorem

Let \(A \) be a \(m \times n \), \((m \leq n) \) matrix of rank \(r \), then we ask what are solutions of

\[
Ax = b.
\]

By similarity transformations we can express \(A = P_1BP_2 \), where,

\[
B = \begin{bmatrix}
I_{r \times r} & \times \\
0 & 0
\end{bmatrix}
\]
, then above equation is written as
\[
B \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c_{r \times 1} \\ 0 \end{bmatrix}.
\]

and \(y = P_2 x \). Then we are free to choose \(y_2 \) and that determines \(y_1 \) uniquely and \(x = P_2^{-1} y \). Then the solution set is parameterized by a \(n - r \) dimensional space \(y_2 \). Every solution \(x \) is in one to one correspondence with \(y_2 \) which are coordinates of \(x \).

There is important nonlinear generalization of this called implicit function theorem. Let \(F : \mathbb{R}^n \to \mathbb{R}^m \), such that \(F \) is \(C^1 \) and \(F(a) = b \). If \(DF \) is of constant rank \(r \) is a nghd \(U_a \), then we can find a nghd \(V_a \subset U_a \) and a map \(G : \mathbb{R}^n \to \mathbb{R}^n \), that maps \(V_a \) one to one onto a nghd \(W \) of origin such that solution set \(S \) of \(F(x) = b \) contained in \(V_a \) is simply
\[
G^{-1}(0, y_2) = S.
\]

for \((0, \ldots, y_{2r}) \in W \). We have a parameterization of \(S \).

Proof: Writing
\[
DF(a) = \begin{bmatrix} \frac{\partial F_1}{\partial a_1} & \frac{\partial F_1}{\partial a_2} \\ \vdots & \vdots \\ \frac{\partial F_r}{\partial a_1} & \frac{\partial F_r}{\partial a_2} \end{bmatrix},
\]
where \(a = (a_1, \ldots, a_{n-r}) \), has \(a_1 \) as first \(r \) coordinates and \(a_2 \) as last \(n - r \) coordinates. Similarly the map \(F = (F_1, \ldots, F_r) \), where \(F(a) = (b_1, \ldots, b_{n-r}) \). Since \(DF(a) \) is rank \(r \), W.L.O.G we assume that the top-left, \(r \times r \) block is non-singular. We can find a open nghd around \(a \) on which top-left block is non-singular. Now consider the map \(G(x_1, x_2, \ldots, x_n) = (f_1, \ldots, f_r, x_{r+1}, \ldots, x_n) \). Then
\[
DG(a) = \begin{bmatrix} \frac{\partial f_1}{\partial a_1} & \frac{\partial f_1}{\partial a_2} \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix},
\]
which is full rank and hence by inverse mapping theorem we can find a nghd \(V_a \) such that \(G \) maps one-one onto a nghd \(W \) of \(G(a) \). Now observe \(S \) in \(V_a \) maps to plane \((b_1, \cdot) \) in \(W \), furthermore in \(W \), \(G^{-1}(b_1, \cdot) = S \). In \(W \), given a point on the plane \((b_1, \cdot) \), look at it preimage \(z \) in \(V_a \) and join it by a curve \(C \) to \(a \). On \(V_a \), the last \(n - r \) rows of \(DF(x) \) are dependent on first \(r \) rows. Since the integral of first \(r \) rows along \(C \) is zero so is true for last \(n - r \) rows. Hence \(F(z) = b \) and thus \(z \in S \). Thus we have a parametrization of \(S \), the plane \((b_1, \cdot) \) in \(W \).
2 Manifolds

In implicit function theorem, we saw how the solution set S of $F(x) = b$ has a local parametrization $G^{-1}(b_1, \cdot)$. This is called a manifold M. When around every point, we can find a nghd U and a map ϕ that maps U one-one, onto a nghd V of orgin such that in U, $M = \phi^{-1}(\begin{bmatrix} 0 \\ n-r \\ r \end{bmatrix}, \cdot)$, for $(\begin{bmatrix} 0 \\ n-r \\ r \end{bmatrix}, \cdot) \in V$. We say we have local coordinates for M. r is called dimension of M.

2.1 Examples

Sphere: Let $X = (x, y, z)$ satisfy $F(x, y, z) = x^2 + y^2 + z^2 = 1$, we show M is a manifold. Consider $DF(X) = 2 \begin{bmatrix} x & y & z \end{bmatrix}$. Then DF(X) is rank 1 in a nghd of every $X \in M$ and by implicit function theorem M is a manifold of dimension $3 - 1 = 2$.
Orthogonal Group $O(n)$: Let X be a $n \times n$ real matrix satisfying $F(X) = X^T X = I$. Then at nonsingular X, we can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ matrices. Then $\frac{dF}{dt} = X^T (A^T + A)X$. The null space is $A^T + A = 0$. All skew symmetric matrices of dim $\frac{n(n-1)}{2}$. Then rank is dim $\frac{n(n+1)}{2}$ and by implicit function theorem we have a manifold of dim $\frac{n(n-1)}{2}$. Its called the Orthogonal group.

Special Orthogonal Group $SO(n)$: Let $X \in O(n)$ the $detX = \pm 1$. Then X has two disconnected component $detX = 1$ and $detX = -1$. The component with $detX = 1$ is called $SO(n)$. Its called the special Orthogonal group.

Unitary Group $U(n)$: Let X be a $n \times n$ complex matrix satisfying $F(X) = X'X = I$. Then at nonsingular X, we can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ complex matrix. Then

$$\frac{dF}{dt} = X'(A' + A)X.$$

The null space is $A' + A = 0$, all skew hermitian matrices of dim n^2. Then rank is dim n^2 and by implicit function theorem we have a manifold of dim $2n^2 - n^2 = n^2$. Its called the Unitary group.

