
Chapter4: Quantum Control
We now consider control systems of the form

ẋ = (Ω0 +
∑

i

uiΩi)x,

Where Ω0,Ωi ∈ g the Lie algebra of a Lie Group G. In quantum control G = SU(n),
special unitary matrices and g = su(n) skew Hermitian matrices. Then we can write above
equation as

U̇ = −i(H0 +
∑

i

uiHi)U,

where H0, Hi are traceless Hermitian matrices. They are also called Hamiltonians. When
we turn on our controls, we say we switch on our Hamiltonians.

Let us take the simplest example G = SU(2) and g = su(2). Recall dimension of su(n)
is n2 − 1 and su(2) is 3. The generators of su(2) are {−iσx,−iσy,−iσz} where

σx =
1

2

[
0 1
1 0

]

; σy =
1

2

[
0 −i
i 0

]

; σz =
1

2

[
1 0
0 −1

]

(1)

σx, σy, σz are called Pauli matrices. They are traceless Hermitian.
Consider the control system

U̇ = −i(ω0σz + u(t)σx + v(t)σy)U,

U evolves on SU(2). This system arises when we study dynamics of a spin in magnetic
field. It appears in subject of NMR spectroscopy. Lets try to understand the physics of it.
You are familiar with earth spinning on its axis. This gives earth a angular momentum. Now
imagine our earth was charged. Then spinning will give earth a magnetic moment. Imagine a
loop of wire carrying current (circulating charge), then it has a magnetic moment M = I.A,
where I is the current and A area of the loop, from your basic physics. Now imagine a
charge q going around in a loop of radius r, with angular velocity ω. Then it makes ω

2π

rotations per sec. The current is then qω

2π
and its magnetic moment is M = qωπr2

2π
= q

2m
(mvr)

where l = mvr is the angular momentum. Then M = q

2m
L, the ratio γ = q

2m
is called the

gyromagnetic ratio, it relates angular momentum to magnetic moment.
Now suppose we have our charged spinning earth and we apply a magnetic field B =

(Bx, By, Bz), then M = (mx,my,mz) = γ(lx, ly, lz) will experience a torque. This torque is
M × B, and changes the angular momentum as

1



L̇ =M ×B.

Relating M = γL, we have,

Ṁ = γM ×B = −γ(BzΩz + BxΩy + BzΩz)M, (2)

where Ωx =





0 0 0
0 0 −1
0 1 0



, Ωy =





0 0 1
0 0 0
−1 0 0



 and Ωz =





0 −1 0
1 0 0
0 0 0



 are generator

of rotation. For reasons that will become clear as we go on denote ω0 = −γBz and u = −γBx

and v = −γBy and we get,

Ṁ = (ω0Ωz + uΩx + vΩy)M,

Note M(t) = ΘM(0) where

Θ̇ = (ω0Ωz + uΩx + vΩy)Θ, Θ(0) = I

Then Θ ∈ SO(3). M rotates in B. It precesses around B.
What concerns us is spin of a atomic nuclie. Many atomic nuclie like hydrogen, carbon,

nitrogen have a quantum mechanical property called spin which gives the nucleus a angular
momentum and hence magnetic moment. However because of quantum mechanics this angu-
lar momentum is quantized. If we measure its value in say z direction, we will only find two
values ~

2
and −~

2
, spinning up and spinning down. The state of the nucleus is then written as

a two dimensional vector which is

[
1
0

]

when spinning up and

[
0
1

]

when spinning down.

In general the state is defined by a two dimensional complex vector ψ =

[
a
b

]

. For the

spinning earth, we saw that its magnetic moment precesses in a magnetic field given by Eq.
(2). The two dimesnional vector will also precess in a magnetic field with equation given by

ψ̇ = iγ(Bzσz + Bxσx + Byσy)ψ = −i(ω0σz + uσx + vσy)ψ, (3)

where in Eq. (2), we have replaced the generator of rotations in real three dimensions
Ωx,Ωy,Ωz with −iσx,−iσy,−iσz generator of rotations in complex two dimensions.

The evolution of ψ a two dimensional complex vector is given by ψ(t) = Uψ(0), where

U̇ = −i(ω0σz + uσx + vσy)U, (4)

where U is in SU(2).
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In practice, in a NMR experiment, we have very large number of atoms of order 1023 and
each atom/nucleus has a spin state defined by a vector ψk, each ψk sees same magnetic field
and hence evolves according to equation

ψ̇k = −i(ω0σz + uσx + vσy)ψk, (5)

We can form an average subspace spanned by these ψk as ρ = 1
N

∑
ψkψ

†
k, then ρ evolves as

ρ̇ = [−i(ω0σz + uσx + vσy), ρ] (6)

ρ is a two dimensional Hermitian matrix and can be written as
ρ = 1

2
I + lxσx + lyσy + lzσz, where L = (lx, ly, lz)

′ represents average (x, y, z) angular
momentum of the of the ensemble. This average or classical angular momentum evolves as

L̇ = (ω0Ωz + uΩx + vΩy)L, (7)

and denoting M = γL we have the same Eq. (2). These are called Bloch equations. Thus
we see how evolution of spin state of individual nuclie evloves as two dimensional complex
vector and how the average angular momentum and magnetic moment of the spin ensemble
evolves as a three dimensional Bloch vector.

Lets think of an ensemble in which all spins are up. Then all ψk =

[
1
0

]

and ρ = 1
2
I+σz.

Thus lz = 1 and we have an ensemble with net z angular momentum 1.

Lets think of an ensemble in which all spins are down. Then all ψk =

[
0
1

]

and ρ =

1
2
I − σz. This lz = −1 and we have an ensemble with net z angular momentum −1.

Lets think of an ensemble in which all spins are ψk = 1√
2

[
1
1

]

and ρ = 1
2
I + σx. This

lx = 1 and we have an ensemble with net x angular momentum 1.
Now lets understand the basic NMR experiment. In an NMR experiment we have spins

in a strong magnetic field along say z direction of order 10− 20 Tesla. Earths magnetic field
is around 10−5 tesla. In this magnetic field, up spins have lower energy than down spins and
so in thermal equilibrium, we have more spins up. The ratio of up to down spins is given
by Boltzmann disprtibution and is exp(∆E

kT
) where ∆E = µ ·B is energy difference between

down and up spins, which is small, as magnetic moment µ of a nuclear spin is small. Thus
at room temperature at such high fields, only 1 in 105 spins preferentiably points up. Thus

ρ = 1
2
I + ασz, where α ∼ 10−5, none the less the sample has a net angular momentum

along z and hence has a net magnetic moment along z direction. Thus in Eq. (2) we start

withM =





0
0
1



. Now we turn on x and y magnetic fields and rotate this vector to (1, 0, 0)′.
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How this is done will be discussed shortly. But imagine we have rotated M to (1, 0, 0)′ and
we switch off u, v in Eq. (2). Then M just rotates around B0 and we have an evolution
M(t) = (cosω0t, sinω0t, 0). This rotating magnetic moment will induce an emf in a nearby
coil with a frequency ω0 and hence we can measure ω0. At fields of 14 tesla the ω0 for
hydrogen is 600 MHz, for carbon is 150 MHz, and for nitrogen is 60 MHz. Thus frequency
of the induced emf tells us about chemical composition of the sample. This NMR can tell us
about composition of the sample. Now we come to the question of how we use u, v to rotate
M from (0, 0, 1) to (1, 0, 0).

M(0)

Figure 1: Figure shows how the magnetic moment M(0) along z direction is rotated to
transverse plain and it then rotates around z field and induces a EMF in the coil.

In Eq. (2), B0 is much larger than Bx, By which are actually produced by rf-coil. To
give an idea if ω0 is 600 MHz, then u, v are only around 60 kHz. Around 105 times smaller.
Then we ask how can such small u, v effect a change in M(0). Beacuse suppose we choose
u = 1 and v = 0. Then since ω0 is 105 times u. The Eq. (2) essentially is rotating around z
axis. The figure 2 below

shows how the magnetic momentM(0) along z direction just rotates around an axis with
a small tilt of z axis when we apply a constant control u. Then a constant control u will not
rotates M(0) to transverse plain as desired, because u is too small compared to ω0. What
works and is used is instead a oscillatory control input, (u, v) = (A cosω0t, A sinω0t), with
frequency same as ω0. To understand how this control works, Eq. (2)

Ẋ = (ω0Ωz + A cosω0tΩx + A sinω0tΩy)X, A≪ ω0

we can write the above equation as

Ẋ = (ω0Ωz + A exp(ω0tΩz)Ωx exp(−ω0tΩz))X,

Lets make a change of cordinates Y = exp(−ω0tΩz)X, then
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Figure 2: Figure shows how the magnetic momentM(0) along z direction just rotates around
an axis with a small tilt of z axis when we apply a constant control u.

Ẏ = AΩxY,

this is great as ω0 has disappeared and Y starting from Y (0) =





0
0
1



 rotates to Y (T ) =





0
−1
0



 at T = π
2A
.

Then X(T ) = exp(ω0TΩz)Y (T ), a vector on the equator. Thus we have been able to
bring the Bloch vector in Eq. (2) to equator by use of an oscillatory controls. This is the
first lesson in quantum control. The controls we apply are much weaker compared to drift
in the system so constant control laws donot work. We need oscillatory controls. We need
to excite the system on resonance.

We said at B0 of 14 T we have for hydrogen ω0 = 600 MHz. This is not strictly true.
Hydrogen nucleus has electrons around it. These moving/hovering electrons produce local
magnetic fields and change the field from B0 to B0(1 − σ0) and hence ω0 changes from to
ω0(1 − σ0) = ω0 + ∆ω. This σ0 is of order few parts per million, i.e. 10−6 and hence
when ω0 = 600 Mhz we have ∆ω of order few kHz. This σ0 also called chemical shift is
characteristic of a electronic environment of nucleus. We can measure ∆ω, when we measure
frequencies in our EMF. For example in Ethanol molecule we have three hydrogen, each with
different chemical environment and hence three different ∆ω. When we find three different
∆ω is our experiment at certain specific values, then we know we have a fingerprint spectrum
of Ethanol. This way chemical shifts help us identify the molecules. Not only does NMR
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give information about the chemical composition but also the chemical shifts can identify
compounds.

Now how do we rotate M to equator when we have many ∆ω.
To understand how control works now, consider Eq. (2)

Ẋ = ((ω0 +∆ω)Ωz + A cos(ω0t+ φ)Ωx + A sin(ω0t+ φ)Ωy)X, A≪ ω0

Lets as before make a change of cordinates Y = exp(−ω0tΩz)X, then

Ẏ = (∆ωΩz + A cosφΩx + A sinφΩy)Y,

this is great as before ω0 has disappeared but ∆ω stays and we have to now choose A and

φ as functions to time so that Y (0) =





0
0
1



 rotates to Y (T ) =





0
−1
0



.

This is an important control problem because we want our control to work for all ∆ω
in a given range. Size of ∆ω and A are comparable. We will study this problem in detail
soon. It is called broadband control. At this point it is suffice to believe that we can do the
desired maneuver by choice of A(t) and φ(t).

In summary, we learnt about single spin 1
2
whose state is a 2 dimensional complex vector

evolving as
ψ̇ = −i(ω0σz

︸︷︷︸

H0

+u σx
︸︷︷︸

H1

+v σy
︸︷︷︸

H2

)ψ, (8)

As we saw this equation evolves as ψ(t) = U(t)ψ(0), where U(t) ∈ SU(2).
This is the simplest example of a quantum control system, where H0 is the drift Hamil-

tonian and H1, H2 are control Hamiltonians.
Now as a general rule, we can have a quantum system A of dimension n1, which means

its state is a n1 dimensional complex vector evolving as

ψ̇ = −iHψ,
where H is a n1×n1 Hermitian matrix, such that ψ(t) = U(t)ψ(0) = exp(−iHt)ψ(0), where
−iH is skew Hermitian and U(t) ∈ SU(n).

If we have a quantum system A of dim n1 and a quantum system B of dim n2, then when
we bring the two systems together and make them interact, we get a a quantum system of
dim n1×n2, whose state is a complex vector in a vector space of size n1n2, spanned by a basis
of the form ei⊗fj where ei are basis for space A and fj are basis for space B. A state ψ that
can be written as ψa ⊗ ψb is called a separable state, else it has the form ψ =

∑

ij αijei ⊗ fj
and is called an entangled state.

The hamiltonian for the joint system
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H =
∑

H i
a ⊗Hj

b ,

where H i
a are Hamiltonians for system A and Hj

b are Hamiltonians for system B. Hamil-
tonians of the form Ha ⊗ I and I ⊗Hb are called local Hamiltonians, beacuse if we have a
seprable space ψa ⊗ ψb and we evolve it under Ha ⊗ I, then

exp(−iHa ⊗ I) = exp(−iHa)⊗ I

and

exp(−iHa ⊗ I)ψa ⊗ ψb = (exp(−iHa)ψa)⊗ ψb

The Hamiltonian only evoves A part of the subsystem. Similarly

exp(−iI ⊗Hb)ψa ⊗ ψb = ψa ⊗ (exp(−iHb)ψb).

On the other hand if we have a Hamiltonian of the form Ha⊗Hb, we call it an interaction
Hamiltonian.

Then Hamiltonians for the joint system are of the general form

{Ha ⊗ I, I ⊗Hb, Ha ⊗Hb}.
If we count dimensions there are n2

1 − 1 (traceless Hermitian) Hamiltonians of the form
Ha ⊗ I and n2

2 − 1 of form I ⊗ Hb and (n2
1 − 1)(n2

2 − 1) of form Ha ⊗ Hb and if we count
them all we get total of (n1n2)

2−1 which is indeed the dimension of Hamiltonians for a n1n2

dimensional space.
To make all this concrete consider again spin 1

2
. It state space is 2 dimensional complex

space with basis |0〉 =
[
1
0

]

and |1〉 =
[
0
1

]

. They are up-down states of spin. Like classical

bits, a spin 1
2
is called a quantum bit or qubit. However unlike a classical bit we can evolve

our spin and prepare a state

1√
2

[
1
1

]

=
1√
2
(|0〉+ |1〉).

This is called a superposition of 0 and 1. Now lets consider 2 spin 1
2
. Then the basis of our

state space are
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|00〉 =

[
1
0

]

⊗
[
1
0

]

=







1
0
0
0







|01〉 =

[
1
0

]

⊗
[
0
1

]

=







0
1
0
0







|10〉 =

[
0
1

]

⊗
[
1
0

]

=







0
0
1
0







|11〉 =

[
0
1

]

⊗
[
0
1

]

=







0
0
0
1







Two spin 1
2
are called coupled qubits. The Hamiltonians for the coupled qubit system

are of the following kind

{ −iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz,

−iσx ⊗ σx,−iσx ⊗ σy,−iσx ⊗ σz,−iσy ⊗ σx,−iσy ⊗ σy,−iσy ⊗ σz,−iσz ⊗ σx,−iσz ⊗ σy,−iσz ⊗ σz}

They ae 15 in all of these σα ⊗ I and I ⊗ σβ are local Hamiltonians and σα ⊗ σβ are
interaction Hamiltonians where α, β ∈ {x, y, z}.

Now suppose we start in the state |00〉 and evolve this state under Hamiltonian −iσx⊗ I
for time π then we get

exp(−iσy ⊗ Iπ)(

[
1
0

]

⊗
[
1
0

]

) = (exp(−iπσy)
[
1
0

]

)⊗
[
1
0

]

Now direct calculation shows that

exp(−iθσy) = cos
θ

2
I − 2i sin

θ

2
σy =

[
0 −1
1 0

]

Then
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exp(−iσy ⊗ Iπ)(

[
1
0

]

⊗
[
1
0

]

) = (

[
0
1

]

⊗
[
1
0

]

) = |10〉

Thus by evolving the system under the given Hamiltonian we invert the state of the first
spin. We have built an inverter. This is like a inverter in boolean/computer circuits but now
done on a qubit. We say we have built an inverter gate.