Special Unitary Group $SU(n)$: Let X be a $n \times n$ complex matrix satisfying $F(X) =$ \[
\begin{bmatrix}
X'X \\
det(X)
\end{bmatrix} = \begin{bmatrix} I \\ 1 \end{bmatrix}.
\]

Then at nonsingular X, we can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ complex matrix. Then

$$\frac{dF}{dt} = \begin{bmatrix} X'(A' + A)X \\ tr(A)det(X) \end{bmatrix}.$$

The null space is $A' + A = 0$, all skew hermitian matrices and $tr(A) = 0$ of dim $n^2 - 1$. Then rank is dim $n^2 + 1$ and by implicit function theorem we have a manifold of dim $2n^2 - (n^2 + 1) = n^2 - 1$. Its called the special Unitary group.

Special Linear group $SL(n, \mathbb{R})$: Let X be a $n \times n$ real matrix satisfying $detX = 1$. Then at nonsingular X, we can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ complex
matrix. Then
\[\frac{dF}{dt} = tr(A)X. \]
The null space is $tr(A) = 0$, all traceless matrices of dim $n^2 - 1$. Then rank is dim 1 and by implicit function theorem we have a manifold of dim $n^2 - 1$.

Symplectic Group $Sp(n, \mathbb{R})$: Let X be a $2n \times 2n$ real matrix satisfying $X'JX = J$, where $J = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$. Then at nonsingular X, we can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ matrices. Then $\frac{dF}{dt} = X^T(A^TJ + JA)X$. The null space is $A^TJ + JA = 0$. If $A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$, then $A_1 = -A_4^T$ and $A_2 = A_3^T$ and $A_3 = A_2^T$. The dim of null space is $n^2 + n(n + 1) = 2n^2 + n$. Then rank is dim $2n^2 - n$ and by implicit function theorem we have a manifold of dim $2n^2 + n$.

2.2 Tangent Space of M

Given a point $p \in M$, we have a nhgd U_p mapped by ϕ to $\phi : U \to V_0$ such that M in U_a is mapped to plane $\{(0, y, \ldots, y_r)\}$ in V_0, which we denotes as $(0, y)$. Consider the curve $(0, y(t))$, which is mapped to $x(t) = \phi^{-1}(0, y(t))$, passing through p. Then $\dot{x} = D\phi^{-1}(0, \dot{y})$, also denoted as $\dot{\phi}^{-1}(0, \dot{y})$. Observe \dot{y} lies in r dimensional vector space so $\dot{x} = D\phi^{-1}(0, \dot{y})$ lies in a r dimensional subspace called the tangent space of p denotes by T_pM. Let's compute the tangent space of various manifolds.

Sphere: Let M be (x, y, z) satisfying $x^2 + y^2 + z^2 = 1$. Given a p on M a curve through p satisfies $x^2(t) + y^2(t) + z^2(t) = 1$, then we have $x\dot{x} + y\dot{y} + z\dot{z} = 1$. Then $(\dot{x}, \dot{y}, \dot{z})$ is orthogonal to p, a two dimensional space.

Orthogonal Group $O(n)$: $X \in M$ is a $n \times n$ real matrix satisfying $X^TX = I$. Given a p on M a curve through p satisfies $X^T(t)X(t) = I$, with $X(0) = p$. We can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ matrix. Then $\dot{X}^T(t)X(t) + X^T\dot{X}(t) = 0$, i.e., $X^T(A^T + A)X = 0$ implying $A^T + A = 0$. A is skew symmetric matrix. The tangent space at $p = X(0)$ is of the form $AX(0)$ where A is skew symmetric matrix. Dim of T_pM is $\frac{n(n-1)}{2}$.

Unitary Group $U(n)$: $X \in M$ is a $n \times n$ complex matrix satisfying $X'X = I$. Given a p on M a curve through p satisfies $X'(t)X(t) = I$, with $X(0) = p$. We can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ matrix. Then $X'(t)X(t) + X'\dot{X}(t) = 0$, i.e., $X'(A' + A)X = 0$.
implying $A' + A = 0$. A is skew hermitian matrix. The tangent space at $p = X(0)$ is of the form $AX(0)$ where A is skew hermitian matrix. Dim of $T_p\mathcal{M}$ is n^2.

Special Unitary Group SU(n): $X \in \mathcal{M}$ is a $n \times n$ complex matrix satisfying $X'X = I$ and $\det X = 1$. Given a p on \mathcal{M} a curve through p satisfies $X'(t)X(t) = I$, $\det X(t) = 1$ with $X(0) = p$. We can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ matrix. Then $\dot{X}'(t)X(t) + X'\dot{X}(t) = 0$, and $tr(A)\det X = 0$ i.e., $X'(A' + A)X = 0$ implying $A' + A = 0$ and $tr(A) = 0$. A is traceless skew hermitian matrix. The tangent space at $p = X(0)$ is of the form $AX(0)$ where A is traceless skew hermitian matrix. Dim of $T_p\mathcal{M}$ is $n^2 - 1$.

Special Linear group SL(n, R): $X \in \mathcal{M}$ is a $n \times n$ real matrix satisfying $\det X = 1$. Given a p on \mathcal{M} a curve through p satisfies $\det X(t) = 1$ with $X(0) = p$. We can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ real matrix. Then $\frac{d}{dt}\det X = tr(A)\det X = 0$ i.e., $tr(A) = 0$. The tangent space at $p = X(0)$ is of the form $AX(0)$ where A is traceless real matrix. Dim of $T_p\mathcal{M}$ is $n^2 - 1$.

Symplectic Group Sp(n, R): $X \in \mathcal{M}$ is a $2n \times 2n$ real matrix satisfying $X'JX = J$, where $J = \begin{bmatrix} O & -I_n \\ I_n & 0 \end{bmatrix}$. Given a p on \mathcal{M} a curve through p satisfies $X'(t)JX(t) = J$, with $X(0) = p$. We can write a velocity vector $\dot{X}(t) = AX(t)$ for $A \in n \times n$ matrices. Then $X^T(t)(A^TJ + JA)X(t) = 0$, i.e., $A^TJ + JA = 0$. If $A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$, then $A_1 = -A_4^T$ and $A_2 = A_2^T$ and $A_3 = A_3^T$. The dim of these matrices is $n^2 + n(n + 1) = 2n^2 + n$.