Now in quantum mechanics we donot distinguish between state vector ψ and exp(iα)ψ,
they differ by a so called global phase and are considered state. Therefore, we can also invert
by

exp(−iσx ⊗ Iπ)(

[
1
0

]

⊗
[
1
0

]

) = (−i
[
0
1

]

⊗
[
1
0

]

) = −i|10〉

which is same as |10〉.
Now can we do something more interesting. Can we say evolve an Hamiltonian that will

swap the state of two spins. Such that

|10〉 → |01〉, |01〉 → |10〉
To do this we have to make the qubits interact using an interaction Hamiltonian.
Lets evolve under the hamiltonian

U = exp(−iπ(σx ⊗ σx + σy ⊗ σy))

σxσx + σyσy =
1

4
(

[
0 1
1 0

]

⊗
[
0 1
1 0

]

+

[
0 −i
i 0

]

⊗
[
0 −i
i 0

]

) =
1

2







0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0







U =







1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1







Then
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U |01〉 = U(

[
1
0

]

⊗
[
0
1

]

) = −i







0
0
1
0






= |10〉

U |10〉 = U(

[
0
1

]

⊗
[
1
0

]

) = −i







0
1
0
0






= |01〉

U |00〉 = |00〉
U |11〉 = |11〉

We have built a SWAP gate. Another interesting gate is so called C-NOT gate. It inverts
the state of the second qubit conditioned on the state of first qubit. If the state of first qubit
is 0 we don’t do anything else we invert.

|00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉
Let

U = exp(−iπ(I
2
− σz)⊗ σx) =







1 0 0 0
0 1 0 0
0 0 0 −i
0 0 −i 0







Then check we have built a CNOT gate.
Now we can generalize all this. We can have say n qubits. The state space is 2n dimen-

sional. The state

|000 . . . 0〉 =
[
1
0

]

⊗
[
1
0

]

⊗ · · · ⊗
[
1
0

]

is all qubits in state zero. We can evolve a Hamiltonian σx ⊗ I · · · ⊗ I, which is a
local Hamiltonian that will only evolve the first qubit. Similarly a hamiltonian of the form
σx ⊗ σx ⊗ I · · · ⊗ I, will make first two qubits interact and do a two qubit operation. So we
can evolve Hamiltonians and do single qubit and two qubit operations. Now we can do any
Boolean operation on n qubits and we have built a quantum computer. We can do operations
as in classical computer but at the same time generate superpositions and do more powerful
things we cannot do in classical computers. This allows us to do things we cannot do on a
classical computer. Like we can factor very large integers in polynomial time. This is not
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possible on classical computers else we will break all existing crypto-systems which rely on
the fact that it is hard to factor large integers.

Next we ask physically how do we get these Hamiltonians that we use to evolve our
system. We saw for a single spin, when we but the spin in a magnetic field we get the
evolution in Eq. (8), we then have our Hamiltonians, one drift H0 and two control H1 and
H2.

Interaction Hamiltonians arise because spins have magnetic moments and magnets in-
teract. For example two magnetic moments in space µ1 and µ2 have hamiltonian (energy)
as

H =
µ0

4πr3
(µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂))

where r is the distance between moments and r̂ is the unit vector connecting them.
Once again consider two qubits (spin 1

2
) and consider the evolution of the state vector ψ

as

ψ̇ = −i{u1 σx ⊗ I
︸ ︷︷ ︸

H1

+u2 σy ⊗ I
︸ ︷︷ ︸

H2

+u3 I ⊗ σx
︸ ︷︷ ︸

H3

+u4 I ⊗ σy
︸ ︷︷ ︸

H4

+J σz ⊗ σz
︸ ︷︷ ︸

H0

}ψ (9)

Observe ψ(t) = U(t)ψ(0) , where U(t) ∈ SU(4). Can we produce any unitary transformation
on ψ. This is same as asking, is my system

U̇ = −i{u1σx ⊗ I + u2σy ⊗ I + u3I ⊗ σx + u4I ⊗ σy + J σz ⊗ σz
︸ ︷︷ ︸

}U (10)

controllable. Observe we have four control Hamiltonians, which are local Hamiltonians. The
first two rotate qubit 1 and last two rotate qubit 2. The drift hamiltonian is a interaction
Hamiltonian and arises fron spin-spin interaction. The local Hamiltonians are produced by
applying magnetic fields to the spins. Now to answer controllability question we have to use
lie brackets.

By calculations like [−iσx ⊗ I,−iσy ⊗ I] = −iσz ⊗ I we can show that brackets of
H1, H2, H3, H4 generate all local Hamiltonians

{−iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz}
Now we can take brackets with drift and find we generate all the interaction generators,

{−iσx⊗σx,−iσx⊗σy,−iσx⊗σz,−iσy⊗σx,−iσy⊗σy,−iσy⊗σz,−iσz⊗σx,−iσz⊗σy,−iσz⊗σz}

In taking Lie brackets we used the following identities

[A⊗ B,C ⊗D] = [A,C]⊗ BD + CA⊗ [B,D]
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and

σxσy = −σyσx =
i

2
σz

σyσz = −σzσy =
i

2
σx

σzσx = −σxσz =
i

2
σy

For example,

[−iσz ⊗ σz,−iσx ⊗ I] = [−iσz,−iσx]⊗ σz + (−iσx − iσz)⊗ [σz, I] = −iσy ⊗ σz

[−iσz ⊗ σz,−iσx ⊗ σx] = [−iσz,−iσx]⊗ σzσx + (σxσz)⊗ [−iσz,−iσx] =
1

2
(σy ⊗ σy − σy ⊗ σy)

The Lie algebra g = su(4) is 15 dimensional and spanned by

g = {−iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz,

−iσx ⊗ σx,−iσx ⊗ σy,−iσx ⊗ σz,−iσy ⊗ σx,−iσy ⊗ σy,−iσy ⊗ σz,−iσz ⊗ σx,−iσz ⊗ σy,−iσz ⊗ σz}

This vector space g has two orthogonal subspaces

k = {−iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz}
the local generators and the interaction generators

p = {−iσx⊗σx,−iσx⊗σy,−iσx⊗σz,−iσy⊗σx,−iσy⊗σy,−iσy⊗σz,−iσz⊗σx,−iσz⊗σy,−iσz⊗σz}

k is 6 dimensional and p is 9 dimesnional and in total 15 dimensions. You should check
that following commutations relations hold

[k, k] ⊂ k, [p, k] ⊂ p, [p, p] ⊂ k (11)

In general decomposition of a Lie algebras g, into a direct sum of two vector subspaces

g = p⊕ k

such that Eqs. 18 are true, is called a Cartan decomposition.
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Now coming back to Eq. 9, we have shown controllability. We can generate any U ∈
SU(4) but how to do it in minimum possible time. Now there is an important time scale
sepration in such problems. u1, u2, u3, u4 are much larger compared to J . In practice they
are in kHz range while J is of order of Hz. We say our control is fast while our drift is slow.
Under such a time scale sepration we can say much about our time optimal control. Before
we delve into it, we introduce a notaion used in NMR literature.

Given two spins or qubits, we call the first one I and second one S. Then the hamiltonian
σx ⊗ I is written as Ix and I ⊗ σx as Sx and

σx ⊗ σx = (σx ⊗ I)(I ⊗ σx) = IxSx

In this notation

g = {−iIx,−iIy,−iIz,−iSx,−iSy,−iSz,

−iIxSx,−iIxSy,−iIxSz,−iIySx,−iIySy,−iIySz,−iIzSx,−iIzSy,−iIzSz}

Now we state our time optimal control probelm more generally, Let G be a compact Lie
Group with Lie algebra g and consider the control system on G

Θ̇ = (Xd +
∑

i

uiXi)Θ

such that {Xd, Xi}LA = g, system is controllable.
Further we have a cartan decomposition

g = p⊕ k

such that Xd ∈ p and Xi ∈ k. We assume ui can be made large compared to size of drift Xd.
We study how to time optimally steer such a system. This will make our quantum computer
fast.

Suppose we did not have drift then our system will be

Θ̇ =
∑

i

uiXiΘ

Now this is not a controllable system, as {Xi}LA 6= g, then without drift we cannot go
everywhere.

However we assume that {Xi}LA = k a subalgebra of g.
Let K = exp(k) be the subgroup of G generated by k.
Let us take an example. Let G = SU(n) and consider the control system,

13



U̇ = (Xd +
∑

j

uj(t)X1j)U, U(0) = I, (12)

where U ∈ SU(n). Where X1j ∈ k = so(n) is skew symmetric matrices with one in the 1j
spot and

Xd = −i








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn







,

∑

λi = 0.

Observe {X1j}LA, the Lie algebra (Xj and its matrix commutators) generated by gener-
ators X1j is all of so(n).

We have a cartan decomposition of su(n), we have

su(n) = −iS ⊕ so(n),

where S is traceless symmetric.
If we only had the system

U̇ = (
∑

j

uj(t)X1j)U, U(0) = I, (13)

we can steer the system to any point on K = SO(n) and if we donot assume any bound on
control, then we can steer it in as small time as possible. Because if uj(t) steer the system
to UF in time T then Nuj(Nt) steers the system to UF in time T

N
.

So we can use fast controls to go anywhere on K and we do it so fast that Xd hardly
evolves. Then we can imagine doing a control sequence like the following

Kn+1 exp(Xdtn)Kn . . . K2 exp(Xdt1)K1

Using fast controls we generate K1 , then evolve drift for t1, then generate t2 and so on.
This way we can steer our system.

Coming back to Eq. (12), we can first understand how to generate any UF ∈ SU(N).
Any UF ∈ SU(N) can be written as

UF = exp(iS)K,

where S traceless symmetric and K ∈ SO(n). We can diagonalize S with SO(n) as

14



S = K1








µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µn







K−1

1 ,
∑

µi = 0.

Then

UF = K1 exp(−i








µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µn







)K2 (14)

This decoposition of UF ∈ SU(N) is called KAK decompostion. In the above, using our
controls we can generate K1, K2, how do we generate the middle part ,we need the drift.
Observe using SO(n) we can permute the drift. For Xd in Eq. (12), we can find permutation
matrix in P in SO(n) such that permute the diagonal of Xd

AdP (Xd) = PXdP
−1 =








λσ(1) 0 . . . 0
0 λσ(2) . . . 0
...

...
. . .

...
0 0 . . . λσ(n)








Then we can find perumutations Pi such that

∑

i

αiAdPi
(Xd) =








µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µn








To see how it works let us say

Xd =








1 0 . . . 0
0 −1 . . . 0
...

... 0
...

0 0 . . . 0







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writing the diagonal as a vector










1
−1
0
...
0










we want to find αi, such that

α1










1
−1
0
...
0










+ α2










0
1
−1
...
0










+ · · ·+










0
0
...
1
−1










=










µ1

µ2

µ3
...
µn










,

just solve sequentially, α1 = µ1 etc.
Then

exp(−i








µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µn







) = exp(−i

∑

i

αiAdPi
(Xd)) =

∏

exp(−iαiAdPi
(Xd)) =

∏

Pi exp(−iαiXd)P
−1
i

and in Eq. 14, we know now how to generate the central part.
Then we write our control strategy as

UF = K2

∏

exp(−iαiAdPi
(Xd))K1, αi > 0 (15)

such that AdPi
(Xd) all commute. We can further massage this as

K̃2

∏

exp(−iαiAdQi
(Xd))

such that AdQi
(Xd) all commute. Then we go in commuting drift directions and in the end

just jump on SO(n). We will show that it is indeed the time optimal strategy. We have to
move in commuting directions.

The fastest way to get to any UF is to express it as in Eq. 15 and find the smallest
∑
αi.

We will now show this.
We consider Eq. (12) and let

K̇ = (
∑

j

uj(t)X1j)K, K(0) = I, (16)

Let V = K ′U , then
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V̇ = K ′XdK
︸ ︷︷ ︸

AdK(Xd)

V, V (0) = I, (17)

We want to steer U to UF in minimum time. Since any K can be synthsized in Eq. (16)
in no time, we can think of Eq. (17) as a control system with controls AdK(Xd) where
K ∈ SO(n). The goal is to steer V to the coset KUF in minimum time. Then once we reach
the coset KUF , we can reach UF immediately as we can use our fast controls.

So let us understand how V evolves, at time t we can decompose V at V = K1AK2, let
us evolve for small time step ∆t under AdK(Xd). Then we have

V (t+∆T ) = exp(AdK(Xd)∆t)K1AK2 = K1 exp(AdK̃(Xd)∆t)AK2

Now AdK̃(Xd) = −iQ, for some traceless symmetric matrix Q. Then we can write

−iQ = Λ +R,

where Λ is the diagonal part and R offdiagonal part. Now A is off the form

A =








exp(iφ1) 0 . . . 0
0 exp(iφ2) . . . 0
...

...
. . .

...
0 0 . . . exp(iφn)








Let Ω ∈ so(n), then

(AΩA′)ij = Ωij(cos(φi − φj) + i sin(φi − φj))

Lets assume φi − φj 6= nπ, then sin(φi − φj) 6= 0. We can choose Ωij , such that i sin(φi −
φj)Ωij = Rij, then

AΩA′ = R + Ω1,

where Ω1 ∈ so(n). Then

K1 exp(−iQ∆t)AK2 = K1 exp((Λ +R)∆t)AK2 = K1 exp(−Ω1∆t) exp((Λ +R + Ω1) ∆t)AK2

= K1 exp(−Ω1∆t) exp(Λ∆t) exp((R + Ω1)∆t)AK2

= K1 exp(−Ω1∆t)
︸ ︷︷ ︸

K1(t+∆t)

exp(Λ∆t)A
︸ ︷︷ ︸

A(t+∆t)

exp(Ω∆t)K2
︸ ︷︷ ︸

K2(t+∆t)

From V (t) = K1(t)A(t)K2(t) , we evolve to V (t+∆t) = K1(t+∆t)A(t+∆t)K2(t+∆t)
where A(t+∆t) = exp(Λ∆t)A. Now observe,
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AdK̃(Xd) = −iQ = Λ +R, where Λ is diagonal of −iQ. Now we claim that

Λ =
∑

i

αiPi(Xd), αi ≥ 0

where
∑

i αi = 1 and Pi are permutation matrices.

Remark 1 Birkhoff convexity states, a real n× n matrix A is doubly stochastic (
∑

iAij =∑

j Aij = 1, for Aij ≥ 0) iff it can be written as convex hull of permutation matrices
Pi (only one 1 and everything else zero in every row and column). Given Θ ∈ SO(n) and

X = −i








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn







, we have diag(ΘXΘT ) = B diag(X) where diag(X) is a column

vector containing diagonal entries of X and Bij = (Θij)2 and hence B is a doubly stochastic
matrix which can be written as convex sum of permutations. Therefore B diag(X) =
∑

i αiPi diag(X), i.e. diagonal of a symmetric matrix ΘXΘT , lies in convex hull of its
eigenvalues and its permutations. This is called Schur convexity.

Then we have

A(t+∆t) = exp(
∑

i

αiPi(Xd)∆t)A(t); A(T ) = exp(
∑

i

αiPi(Xd)T )A(0)

Then any UF that can be reached in time T has the form

UF = K1 exp(
∑

i

αiPi(Xd)T )K2

This says, we can reach UF in time T by going in commuting drift directions Pi(Xd).
Therefore our strategy of reaching UF by going in commuting drift directions is optimal.

An important ingredient of the proof is the KAK decomposition. We first give a proof
of it.

Theorem 1 Let U ∈ SU(n), then U = Θ1 exp(Ω)Θ2 where Θ1,Θ2 ∈ SO(n) and

Ω = −i






λ1 . . . 0

0
. . . 0

0 0 λn




 ,

where
∑

i λi = 0.
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Observe UUT is in SU(n). The eigenvalues of UUT are of the form exp(jθ).

UUT z = exp(jθ)z.

exp(−j θ
2
)UT z = exp(j

θ

2
)(UT )∗z.

(C + iD)z = (C − iD)z.

D(x+ iy) = 0.

This implies UUTx = exp(jθ)x and UUTy = exp(jθ)y. This implies UUT = ΘΣΘ′,
where columns of Θ are real, perpendicular, and

Σ =






exp(−iλ1) . . . 0

0
. . . 0

0 0 exp(−iλn)






where Σ ∈ SU(n). Let U = ΘΣ
1

2V . UUT = ΘΣΘ′ = ΘΣ
1

2V V TΣ
1

2Θ′.

Implying V V T = 1 . Then U = ΘΣ
1

2V , where Θ, V can be chosen in SO(n) and

Σ
1

2 =






exp(−iµ1) . . . 0

0
. . . 0

0 0 exp(−iµn)




 ,

where
∑
µi = 2mπ. Choose µn → µn − 2mπ so that

∑
λi = 0 and result follows.q.e.d

We talked about G = SU(n). All this can be generalized to general compact group G.
Let Lie algebra g has a cartan decompostion

g = p⊕ k, (18)

when g = su(n), we defined inner product of su(n) as tr(X ′Y ), where X, Y ∈ su(n). In
general we can choose basis of g and in this basis adX(·) = [X, ·] is a matrix. The define

〈X, Y 〉 = −tr(adXadY ).

This is an inner product called killing form. We only need Lie brackets to define it so it
is intrinsic to g. If g has no abelian ideals (semisimple) 〈X, Y 〉 is positive definite inner
product.

As g = su(n), choose as a basis of g, elements Ωkl, −iΣkl and −iDl,l+1, where for k < l,
Ωkl is skew symetric with 1 in kl spot and Σkl is traceless symmetric with 1 in kl spot and
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0 elsewhere abd D traceless diagonal with 1,−1 in l and l+ 1 digonal spot and 0 elsewhere.
Then in these basis lets compute what ad2X looks like, where

X = −i








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn







.

Then note ad2XΩkl = −(λk − λl)
2Ωkl and ad

2
XΣkl = −(λk − λl)

2Σkl and ad
2
XDl,l+1 = 0.