8
3 Lie Groups

The manifolds like $O(n)$, $SO(n)$, $Sl(n, R)$, $U(n)$, $SU(n)$, $Sp(n, R)$ besides being manifolds are also groups under matrix multiplication and are closed under multiplication and inverse. In particular M has identity element I. They are called Lie Groups and denoted by G. As an example, let $G = Sp(n, R)$. If $X, Y \in G$, then $(XY)^T JXY = J$ and $(X^{-1})^T JX^{-1} = J$.

Lie Algebra: If we look at tangent space at X, it takes the form AX, where A belongs to a vector space, lets call g. Then tangent space at I, is simply A. It is no coincidence that for the group G, the tangent space at Identity and at any arbitrary element X are related by left multiplication by X. This is because if $p(t)$ is curve passing through I ($p(0) = I$) then $Y(t) = p(t)X$ is curve passing through X, then if $\dot{p}(0) = A$ lies in a vector space, then $\dot{Y}(0) = AX$. Then g is called the Lie algebra of G.

Vector Field: Now let $A \in g$ and consider the differential eq. $\dot{X} = AX$, with $X(0) = I$. Then $X(t) \in G$. Consider a nghd U of I in M and U_1 is its intersection with M. Let $V = \phi(U)$ and $V_1 = \phi(U_1)$ is the horizontal plane, the coordinates of M. U_1 is called nghd of $I \in M$ and V_1 is called its coordinate chart. Observe, $X \in U_1$, the vector AX assigns a vector at each X and is called a vector field. Then $\phi_*(AX) = f(y)$ is a vector field on V_1, which is horizontal. Now consider the evolution $\dot{y} = f(y)$, as $f(y)$ is horizontal, $y(t) \in V_1$ for $t \in [-\delta, \delta]$ and it preimage satisfies $x(t) \in U_1$ and $\dot{x} = AX$. Thus we can say that for
\(t \in [-\delta, \delta], \exp(At) \in G \) and hence \(\exp(At) \in G \) for all \(t \).

Exponential Coordinates: At \(I \in G \), we have a nghd \(U_1 \) mapped to \(V_1 \), the cordinates of \(U_1 \). There is a natural choice of cordinates in \(G \) called exponential cordinates. Let \(A_i \) be a basis of \(r \) dimesional \(g \). Consider the map

\[
\psi(t_1, \ldots, t_r) = \exp(\sum_i t_i A_i).
\]

Then \(\phi \circ \psi(t_1, \ldots, t_r) \to V_1 \) such that \(\phi \circ \psi(0) = 0 \). Note \(\frac{\partial \psi}{\partial t_i}|_{t=0} = A_i \).

Then observe

\[
(\phi \circ \psi)_*(0) = \phi_* \psi_*(0) = \phi_* \begin{bmatrix} A_1 & \ldots & A_r \end{bmatrix},
\]

is full rank. Thus \(\phi \circ \psi \) maps onto a nghd or origin in \(V_1 \) and hence \(\psi(t_1, \ldots, t_r) \) maps onto a nghd \(U_e \) of \(I \in G \). We call \(U_e \) exponential nghd. For \(g \in G \), \(U_e \ g \) is a nghd around \(g \).

4 Non-Linear Controllability

We now start talking about nonlinear control systems. The most common ones are of the form

\[
\dot{x} = \sum_{i=1}^{m} u_i(t) g_i(x), \quad x \in \mathbb{R}^n, \ g_i: \mathbb{R}^n \to \mathbb{R}^n,
\]

where we assume \(g_i \) are smooth functions and are called vector fields. We ask can we steer this system between points of interest by choice of \(u_i(t) \). We can write the above system as

\[
\dot{x} = \sum_i u_i(t) g_i(x) = \begin{bmatrix} g_1(x) & g_2(x) & \ldots & g_m(x) \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix}
\]

\(G(x) \) is a collection of vector fields. If they span a \(r \) dimensional space at each point we call it a rank \(r \) distribution. If \(r = n \), we have a controllable system. We can just follow the velocity of a path. Interesting case is when \(r < n \). As an example take the following system called *nonholonomic integrator* which models kinematics of a mobile robot.
\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix} = \begin{bmatrix}
u \\
v \\
xv - yu
\end{bmatrix} = \begin{bmatrix}1 \\
0 \\
-y
\end{bmatrix} u + \begin{bmatrix}0 \\
1 \\
x
\end{bmatrix} v.
\]

Now we are in \(\mathbb{R}^3 \) and have two dimensional distribution spanned by \(f, g \). At each point we can move in two directions \(f \) and \(g \). Is the system controllable? If we switch on \(u = +1 \) we move along \(f \) and if we switch on \(u = -1 \) we move along \(-f \). Similarly if we switch on \(u = +1 \) we move along \(g \) and if we switch on \(v = -1 \) we move along \(-g \). Let's go along \(f \), then \(g \) and \(-f\) and \(-g \). Let's evaluate what happens then. We use the notation \(\phi^\Delta_t(x_0) \) to denote the final point as the initial point \(x_0 \) moves along \(f \) for time \(\Delta t \). Then we want to find out what is \(\phi^\Delta_{-g} \circ \phi^\Delta_f \circ \phi^\Delta_g \circ \phi^\Delta_f(x_0) \)

Observe

\[
x_1 = x(\Delta t) = x_0 + f(x_0)\Delta t + \frac{1}{2} \frac{\partial f}{\partial x} f(x_0) \Delta t^2. \tag{2}
\]
\[
x_2 = x(2\Delta t) = x_1 + g(x_1)\Delta t + \frac{1}{2} \frac{\partial g}{\partial x} g(x_1) \Delta t^2. \tag{3}
\]
\[
x_3 = x(3\Delta t) = x_2 - f(x_2)\Delta t + \frac{1}{2} \frac{\partial f}{\partial x} f(x_2) \Delta t^2. \tag{4}
\]
\[
x_4 = x(4\Delta t) = x_3 - g(x_3)\Delta t + \frac{1}{2} \frac{\partial g}{\partial x} g(x_3) \Delta t^2. \tag{5}
\]
\[
x_2 = x_0 + f(x_0)\Delta t + \frac{1}{2} \frac{\partial f}{\partial x} f(x_0) \Delta t^2 + g(x_0)\Delta t + \frac{\partial g}{\partial x} f(x_0) \Delta t^2 + \frac{1}{2} \frac{\partial g}{\partial x} g(x_0) \Delta t^2 - f(x_0) \Delta t - \frac{\partial f}{\partial x} (f(x_0) + g(x_0)) \Delta t^2 + \frac{1}{2} \frac{\partial f}{\partial x} f(x_0) \Delta t^2 + o(\Delta t^3). \tag{6}
\]
\[
x_3 = x_0 + f(x_0)\Delta t + \frac{1}{2} \frac{\partial f}{\partial x} f(x_0) \Delta t^2 + g(x_0)\Delta t + \frac{\partial g}{\partial x} f(x_0) \Delta t^2 + \frac{1}{2} \frac{\partial g}{\partial x} g(x_0) \Delta t^2 - \frac{\partial f}{\partial x} (f(x_0) + g(x_0)) \Delta t^2 + \frac{1}{2} \frac{\partial f}{\partial x} f(x_0) \Delta t^2 + o(\Delta t^3). \tag{7}
\]
\[
x_4 = x_0 + \frac{1}{2} \frac{\partial f}{\partial x} f(x_0) \Delta t^2 + \frac{\partial g}{\partial x} f(x_0) \Delta t^2 + \frac{1}{2} \frac{\partial g}{\partial x} g(x_0) \Delta t^2 - \frac{\partial f}{\partial x} (f(x_0) + g(x_0)) \Delta t^2 + \frac{1}{2} \frac{\partial f}{\partial x} f(x_0) \Delta t^2 + \frac{1}{2} \frac{\partial g}{\partial x} g(x_0) \Delta t^2 + o(\Delta t^3). \tag{8}
\]
\[
x_4 = x_0 + (\frac{\partial g}{\partial x} - \frac{\partial f}{\partial x} g(x_0)) \Delta t^2 + o(\Delta t^3). \tag{9}
\]
\[[f,g](x) = \frac{\partial g}{\partial x}f - \frac{\partial f}{\partial x}g. \]

When we make the maneuver we proposed. We donot return back to \(x_0 \) instead we make a leading order motion in direction given by Lie bracket of \(f \) and \(g \) denoted as \([f,g]\).

For the vector fields given
\[
\frac{\partial g}{\partial x}f - \frac{\partial f}{\partial x}g = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -y \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = h.
\]

We can not only go in direction \(f \) and \(g \), we can also go in direction \(h \) by making the maneuver. Then we have three independent directions of motion, which suggest we have controllability because I can move everyway.

4.1 Frobenius Theorem

We introduce the notation \(\exp(tf)x_0 \), evolves \(x_0 \) under \(f \) for time \(t \) or evolves \(x_0 \) under \(tf \) for time 1. In this notaion \(\exp(tf)x_0 = \phi_f^t(x_0) \).

If \(f \) and \(g \) commute, then
\[
\exp(tf) \exp(sg)x_0 = \exp(sg) \exp(tf)x_0 = \exp(tf + sg)x_0. \tag{10}
\]

To see this if \(f \) and \(g \) commute, then flow of \(f \) preserves \(g \), i.e.
\[
g(\phi_f^t(x_0)) = (\phi_f^t)_*g(x_0). \tag{11}
\]

Note
\[
\frac{dg(x(t))}{dt} = \frac{\partial g}{\partial x}f. \tag{12}
\]
as \(f \) and \(g \) commute, we have
\[
\frac{dg(x(t))}{dt} = \frac{\partial f}{\partial x}g(x(t)), \tag{13}
\]
but this is the equation of \((\phi_f^t)_*g(x_0) \). Now consider the curve
\[
x(t) = \phi_g^{-s} \phi_f^t \phi_g^s x_0 \tag{14}
\]
Then,
\[
\dot{x}(t) = (\phi^{-s}_g)_* f(\phi^s_g x_0) = f(x(t)) \quad (15)
\]

\[
x(t) = \phi^t_f = \phi^{-s}_g \phi^t_f \phi^s_g x_0. \quad (16)
\]

hence the proof.

Similarly, consider the curves

\[
x_1(t) = \exp(tf) \exp(tg) x_0, \quad x_2(t) = \exp(t(f + g)) x_0.
\]

and

\[
\dot{x}_2(t) = (f + g)(x_2(t)).
\]

From above discussion on preserving the vector fields, we have

\[
\exp(tf)_* g(\exp(tg) x_0) = g(\exp(tf) \exp(tg) x_0) = g(x_1(t)).
\]

Therefore \(\dot{x}_1(t) = (f + g)(x_1(t))\). By uniqueness, we have,

\[
\exp(tf) \exp(tg) x_0 = \exp(t(f + g)) x_0.
\]

Now consider a \(r\) dimensional distribution \(\Delta = \{f_1, \ldots, f_r\}\) such that \(r < n\) and \(f_i\) commute. Then we claim we cannot go everywhere. Our motion is restricted to a \(r\) dimensional manifold.

Let \(\{f_1, \ldots, f_r, e_{r+1}, \ldots, e_n\}\) span \(\mathbb{R}^n\) at \(x_0\). Consider the map

\[
\Phi(t_1, \ldots, t_n) = \prod_{i=1}^r \exp(t_i f_i) \prod_{i=r+1}^n \exp(t_i e_i) x_0.
\]

where the map \(\exp(tf) x_0\), evolves \(x_0\) under \(f\) for time \(t\). Then \(\frac{d}{dt} \exp(tf) x_0|_0 = f(x_0)\). Then

\[
\frac{\partial \Phi}{\partial t_i}(0) = f_i(x_0), \quad i = 1, \ldots, r
\]

\[
\frac{\partial \Phi}{\partial e_i}(0) = e_i(x_0), \quad i = r + 1, \ldots, n
\]

By inverse mapping theorem, we have a one-one onto map that maps nghd \(V\) to nghd \(U\) of \(x_0\) such that the plane \((t, \ldots, t_r)\) to \(\mathcal{M}\).
Infact,

\[
\frac{\partial \Phi}{\partial t_i}(t_1, \ldots, t_n) = f_i(x), \ i = 1, \ldots, r
\] \hspace{1cm} (17)

Thus in \(U \), \(\Phi^{-1}_x(f_i) \) are horizontal vector fields in \(V \). Hence if we consider the equation
\(\dot{x} = \sum_i u_i f_i \), we are always evolving horizontally in \(V \). Then starting from 0 in \(V \), we stay
on the horizontal plane and hence \(x(t) \) evolves on \(\mathcal{M} \), which is called the integral manifold of
vector fields \(\{f_i\} \). Hence our motion is restricted to a \(r \) dimensional manifold \(\mathcal{M} \).