Then in the chosen basis, ad2X is diagonal and its trace is 〈X,X〉 = ∑

kl(λk − λl)
2.

One can check in this killing form inner product 〈p, k〉 = 0. Inside p is maximally
commuting subsalgebra a. When g = su(n) and p = iS, for traceless symmetric S, we have
a as diagonal S. Clearly its all commuting and you cannot add any off diagonal matrix and
still commute. Then let K = exp(k) then any UF in G can be written as

UF = K1AK2,

where A ∈ exp(a). This is called KAK decomposition. we have seen it for the special case
of G = SU(N). We now sketch in general a proof when g is compact semisimple. In this
case with the cartan decomposition as in 18. we have for any UF ∈ G, we can write it as

UF = exp(X)K2,

where K2 ∈ exp(k) = K and X ∈ p. This is a fact that uses arguments about geodesics.
We won’s prove it, you can think of it a parametrization of G using directions in p and in
k. Now X can be diagonalized by K, i.e. there exists a K1 ∈ K such that X = K1aK

−1
1 for

a ∈ a. To show this, we use the fact that a has a regular element ar such that if Y ∈ p and
[Y, ar] = 0, then Y ∈ a.

For example when g = su(n) and p = iS for traceless symmetric S and a = iD where
D is traceless diagonal. Then ar is D with all entries unequal, beacuse consider Y ∈ iS,

then for ar = −i








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn







and [ar, Y ]ij = (λi − λj)Yij. since λi − λj 6= 0 we have

Yij = 0 and hence Y ∈ a

Now for general g, lets maximize

J = 〈KXK−1, ar〉
over choice of K. Suppose maximum is found at K0. Then lets perturb as K0 → exp(ht)K0,
where h ∈ k. Then
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J(t) = 〈exp(ht)K0XK
−1
0 exp(−ht), ar〉

Then
dJ(t)

dt
|0 = 〈[h,K0XK

−1
0 ], ar〉,

for maximum we have 〈[h,K0XK
−1
0 ], ar〉 = 0.

Now note for X, Y, Z ∈ g, we have 〈[X, Y ], Z〉 = 〈X, [Y, Z]〉. Note every Lie algebra
satisfies Jacobi identity

ad[X,Y ](Z) = [[X, Y ], Z] = [[X,Z], Y ] + [X, [Y, Z]] = adXadYZ − adY adXZ

Then

〈[X, Y ], Z〉 = tr(ad[X,Y ]adZ) = tr(adXadY adZ−adY adXadZ) = tr(adX(adY adZ−adZadY )) = 〈X, [Y, Z]〉

Then
〈[h,K0XK

−1
0 ], ar〉 = 〈h, [K0XK

−1
0 , ar]〉 = 0

Note K0XK
−1
0 , ar ∈ p and hence [K0XK

−1
0 , ar] ∈ k. If [K0XK

−1
0 , ar] 6= 0, then I can

choose h = [K0XK
−1
0 , ar] and 〈h, [K0XK

−1
0 , ar]〉 6= 0. Therefore [K0XK

−1
0 , ar] = 0 and sice

ar is regular, we have K0XK
−1
0 ∈ a. Therefore K0XK

−1
0 = a ∈ a and hence X = K−1

0 aK0.
Then

UF = exp(K−1
0 aK0)K2 = K−1

0 exp(a)K0K2 = K1 exp(a)K2,

the KAK decomposition.
a is called the cartan subalgebra of g. If a is cartan subalgebra, then so is AdK1

(a), for
K1 ∈ K. Infact p is a union of such cartan subalgebras

p = ∪KAdK(a)

This is because for any X ∈ p, we have shown that X = K−1
0 aK0 for some a ∈ a and

K0 ∈ K. Then X ∈ AdK−1

0

(a).

In time optimal control problem for the SU(n) system in Eq. 12, we used an important
convexity argument based on Birkhoff and Schur convexity. This result has an important
generalization for a general compact semisimple g. It is called Kostant Convexity. Let X ∈ p.
Lets look at AdK(X) for all K. It is called orbit of X. It cuts a is finite points Xi, called

Weyl points. For example in SU(n) case let X = −i








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn







and a = iD where
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D is real tracelss diagonal matrices. Then AdK(X) cuts a in n points call Xi, the various
permutations of X.

In SU(n) case we looked at AdK(X), which for general K is not diagonal. We looked
at its diagonal part, which is we project it on a. Then the projection (the diagonal part of
AdK(X)) is in convex hull of Xi

This is true in general g. AdK(X), for general K is not in a. The projection of AdK(X)
on a(w.r.t. to say killing form) is in convex hull of Xi.

The proof goes something like following.

Remark 2 Kostant Convexity Given the decomposition g = p ⊕ k, let a ⊂ p and X ∈
a,. Let Wi ∈ exp(k) such that WiXWi ∈ a are distinct, Weyl points. Then projection
(w.r.t killing form) of AdK(X) on a lies in convex hull of these Weyl points. The C be the
convex hull and let projection P (AdK(X)) lie outside this Hull. Then there is a separating
hyperplane a, such that 〈AdK(X), a〉 < 〈C, a〉. W.L.O.G we can take a to be a regular
element. We minimize 〈AdK(X), a〉, with choice of K and find that minimum happens when
[AdK(X), a] = 0, i.e. AdK(X) is a Weyl point. Hence P (AdK(X)) ∈ ∑

i αiWiXW−1
i , for

αi > 0 and
∑

i αi = 1. The result is true with a projection w.r.t inner product that satisfies
〈x, [y, z]〉 = 〈[x, y], z]〉, like standard inner product on g = su(n).

Remark 3 Stabilizer: Let g = p ⊕ k be cartan decomposition of real semisimple Lie
algebra g and a ∈ p be its Cartan subalgebra. Let a ∈ a. Then ad2a : p → p is symmetric in
basis orthonormal wrt to the killing form. To see this let ei be basis for p. Since they are
orthonormal, we have

(ad2a)ij = 〈ei, [a[a, ej ]]〉 = −〈[a, ei], [a, ej ]〉 = 〈[a, [a, ei]], ej〉 = (ad2a)ji

We can diagonalize ad2a. Let Yi be eigenvectors with nonzero (negative) eigenvalues −λ2i .
Let Xi =

[a,Yi]
λi

, λi > 0.
ada(Yi) = λiXi, ada(Xi) = −λiYi.

Xi are independent, as
∑
αiXi = 0 implies −

∑
αiλiYi = 0. Since Yi are independent,

Xi are independent. Given X ⊥ Xi , then [a,X] = 0, otherwise we can decompose it in
eigenvectors of ad2a, i.e., [a,X] =

∑

i αiai +
∑

j βjYj, where ai are zero eigenvectors of ad2a.

Since 0 = 〈X[a[a,X]〉 = −‖[a,X]‖2, which means [a,X] = 0. This is a contradiction. Yi
are orthogonal, implies Xi are orthogonal, 〈[a, Yi][a, Yj]〉 = 〈[a, [a, Yi]Yj〉 = λ2i 〈YiYj〉 = 0. Let
k0 ∈ k satisfy [a, k0] = 0. Then k0 = {Xi}⊥.

Ỹi denote eigenvectors that have λi as non-zero integral multiples of π. X̃i are ada related
to Ỹi. We now reserve Yi for non zero eigenvectors that are not integral multiples of π.

Let
f = {ai} ⊕ Ỹi, h = k0 ⊕ X̃i,
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X̃i, Xl, kj where kj forms a basis of k0, forms a basis of k. Let A = exp(a).

AkA− = A(
∑

i

αiXi +
∑

l

αlX̃l +
∑

j

αjkj)A
−,

where k ∈ k

AkA− =
∑

i

αi[cos(λi)Xi − sin(λi)Yi] +
∑

l

±αlX̃l +
∑

j

αjkj. (19)

The range of A(·)A− in p, is perpendicular to f. Given Y ∈ p such that Y ∈ f⊥. The
norm ‖X‖ of X ∈ k, such that p part of AXA−1|p = Y satisfies

‖X‖ ≤ ‖Y ‖
sinλs

. (20)

where λ2s is the smallest nonzero eigenvalue of −ad2a such that λs is not an integral multiple
of π.

A2kA−2 stabilizes h ∈ k and f ∈ p. If k ∈ k, is stabilized by A2(·)A−2, then in eq. 19
λi = nπ, i.e., k ∈ h. This means h is an sub-algebra, as the Lie bracket of [y, z] ∈ k for
y, z ∈ h is stabilized by A2(·)A−2.