![Figure 4](image)

Now lets relax the constraint that \(\{f_i\} \) commute but instead \([f_i, f_j] \in \Delta \), i.e., at every \(x \),
\([f_i, f_j](x) = \sum_k \alpha_k(x) f_k \). Then we say our distribution \(\Delta \) is involutive. Given an involutive
distribution \(\Delta \), there is a \(r \) dimensional manifold \(\mathcal{M} \) such that \(\Delta \) is tangent to \(\mathcal{M} \) at each
\(x \in \mathcal{M} \). \(\mathcal{M} \) is called the integral manifold of \(\Delta \).

Written as a \(n \times r \) matrix

\[
\begin{bmatrix} f_1 & \cdots & f_r \end{bmatrix} = \begin{bmatrix} A \\ B \end{bmatrix}
\]

These \(r \) columns are independent. At \(x_0 \), we assume, w.l.o.g the top \(r \) rows are independent.
Then the top \(r \times r \) matrix is invertible at \(x_0 \) and so in a nghd \(U \) of \(x_0 \). Then define

\[
G = \begin{bmatrix} g_1 & \cdots & g_r \end{bmatrix} = F \ast A^{-1} = \begin{bmatrix} I \\ C \end{bmatrix}
\] \hspace{1cm} (19)

Now observe given a function \(h(x) \), we have

\[
[h f, g] = h \left(\frac{\partial g}{\partial x} f - \frac{\partial f}{\partial x} g \right) - \left(\frac{\partial h}{\partial x} g \right) f = h[g, f] - h_1 f
\]
Therefore if $\Delta = \{ f_i \}$ is involutive, we have for arbitrary functions h_i, $[h_i f_i, h_j f_j] \in \Delta$. Therefore, Eq. (19), $\{g_i\}$ is involutive and is same as Δ. Now take bracket of $[g_i, g_j]$, it is of the form $[g_i, g_j] = \begin{bmatrix} 0 & c(x) \\ c(x) & 0 \end{bmatrix}$. But being involutive, it should in span of g_i, implying $c(x) = 0$ and g_i commute.

Therefore, we are back to the situation of commuting vector fields.

$$\mathcal{M} = \prod_{i=1}^{r} \exp(t_i g_i) x_0,$$

is a integral manifold passing through x_0 such that our motion under the flow $\dot{x} = \sum_i u_i f_i$ is restricted to \mathcal{M}. This is called Frobenius Theorem.

This means in our control system

$$\dot{x} = \sum_{i=1}^{r} u_i f_i(x),$$

when vector fields f_i donot span \mathbb{R}^n and on bracketting donot generate a new vector field, then our motion is restricted to a r dimensional integral manifold \mathcal{M}.

4.2 Chows Theorem

Recall from Eq. (9), we calculated the map

$$\Phi_{[f,g]}^{\Delta t} x_0 = \phi_g^{\Delta t} \circ \phi_f^{\Delta t} \circ \phi_g^{\Delta t} \circ \phi_f^{\Delta t}(x_0).$$

We found to leading order we get

$$\Phi_{[f,g]}^{\Delta t} x_0 = x_0 + [f, g](x_0) \Delta t^2 + o(\Delta t^3).$$

To leading order we proceed in direction $[f, g]$. We say, we generate the first brackett.

Let see, how to generate second brackett, say $[h[f, g]]$. For this consider the map

$$\phi_{h}^{\Delta s} \phi_{[f,g]}^{\Delta t} \phi_{h}^{\Delta s} x_0,$$

Let $\phi_{h}^{\Delta s} x_0 = x_1$. Then we have

$$x_2 = \Phi_{[f,g]}^{\Delta t} x_1 = x_1 + [f, g](x_1) \Delta t^2 + o(\Delta t^3).$$

$$\phi_{-h}^{\Delta s}(x_1 + \epsilon) = \phi_{-h}^{\Delta s}(x_1) + \epsilon - \frac{\partial h}{\partial x} \epsilon \Delta s + o(\Delta t^2 \Delta s^2).$$

using
\[x_1 = x_0 + h(x_0) \Delta s + o(\Delta s^2) \]

\[x_2 = x_0 + [f, g](x_0) \Delta t^2 + \left(\frac{\partial [f, g]}{\partial x} h - \frac{\partial h}{\partial x} [f, g] \right)(x_0) \Delta t^2 \Delta s + o(\Delta t^3) + o(\Delta t^2 \Delta s^2) \]

Now evaluate

\[\Phi_{[g,f]}^{\Delta t} x_2 = x_2 + [g, f](x_2) \Delta t^2 + o(\Delta t^2) \]

\[= x_0 + [h[f, g]](x_0) \Delta t^2 \Delta s + o(\Delta t^3) + o(\Delta t^2 \Delta s^2) \]

Choosing \(\Delta s = \sqrt{\Delta t} \).

\[\Psi_{[h, [g, f]]}^{\Delta t} = \Phi_{[g,f]}^{\Delta t} \phi_{h}^{\Delta s} \Phi_{[f, g]}^{\Delta t} \phi_{h}^{\Delta s} x_0 = x_0 + [h[f, g]](x_0) \Delta t^\frac{3}{2} + o(\Delta t^3) \]

The leading order term is \([h[f, g]](x_0) \) a second order bracket. If we want one more bracket \([e[h[f, g]]] \), then we do

\[\phi_{-e}^{\Delta s} \phi_{[h, [g, f]]}^{\Delta t} \phi_{h}^{\Delta s} = x_0 + [h[f, g]](x_0) \Delta t^{5/2} + [e[h[f, g]]](x_0) \Delta t^{5/2} \Delta s + o(\Delta t^3) + o(\Delta t^{5/2} \Delta s^2) \]