Let H = exp(h), be an integral manifold of h. It can be shown that exp(h) is compact.
Let y ∈ f, then there exists a h0 ∈ h such that exp(h0)y exp(−h0) ∈ a. We maximize

the function 〈ar, exp(h)y exp(h)〉, over the compact group exp(h), for regular element ar ∈ a

and 〈., .〉 is the killing form. At the maxima, we have at t = 0,

d

dt
〈ar, exp(h1t)(exp(h0)y exp(−h0)) exp(−h1t)〉 = 0.

〈ar, [h1 exp(h0)y exp(−h0)]〉 = −〈h1, [ar exp(h0)y exp(−h0)]〉,
if exp(h0)y exp(−h0) 6= a, then [ar, exp(h0)y exp(−h0)] ∈ k. The bracket [ar, exp(h0)y exp(−h0)]

is AdA2 invariant and hence belong to h. We can choose h1 so that gradient is not zero. Hence
exp(h0)y exp(−h0) ∈ a. For z ∈ p such that z ∈ f⊥, we have exp(h0)z exp(−h0) ∈ a⊥.

〈a, exp(h0)z exp(−h0)〉 = 〈exp(−h0)a exp(h0), z〉 = 0,

as exp(−h0)a exp(h0) is AdA2 invariant, hence exp(−h0)a exp(h0) ∈ f. In above, we worked
with killing form. For g = su(n), we may use standard inner product.

We come back to

U̇ = (Xd +
∑

j

uj(t)Xj)U, U(0) = I, (21)
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where U ∈ G, a compact group. We assume {Xj}LA = k and a Cartan decomposition
g = p⊕ k where Xd ∈ p. Let a be a Cartan subalgebra containing Xd. As before K = exp(k)
can be generated fast. We llok at where all can we steer U in time T . Once again we define

K̇ = (
∑

j

uj(t)Xj)K, Θ(0) = I, (22)

Let V = K ′U , then

V̇ = K ′XdK
︸ ︷︷ ︸

AdK(Xd)

V, V (0) = I, (23)

So let us understand how V evolves, at time t we can decompose V at V = K1AK2, let
us evolve for small time step ∆t under AdK(Xd). Then we have

V (t+∆T ) = exp(AdK(Xd)∆t)K1AK2 = K1 exp(AdK̃(Xd)∆t)AK2

Now Q = AdK̃(Xd) = a+
∑

i αiYi, for a ∈ a.
Now let A be such that corresponding f = a.
Then let Ω ∈ k by chosen as Ω =

∑

βi
Xi, then

AΩA−1 =
∑

i

βi[cos(λi)Xi − sin(λi)Yi] (24)

Choose βi = − αi

sin(λi)
so that

AΩA−1 =
∑

i

αiYi + Ω1 (25)

where Ω1 ∈ k.

K1 exp(Q∆t)AK2 = K1 exp((a+
∑

αi

Yi)∆t)AK2 = K1 exp(−Ω1∆t) exp(((a+
∑

αi

Yi + Ω1) ∆t)AK2

= K1 exp(−Ω1∆t) exp(a∆t) exp((
∑

i

αiYi + Ω1)∆t)AK2

= K1 exp(−Ω1∆t)
︸ ︷︷ ︸

K1(t+∆t)

exp(a∆t)A
︸ ︷︷ ︸

A(t+∆t)

exp(Ω∆t)K2
︸ ︷︷ ︸

K2(t+∆t)

From V (t) = K1(t)A(t)K2(t) , we evolve to V (t+∆t) = K1(t+∆t)A(t+∆t)K2(t+∆t)
where A(t+∆t) = exp(a∆t)A. Now observe,

Now by we claim that
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a =
∑

i

αiWi(Xd), αi ≥ 0

where
∑

i αi = 1 and Wi(Xd) are the Weyl points of Xd. They all belong to a and hence
commute.

A(t+∆t) = exp(
∑

i

αiWi(Xd)∆t)A(t); A(T ) = exp(
∑

i

αiWi(Xd)T )A(0)

Then any UF that can be reached in time T has the form

UF = K1 exp(
∑

i

αiWi(Xd)T )K2

This says, we can reach UF in time T by going in commuting drift directions Pi(Xd).
Therefore our strategy of reaching UF by going in commuting drift directions is optimal.

We assumed a = f. In general f may be larger. Then a ∈ f and we can find h0 ∈ h such
that exp(h0)a exp(−h0) = a1 ∈ a. Then substituting for a

K1 exp(Q∆t)AK2 = K1 exp(−Ω1∆t) exp(a∆t)A exp(Ω∆t)K2

= K1 exp(−Ω1∆t) exp(−h0) exp(a1∆t) exp(h0)A exp(Ω∆t)K2

= K1 exp(−Ω1∆t) exp(−h0) exp(a1∆t)AA−1 exp(h0)A exp(Ω∆t)K2

= K1 exp(−Ω1∆t) exp(−h0)
︸ ︷︷ ︸

K1(t+∆t)

exp(a1∆t)A
︸ ︷︷ ︸

A(t+∆t)

exp(h1) exp(Ω∆t)K2
︸ ︷︷ ︸

K2(t+∆t)

where h1 ∈ h. Note
Q = a + z, where z ∈ f⊥. Then Q = exp(−h0)a1 exp(h0) + z and exp(h0)Q exp(−h0) =

a1 + exp(h0)z exp(−h0). Then since exp(h0)z exp(−h0) ∈ a⊥ as shown before, we have a1 as
orthogonal projection of exp(h0)Q exp(−h0) = AdK(Xd) on a. Hence by Kostant convexity

a1 =
∑

i

αiWi(Xd), αi ≥ 0

where
∑

i αi = 1 and Wi(Xd) are the Weyl points of Xd.
Now lets apply this general theory to the two qubit example we started our discussion

with. If you recall the system is given in Eq. 9. The control generators −iHj generate the
Lie algebra k, which is the local generators

k = {−iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz}
and g = p⊕ k, where p is the interaction generators
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p = {−iσx⊗σx,−iσx⊗σy,−iσx⊗σz,−iσy⊗σx,−iσy⊗σy,−iσy⊗σz,−iσz⊗σx,−iσz⊗σy,−iσz⊗σz}

Inside p is Cartan subalgebra

a = {−iσx ⊗ σx,−iσy ⊗ σy,−iσz ⊗ σz}
The genral k ∈ k has the form

k =
∑

j

αj − iσj ⊗ I +
∑

j

αj − iI ⊗ σj

exp k = exp(−i
∑

j

αjσj ⊗ I +−i
∑

j

βjI ⊗ σj) = exp(−i
∑

j

αjσj ⊗ I) exp(−i
∑

j

βjI ⊗ σj)

= (exp(−i
∑

j

αjσj)⊗ I)(I ⊗ exp(−i
∑

j

βjσj)) = exp(−i
∑

j

αjσj)⊗ exp(−i
∑

j

βjσj)

Hence K = SU(2) ⊗ SU(2). K is the subgroup of local operation. Now we have drift
Xd = −iσx ⊗ σx = −iIzSz ∈ a ⊂ p and W(Xd) = {±IzSz,±IxSx,±IySy}. Then from our
general theory all unitary transformations that can be produced at time T are

UF = K1 exp(T (αxIxSx + α2IySy + α3IzSz))K2, |αx|+ |αy|+ |αz| ≤ 1

To generate UF we produceK1, K2 fast and go in commuting directions {−iσx⊗σx,−iσy⊗
σy,−iσz ⊗ σz}.

1 Excercise

1. For α2
x + α2

y + α2
z = 1 show that

exp(−iθ(αxσx + αyσy + αzσz)) = cos
θ

2
I − 2i sin

θ

2
(αxσx + αyσy + αzσz).

2. Let U ∈ SU(2), then show we can write U as

U =

[
cosαeiδ sinαeiφ

− sinαe−iφ cosαe−iδ

]

Further show U can be written as
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U = cos
θ

2
I − 2i sin

θ

2
(αxσx + αyσy + αzσz),

where α2
x + α2

y + α2
z = 1.

3. For α, β, γ, δ ∈ {x, y, z} show that [σα ⊗ σβ, σγ ⊗ σδ] = 0 if α 6= γ and β 6= δ.

4. Let g be Lie algebra of Lie group G. Show that for X, Y ∈ g the killing form

〈X, Y 〉 = 〈ΘXΘ−1,ΘYΘ−1〉

for Θ ∈ G.

5. Let g have a abelian ideal a. Show that for X ∈ a, the killing form 〈X,X〉 = 0.

6. Let g be Lie algebra of compact Lie group G. Show that the killing form

〈X,X〉 ≥ 0.

7. Let g be semi-simple Lie algebra of a compact Lie group G. Show that the killing form

〈X,X〉 > 0.

8. Let g be a Lie algebra. Show that if the killing form 〈X,X〉 > 0, then g is semisimple.

9. Show that for g = su(n) , 〈X,X〉 > 0. Therefore show it is semisimple.

10. Let g = su(2n). Let k =

[
A 0
0 B

]

, space of block diagonal traceless skew Hermitian

matrices. let p =

[
0 Z

−Z ′ 0

]

. Show that g = p⊕ k is a Cartan decomposition.

11. In above problem show that a =

[
0 Λ
−Λ 0

]

, where Λ is real diagonal is a cartan

subalgebra.

12. In above let ar =

[
0 Λ
−Λ 0

]

∈ a where Λ is real diagonal. Derive a condition on

diagonal entries of Λ so that ar is a regular element of a.

27



13. Let U ∈ SU(2n), then show

U =

[
K1 0
0 K2

]

exp(

[
0 λ
−λ 0

]

)

[
K3 0
0 K4

]

,

where

[
K1 0
0 K2

]

,

[
K3 0
0 K4

]

∈ SU(n) × SU(n) × U(1) (Block diagonal special

unitary matrices) and

[
0 λ
−λ 0

]

=












0 . . . 0 λ1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 . . . 0 λn

−λ1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . −λn 0 . . . 0












14. For g = su(4) and decomposition of g = p ⊕ k into local and interaction generators
The cartanalgebra

a = {−iσx ⊗ σx,−iσy ⊗ σy,−iσz ⊗ σz}.
For ar = −i(axσx ⊗ σx + ayσy ⊗ σy + azσz ⊗ σz) ∈ a, when is ar a regular element.

2 Control of spin dynamics under dissipation

We come back to equation of collection of spins ψk in magnetic field

ψ̇k = −i(ω0σz + uσx + vσy)ψk, (26)

Recalled we formed an average subspace spanned by these ψk as ρ = 1
N

∑
ψkψ

†
k, then ρ

evolves as

ρ̇ = [−i(ω0σz + uσx + vσy), ρ] (27)

ρ is a two dimensional Hermitian matrix and can be written as
ρ = 1

2
I + lxσx + lyσy + lzσz, where L = (lx, ly, lz)

′ represents average (x, y, z) angular
momentum of the of the ensemble. This average or classical angular momentum evolves as
Bloch equation

L̇ = (ω0Ωz + uΩx + vΩy)L, (28)
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Now we start with say ψk =

[
1
0

]

and ρ = 1
2
I+σz. Now we rotate ψk to 1√

2

[
1
1

]

which

is done by evolving the system as exp(−iπ
2
σy)

[
1
0

]

. Now our ensemble has ρ = 1
2
I+σz. Now

we let our ensemble evolve under the drift hamiltonian −iω0σz. Then the system evolves as

exp(−iω0tσz)
1√
2

[
1
1

]

=
1√
2

[

e−
i

2
ω0t

e
i

2
ω0t

]

Then ρ = 1
2
I + cosω0tσx + sinω0t. In practice every ψk sees a slightly diffrent ω due to

local fluctuations of the magnetic field. Hence we really have

ψk(t) =
1√
2

[

e−
i

2
ωkt

e
i

2
ωkt

]

The correct model is that all ωk start as ω0 and then begin to diffuse away. As a result
we find

ρ = 1
2
I+ 1

N

∑
(cosωktσx+sinωktσy) → 1

2
. With time the magnetic moments which started

together on the transverse plain begin to move away leading to a zero net magnetization or
magnetic moment. This is called the phenomenon of decoherence.

We capture it by introducing a decay R in the Bloch equations. The equations look

Ṁ =





−R −ω0 v
ω0 −R −u
−v u 0



M,

where R is called the transverse relation rate.
It is put in the density matrix equation as

ρ̇ = [−i(ω0σz + uσx + vσy), ρ]−R[σz[σz, ρ]] (29)

We come back to the system in Eq. 9,

ψ̇ = −i{u1Ix + u2Iy + u3Sx + u4Sy + πJIzSz}ψ (30)

Observe ψ(t) = U(t)ψ(0) , where U(t) ∈ SU(4) and

U̇ = −i{u1Ix + u2Iy + u3Sx + u4Sy + πJIzSz}U (31)

We now study an important experiment in NMR called INEPT. We know protons have
larger gyromagnetic ratio γ than carbon. It is about 4 times larger. This means that in
a ensemble of 105 protons if we have 4 excess spins pointing in along B0, for carbon we
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will only have 1 excess spin. The net magnetic moment of proton will be much larger that
carbon. Therefore in experiments we get stronger signal when we observe proton compared
to when we detect carbon. Let us denote more sensitive nuclie by I and other one by S.
Now imagine that I have 18 spin pairs of IS. Of then half of them have spin S up and half
down This is to say there is no preferential alignment of S as it is insensitive. Of these first
half 5 have spin I up and 4 spin down and same for the other half. So how does the density
matrix look like.

ρ =
1

18
(5|00〉〈00|+ 4|10〉〈10|+ 5|01〉〈01|+ 5|11〉〈11|)

ρ =
1

18
(5|0〉〈0| ⊗ I + 4|0〉〈0| ⊗ I) =

I

4
+

1

18
σz ⊗ I

Thus our ensemble has a net polarization on spin I. There is no net polarization on spin
S. if we try to detect spin S we won’t get a good signal. Now we show how using Control, we
can transfer this polarization from I to S spin. Then we will be able to detect and observe
S spin.

This is how control works. We go through the following set of operations. Recall under
unitary propagator U density matrix evolves as ρ→ UρU ′

Then

σz ⊗ I → exp(i
π

2
Ix) (σz ⊗ I) exp(−iπ

2
Ix) = σx ⊗ I (32)

σx ⊗ I → exp(−iπ
2
2IzSz) (σx ⊗ I) exp(i

π

2
2IzSz) = 2σy ⊗ σz (33)

2σy ⊗ σz → exp(−iπ
2
(Ix + Sx)) (2σy ⊗ σz) exp(−iπ

2
(Ix + Sx)) = −2σz ⊗ σy (34)

−2σz ⊗ σy → exp(−iπ
2
2IzSz) (2σz ⊗ σy) exp(i

π

2
2IzSz) = I ⊗ σx (35)

I ⊗ σx → exp(i
π

2
Sy) (I ⊗ σx) exp(−iπ

2
Sy) = I ⊗ σz (36)

Now we have an ensemble in which spin S is polarized. Now we can Observe spin S as
there is more polarization on it.

After steps 32 and 33, we can convert

2σy ⊗ σz → exp(−iπ
2
Ix) (2σy ⊗ σz) exp(−iπ

2
Ix) = 2σz ⊗ σz (37)

and we say we have created a two spin order, by transferring σz⊗I → 2σz⊗σz. Observe steps
1 (Eq. 32) and 3 (Eq. 37) are fast steps because they involve evolving control Hamiltonians
and hence take no time. Step 2 (Eq. 33) is a slow step. It involves evolving interaction,
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coupling hamiltonian in Eq. 30 for time 1
2J
. In writing these steps we have neglected all

decoherence, and assume step 2 evolves as

σx ⊗ I → (σx ⊗ I) cos(πJt) + 2σy ⊗ σz sin(πJt) (38)

which after time 1
2J

reaches the target state.
However in presence of decoherence, this evolution is

σx ⊗ I → exp(−Rt){(σx ⊗ I) cos(πJt) + 2σy ⊗ σz sin(πJt)} (39)

where R is the relaxation rate. Now we shouldn’t wait for full 1
2J

rather we should find
the time when exp(−Rt) sin(πJt) is maximum. This way we maximize the transfer to target
state. Now we ask is this the best we can do. Important is to note that while the states
σx ⊗ I and σy ⊗ σz decay under decoherence, the starting and end state σx ⊗ I and σz ⊗ σz
donot. Then we can write a state space description for this transfer. Let the magnitudes of
these states be x1 = 〈σz ⊗ I〉, x2 = 〈σx ⊗ I〉, x3 = 〈2σy ⊗ σz〉 and x4 = 〈2σz ⊗ σz〉. Then
consider the control system

d

dt







x1
x2
x3
x4






=







0 −u(t) 0 0
u(t) −R −πJ 0
0 πJ −R −v(t)
0 0 v(t) 0













x1
x2
x3
x4







(40)

Here u, v represent our fast operations that can immdiately transfer between x1−x2 and
x3 − x4. R is relaxation rate and describes how x2, x3 decay and πJ is due to coupling that

evolves x2 to x3. We want to find starting from







x1
x2
x3
x4






=







0
0
0
1






, what is the largest value

of x4 possible, i.e., what is the larget η so that we can get to







0
0
0
η






.