Now choose \(\Delta s = \Delta t^{\frac{1}{4}} \), then

\[\Sigma_{[e[h, [g, f]]]}^{\Delta t} = \Psi_{[-h, [g, f]]}^{\Delta t} \phi_{-e}^{\Delta s} \Psi_{[h, [g, f]]}^{\Delta t} \phi_{h}^{\Delta s} = x_0 + [e[h[f, g]]](x_0) \Delta t^{11/4} + o(\Delta t^3) \]

The leading order term is \([e[h[f, g]]](x_0) \) a second order bracket. In fact if we choose \(t = (\Delta t)^{\frac{4}{11}} \), we have

\[\Sigma_{[e[h, [g, f]]]}^{t} x_0 = x_0 + [e[h[f, g]]](x_0) t + o(t^{1+\alpha}), \quad \alpha > 0. \]

Now let’s say we start with \(r \) independent vector fields \(\{f_i\} \). By taking brackets we can generate new vector fields \(X_k \) such that \(\{f_i, X_k\} \), span all of \(\mathbb{R}^n \). As above, we have shown how to construct a map

\[\Phi_{X}^{t} x_0 = x_0 + X(x_0) t + o(t^{1+\alpha}), \quad \alpha > 0. \]

Now consider map

\[F(t_1, \ldots, t_r, \ldots, t_n) = \prod_{i=r+1}^{n} \Phi_{X_i}^{t_i} \prod_{i=1}^{r} \exp(f_i t_i) x_0 \]
Then by construction $DF(0) = \{f_i, X_k\}$, a full rank matrix. Hence by inverse function theorem F maps a nghd $U = (t_1, \ldots, t_n)$ of origin to a nghd V of x_0. We can go anywhere in R^n, we have controllability. Suppose we want to go from x to y, then choose a path as shown in the figure 6 below and go from x to y by overlapping ngds. Now we can go withing ngds and go from x to y.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Figure shows how a path from x to y can be tracked through a sequence of overlapping nghds}
\end{figure}

Example 1 Let us go back to the non-holonomic integrator

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix} = \begin{bmatrix}
1 \\
0 \\
-y
\end{bmatrix} u + \begin{bmatrix}
0 \\
x \\
g
\end{bmatrix} v.
\]

We also write

\[
f = \frac{\partial}{\partial x} - y \frac{\partial}{\partial z}; \quad g = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}
\]

Then $h = [f, g] = \begin{bmatrix}
0 \\
0 \\
2
\end{bmatrix}$. Then f, g, h space R^3 and we have controllability.

Example 2 Consider the system

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{m} \\
\dot{n}
\end{bmatrix} = \begin{bmatrix}
1 \\
0 \\
-y \\
0 \\
y^2
\end{bmatrix} u + \begin{bmatrix}
0 \\
x \\
x^2 \\
x^2 \\
0
\end{bmatrix} v.
\]
Then

\[
[f,g] = \begin{bmatrix}
0 \\
0 \\
2 \\
x \\
y
\end{bmatrix}; \quad [f,[f,g]] = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0
\end{bmatrix}; \quad [[f,g]g] = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
1
\end{bmatrix}.
\]

Then \(f, g, [f, g], [f, [f, g]], [[f, g], g]\) span the space \(\mathbb{R}^5\) and we have controllability.

4.3 Non-linear controllability on Lie groups

We now consider control systems of the form

\[
\dot{x} = \left(\sum_i u_i \Omega_i \right) x, \quad x(0) = I
\]

Where \(\Omega_i \in g\) the Lie algebra of a Lie Group \(G\). Then as shown before, \(x(t) \in G\). Suppose span \(\{\Omega_i\} = g\). Then starting from say \(x(0) = I\), we can go to any point in its exponential nghd \(U_e\) by just using the evolution \(\exp(\sum_i u_i \Omega_i)\) for constant \(u_i\). If \(G\) is connected any two points \(X\) and \(Y\) can be joined by a path in \(G\). Around each point draw a exponential nghd and choose a finite cover so that we go from \(X\) to \(Y\) in overlapping nghds. Then we can go from \(X\) to \(Y\).

\[\text{Figure 6: Figure shows how a path from } x \text{ to } y \text{ can be tracked through a sequence of overlapping nghds}\]

Suppose the given \(\Omega_i\) donot span \(g\). Then we cannot go to all points in \(U_e\). Again we propose the maneuver we use before. We go in direction of \(\Omega_1\), then \(\Omega_2\) and then \(-\Omega_1\) and \(-\Omega_2\), for small time \(\Delta t\).

This generates the evolution

18
\[U_{[\Omega_1, \Omega_2]}(\Delta t) = \exp(-\Omega_2 \Delta t) \exp(-\Omega_1 \Delta t) \exp(\Omega_2 \Delta t) \exp(\Omega_1 \Delta t) \]

\[= \exp(-\Omega_2 \Delta t) \exp(-\Omega_1 \Delta t) (I + \Omega_2 \Delta t + \Omega_2^2 \frac{\Delta t^2}{2} + o(\Delta t^3)) \exp(\Omega_1 \Delta t) \]

\[= \exp(-\Omega_2 \Delta t) (I + \Omega_2 \Delta t - [\Omega_1, \Omega_2] \Delta t^2 + \Omega_2^2 \frac{\Delta t^2}{2} + o(\Delta t^3)) \]

\[= (I - \Omega_2 \Delta t + \Omega_2^2 \frac{\Delta t^2}{2} + o(\Delta t^3))(I + \Omega_2 \Delta t - [\Omega_1, \Omega_2] \Delta t^2 + \Omega_2^2 \frac{\Delta t^2}{2} + o(\Delta t^3)) \]

\[= I - [\Omega_1, \Omega_2] \Delta t^2 + o(\Delta t^3) \]

To leading order we generate a motion in the matrix commutator \([\Omega_2, \Omega_1]\). First note that \([\Omega_2, \Omega_1] \in \mathfrak{g}\) because for \(\Delta t = \sqrt{t}\), we have \(U(\sqrt{t}) = I - [\Omega_1, \Omega_2]t + o(t^{3/2})\), is a path in \(G\) and its derivative at \(t = 0\) is an element of \(\mathfrak{g}\) which is \([\Omega_2, \Omega_1] \in \mathfrak{g}\).

As before by making a maneuver, we have been able to generate a bracket. We can now generate more brackets

\[\exp(\Delta s \Omega_3) U_{[\Omega_1, \Omega_2]}(\Delta t) \exp(-\Delta s \Omega_3) = I - [\Omega_1, \Omega_2] \Delta t^2 + o(\Delta t^3) - [\Omega_3, [\Omega_1, \Omega_2]] \Delta s \Delta t^2 + o(\Delta s^2 \Delta t^2) \]

Choose as before \(\Delta s = \sqrt{\Delta t}\). Then,

\[U_{[\Omega_2, \Omega_1]} \exp(\Delta s \Omega_3) U_{[\Omega_1, \Omega_2]}(\Delta t) \exp(-\Delta s \Omega_3) = I - [\Omega_3, [\Omega_1, \Omega_2]] \Delta t^\frac{5}{2} + o(\Delta t^3). \]

Thus we have map

\[\Phi_{[\Omega_2, \Omega_1]}(t) = 1 - [\Omega_3, [\Omega_1, \Omega_2]]t + O(t^{1+\alpha}) \]

Thus we start with set of generators \(\{\Omega_1, \ldots, \Omega_r\}\). They need not span \(\mathfrak{g}\). Then we have shown how to generate brackets of \(\Omega_i\). Suppose we generate new generators call \(X_k\) such that \(\Omega_i, X_k\) span \(\mathfrak{g}\). Then consider the map

\[F(t_1, \ldots, t_r, \ldots, t_n) = \prod_{i=r+1}^{n} \Phi_{X_i}^{t_i} \prod_{i=1}^{r} \exp(\Omega_i t_i). \]

Then by construction \(DF(0) = \{\Omega_i, X_k\} = \mathfrak{g}\). Hence by inverse function theorem, \(F\) maps onto an exponential nghd \(U_e\) of \(I\). We can go anywhere in \(U_e\) using the map \(F\) and then we have controllability as described before.

In nutshell, if commutators of the generators span \(\mathfrak{g}\), we have controllability.
Example 3 Let
\[\dot{\Theta} = (u\Omega_x + v\Omega_y)\Theta, \quad \Theta(0) = I, \]
where \(\Omega_x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \) and \(\Omega_y = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \). Then our system evolves on \(SO(3) \), which has tangent space \(g = so(3) \), \(3 \times 3 \) skew symmetric matrices. By Lie bracket, we get \([\Omega_x, \Omega_y] = \Omega_z \). Now we have all three generators \((\Omega_x, \Omega_y, \Omega_z) \) of \(so(3) \), we span \(g \). We can steer the system anywhere on \(SO(3) \).

Example 4 Let
\[\dot{\Theta} = \begin{bmatrix} 0 \\ -u^T \\ \mathbf{O} \end{bmatrix} \Theta, \quad \Theta(0) = I, \]
where \(u \in \mathbb{R}^{n-1} \) is our control vector and \(\mathbf{O} \) is \(n-1 \times n-1 \) matrix. First note our system evolves on \(SO(n) \). Let \(\Omega_{ij} \) be skew symmetric with 1 in the \(i,j \) spot, with \(i < j \). Then we have \(\frac{n(n-1)}{2} \) such generators that span \(g = so(n) \), space of skew symmetric matrices. We only have as control, generators of the form \(\Omega_{1k}, k > 1 \). There are \(n-1 \) of them. But see \([\Omega_{1j}, \Omega_{1k}] = \Omega_{jk} \). Thus we get all the generators by commutators and we have controllability.

Example 5 Let
\[\dot{\Theta} = \begin{bmatrix} 0 & u_1 & 0 & 0 & 0 \\ -u_1 & 0 & u_2 & 0 & 0 \\ 0 & -u_2 & 0 & u_3 & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & -u_{n-1} \end{bmatrix} \Theta, \quad \Theta(0) = I, \]
Again, our system evolves on \(SO(n) \). Now we have \(n-1 \) control generators \(\{\Omega_{12}, \Omega_{23}, \ldots, \Omega_{n-1,n}\} \). Observe \([\Omega_{12}, \Omega_{23}] = \Omega_{13}, [\Omega_{13}, \Omega_{34}] = \Omega_{14}, \) etc. We can this way generate \(\Omega_{1k} \), and from previous example all of \(so(n) \). Hence controllability.

We now return to control system
\[\dot{x} = (\sum_i u_i \Omega_i)x, \quad x(0) = I \] (20)
Where \(\Omega_i \in g \) the Lie algebra of a Lie Group \(G \). \(x(t) \in G \). Suppose span \(\{\Omega_i\} \neq g \). Furthermore the Lie algebra generated of \(\Omega_i \) denotes as \(\mathfrak{h} = \{\Omega_i\}_{LA} \) is a proper subalgebra of \(g \). What can we say about controllability now. Lets say \(A_i \) span \(\mathfrak{h} \) and let remaining \(B_i \) span all of matrices. Consider a nghd \(U \),
\[\Phi(t_1, \ldots, t_r, \ldots, t_n) = \prod_{i=1}^{l} \exp(A_i t_i) \prod_{i=l+1}^{n} \exp(B_i t_i). \]

Then once again \(\Phi^{-1}_z((\sum_i u_i \Omega_i)x)) \) on \(U \) is a horizontal vector field and hence the flow in Eq. (20), stays on \(\prod_{i=1}^{l} \exp(A'_i t_i) \). This a subset of \(\prod_{i=1}^{r} \exp(A'_i t_i) \). where \(A'_i \) span \(g \). Hence our flow is restricted.

4.4 Control Systems with Drift

We now consider control systems of the form

\[\dot{x} = (A + \sum_i u_i B_i)x, \quad x(0) = I \]

Where \(A, B_i \in g \) the Lie algebra of a Lie Group \(G \). But now we have no control on \(A \), its called drift as its drift of its own. We now controllability of such systems. Note before, \(x(t) \in G \).

First result appears when \(A \) is periodic, i.e. this is a \(T \) such that \(\exp(A T) = I \), the flow of \(A \) returns you back. Then we have a similar results on controllability. If \(\{A, B_i\}_{LA} = g \), we have controllability on connected Lie group \(G \). We have to show that we can generate Lie brackets.

The main observation is that \(\exp(A(T - \tau)) = \exp(-A \tau) \), we can go backwards in direction of \(A \). Furthermore

\[\exp(A(T - \Delta)) \exp((A + B)\Delta) = \exp(-A \Delta) \exp((A + B)\Delta) = I + B \Delta + O(\Delta^2) \sim \exp(B \Delta). \]

Then as before we can generate brackets of \(\{A, B_i\} \) and we have controllability when \(\{A, B_i\}_{LA} = g \).

Suppose \(A \) is not periodic. Then we focus on Lie groups \(G \), which are compact (bounded), like \(SO(n), SU(n) \) etc. Then given \(\epsilon > 0 \), there exists a time \(T \) such that \(\mid \exp(\epsilon T) - I \mid < \epsilon \), i.e., if we wait long enough, we almost come back to origin. Then \(\exp(A(T - \tau)) \sim \exp(-A \tau) \) and we can go backwards in direction of \(A \). This result is based on Kronecker’s theorem, which states that

Theorem 2 Kronecker: Given real number \(\alpha_i \), independent, i.e, \(\sum_i n_i \alpha_i \not= Z \) for integers \(n_i \), not all zero. For any \(\epsilon > 0 \), there exist integers \(m_i \) and \(N \) such that \(|\alpha_i N - m_i| < \epsilon \).

Example 6 Let \(\dot{\Theta} = (\Omega_z + u \Omega_x)\Theta, \quad \Theta(0) = I \),
Then our system evolves on $SO(3)$, which has tangent space $\mathfrak{g} = \mathfrak{so}(3)$, 3×3 skew symmetric matrices. Ω_z is drift which is periodic. By Lie bracket, we get $[\Omega_z, \Omega_x] = \Omega_y$. Now we have all three generators $(\Omega_x, \Omega_y, \Omega_z)$ of $\mathfrak{so}(3)$, we span \mathfrak{g}. We can steer the system anywhere on $SO(3)$.

Example 7

Let

$$
\dot{\Theta} = \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & \sqrt{2} \\
0 & -\sqrt{2} & 0
\end{pmatrix} A
+ u
\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} B
\Theta, \quad \Theta(0) = I,
$$

Then our system evolves on $SO(3)$, which has tangent space $\mathfrak{g} = \mathfrak{so}(3)$, 3×3 skew symmetric matrices. Note drift is not periodic, but we are on a compact manifold. By Lie bracket, we get $[A, B] = \Omega_y$. Now we have all three independent generators (A, B, Ω_z) of $\mathfrak{so}(3)$, we span \mathfrak{g}. We can steer the system anywhere on $SO(3)$.

5 **Excercises**

1. **Stiefel Manifolds:** Consider for $m \leq n$, $n \times m$ real matrices Θ, such that $\Theta^T \Theta = I_m$.
 Show Θ is a manifold. Find it dimension and tangent space.

2. Let V be a vector space of real lower triangular matrices. Show V is an Lie algebra. Show same when V is strictly lower triangular.

3. Let us look at variant of non-holonomic integrator

 $$
 \begin{bmatrix}
 \dot{x} \\
 \dot{y} \\
 \dot{z}
 \end{bmatrix} =
 \begin{bmatrix}
 1 & 0 \\
 0 & x \\
 f & y
 \end{bmatrix}
 u
 +
 \begin{bmatrix}
 0 \\
 1 \\
 g
 \end{bmatrix}
 v.
 $$

 Is the system controllable. Find an integral manifold passing through origin on which system lives.

4. For $i = 1, \ldots, n$, let

 $$
 \begin{align*}
 \dot{x}_i &= u_i \\
 \dot{z}_{ij} &= x_i u_j - u_i x_j, \ i < j
 \end{align*}
 $$

 We have n variables x_i and $\frac{n(n-1)}{2}$ variables z_{ij}. We have n controls and $\frac{n(n+1)}{2}$ state variables. Is the system controllable?
5. Consider the following system with two controls

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ x_2u_1 \\ \vdots \\ x_{n-1}u_1 \end{bmatrix}.$$

Is it controllable.

6. Consider the following system with two controls

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ x_1u_2 \\ x_3u_1 \\ x_3u_2 \end{bmatrix}.$$

Is it controllable.

7. Consider the matrix equation

$$\dot{U} = -i(u\sigma_x + v\sigma_y)U, \ U(0) = I,$$

where $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\sigma_x = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$. Show that system evolves on $SU(2)$. Is it controllable.

8. Let $A = -i \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & \ldots & \iddots & \vdots \\ 0 & \ldots & 0 & \lambda_n \end{bmatrix}$. Consider the control system

$$\dot{U} = (A + \sum_{k=2}^{n} u_k\Omega_{1k})U, \ U(0) = I$$

with skew symmetric Ω_{1k} as defined in the main text. Show system always evolves on $SU(n)$. Show it is controllable if $A \neq 0$.

23
9. Let \(A = -i \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & \ldots & \ddots & \vdots \\ 0 & \ldots & 0 & \lambda_n \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 & \ddots \\ 0 & 0 & \ldots & -1 & 0 \end{bmatrix} \). Consider the control system
\[
\dot{U} = (A + uB)U, \quad U(0) = I
\]
with \(\lambda_{k+1} - \lambda_k \neq \lambda_{j+1} - \lambda_j \). Show system always evolves on \(SU(n) \). Show it is controllable.

10. Let \(H \) and \(U \) be real symmetric matrices and \(Y \) skew symmetric. Consider the system
\[
\begin{align*}
\dot{H} &= U \\
\dot{Y} &= [H, U]
\end{align*}
\]
Is the system controllable over \(H, Y \) for choice of control \(U \).