The states are depicted in the following vector diagram
where r1 =

√

x21 + x22 and r2 =
√

x23 + x24. Note with fast u, v we can control θ1 and θ2
fast. Let u1 = cos θ1 and u2 = cos θ2. Then we can write an equation for r1 and r2 and it
takes the form

d

dt

[
r1
r2

]

=

[
−R cos θ21 −πJ cos θ1 cos θ2

πJ cos θ1 cos θ2 −R cos θ22

] [
r1
r2

]

= πJ

[
−ξu21 −u1u2
πu1u2 −ξu22

] [
r1
r2

]

,

(41)
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x1

x2 x3

θ θ1
2

r
1

r2

x4

J

where ξ = R
πJ
. The goal is to find −1 ≤ u1(t), u2(t) ≤ 1, that maximize transfer to the final

state r2, starting from the initial state (r1, r2) = (1, 0).
We maximize the gain,

∆r22
−∆r21

=
(−ξp2 + p)∆t

(ξ + p)∆t
,

where p = u2r2
u1r1

, positive, as r2 decreases for negative p. Differentiating with p, we get

(1− 2ξp)(p+ ξ)− p(1− ξp)

(p+ ξ)2
= −(p− η1)(p− η2)

(p+ ξ)2

where η1 = −(
√

1 + ξ2 + ξ) and η2 =
√

1 + ξ2 − ξ. Slope is increasing between roots η1 and
η2 and decreasing outside. Maximum is at η = η2. Substituting this value of p gives

∆r22
−∆r21

= η2,

with −∆r21 > 0. Thus

∆(η2r21 + r22) = 0,

along the optimal trajectory. Using optimal return function for the problem as

V (r1, r2) = η2r21 + r22

we obtain for m1 = u1r1 and m2 = u2r2,

dV

dt
= J

[
η2 1

]
[
−ξm2

1 −m1m2

m1m2 − ξm2
2

]

= J
[
m1 m2

]

[

−ξη2 (1−η2)
2

(1−η2)
2

−ξ

]

︸ ︷︷ ︸

A

[
m1

m2

]

.

A is negative semi-definite for η =
√

1 + ξ2 − ξ , with null vector at (1, η). Therefore,
dV
dt

≤ 0 with dV
dt

= 0, for m2

m1

= u2r2
u1r1

= η.
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d

dt

[
r1
r2

]

=

[
−u21 au1u2
bu1u2 −u22

] [
r1
r2

]

, (42)

0 ≤ ui ≤ 1, b > 0 and −1 ≤ a+b
2

≤ 1 (system is dissipative in norm).
We maximize the gain,

∆r22
−∆r21

=
(−p2 + bp)∆t

(1− ap)∆t
,

where p = u2r2
u1r1

, positive. Differentiating with p, we get

a(p2 − 2p
a
+ b

a
)

(1− ap)2
= a

(p− η1)(p− η2)

(1− ap)2

where η1 = a−1 −
√

a−1(a−1 − b), η2 = a−1 +
√

a−1(a−1 − b). When a is negative, slope
is increasing between roots η1 and η2 and decreasing outside. Maximum is at η2 (p > 0).
When a is positive, slope is decreasing between roots η1 and η2 with p < a−1 for −∆r21 to be
positive. Hence maximum is at η1. In both case we have

aη + bη−1 = 2, (43)

for maximum argument p = η. When a = 0, η = b
2
.

When we substitute the value of p, it gives

∆r22
−∆r21

=
(−p2 + bp)∆t

(1− ap)∆t
= η2.

Using V = η2r21 + r22 as the return function for the largest value of r22 possible, we find
on differentiation

dV

dt
=

[
m1 m2

]

[

−η2 (b+aη2)
2

(b+aη2)
2

−1

]

︸ ︷︷ ︸

A

[
m1

m2

]

,

where, m1 = u1r1 and m2 = u2r2. A is negative semi-definite for η = η1 = a−1 −
√

a−1(a−1 − b), when a positive and η = η2 = a−1 +
√

a−1(a−1 − b), when a negative and
η = b

2
, when a = 0. The null vector is at (1, η). Therefore, dV

dt
≤ 0 with dV

dt
= 0, for

m2

m1

= u2r2
u1r1

= η.
Consider special choice of a and b which is motivated later. Let a = χ

ξ
cos(θ + γ) and

b = χ

ξ
cos(θ− γ), where χ =

√

1 + k2c
J2 and ξ = ka

J
and cos θ = −kc√

k2c+J2
, which depend of three
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parameters in the system dynamics ka, kc, J . See Eq. 45 subsequently. This gives rise to the
following system.

d

dt

[
r1
r2

]

=

[ −u21 χ

ξ
cos(θ + γ)u1u2

χ

ξ
cos(θ − γ)u1u2 −u22

] [
r1
r2

]

, (44)

where we choose 0 ≤ ui ≤ 1 to maximum transfer to r2 starting from (r1, r2) = (1, 0).
Then using Eq. 43,

η cos(θ + γ) + η−1 cos(θ − γ) = 2
ξ

χ
.

(η + η−1) cos θ cos γ + (η−1 − η) sin θ sin γ = 2
ξ

χ
.

(η + η−1)2 cos2 θ + (η−1 − η)2 sin2 θ ≥ 4
ξ2

χ2
.

(η−1 − η) ≥ 2ζ,

where ζ2 = k2a−k2c
k2a+k2c

. Maximum of η < 1 is obtained, when we choose tan γ = 1−η2

1+η2
tan θ,

(η−1 − η) = 2ζ, η =
√

1 + ζ2 − ζ.

We can use
V (r1, r2) = η2r21 + r22

as return function for the system in 44. We obtain for m1 = u1r1 and m2 = u2r2,

dV

dt
=

[
η2 1

]
[ −m2

1 m1m2
χ

ξ
cos(θ + γ)

χ

ξ
cos(θ − γ)m1m2 −m2

2

]

=
[
m1 m2

]
[
−η2 c
c −1

]

︸ ︷︷ ︸

A

[
m1

m2

]

,

where c = η χ

2ξ
(η cos(θ + γ) + η−1 cos(θ − γ)). Where for special choice of γ, we have

c2 = η2 and the matrix is negative semi-definite with null space (m1,m2) = (1, η), else
its negative definite with dV

dt
< 0.

The system in Eq. 44, arises from following transfer problem, which is of fundamental
and practical interest in NMR spectroscopy. Given the control system

d

dt











z1
y1
x1
x2
y2
z2











=











0 u(t) −v(t) 0 0 0
−u(t) −ka 0 J −kc 0
v(t) 0 −ka −kc −J 0
0 −J −kc −ka 0 v(t)
0 −kc J 0 −ka −u(t)
0 0 0 −v(t) u(t) 0





















z1
y1
x1
x2
y2
z2











, (45)
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find optimal (u(t), v(t)) such that starting from (z1, y1, x1, x2, y2, z2) = (1, 0, 0, 0, 0, 0), we
obtain the largest value of (0, 0, 0, 0, 0, η) ?

The above optimal control problem can be solved in closed form. Consider the vectors
(x2, y2) and (x1, y1) with length l2 and l1. Writing equation for r1 =

√

l21 + z21 and r2 =
√

l22 + z22 , with ui = cos(βi) =
li
ri
, where ui > 0, we get the system

d

dt

[
r1
r2

]

=

[
−ξu21 χ cos(θ + γ)u1u2

χ cos(θ − γ)u1u2 −ξu22

] [
r1
r2

]

, (46)

where γ is angle between l1 and l2 which is taken as a control variable. This Eq. is the scaled
model in Eq. 44.

The optimal solution is then given by the following two invariants of motion. The ratio

u2r2
u1r1

=
l2
l1

=
√

1 + ζ2 − ζ = η; ζ =

√

k2a − k2c
k2a + J2

(47)

is maintained constant and the angle γ between vectors l2 and l1 is maintained constant at
tan γ = 1−η2

1+η2
tan θ. The maximum transfer of efficiency is then η.

It is worthwhile to point out that researchers in magnetic resonance have developed
novel pulse sequences that have improved the transfer described in Eq. (45), however the
fundamental limits of the transfer described here was not known. Fig. 3 shows plot of
transfer efficiency of various state of the art pulse sequences as a function of the ratio ka

J
for

kc = .75. The CROP pulse sequence obtained by solving the above transfer problem using
methods of optimal control (Eq. 47) performs better than all state of the art methods and
provide significant improvement is sensitivity. Furthermore methods of optimal control help
to provide limits on how close can a quantum dynamical system be driven to a target state.

Generalizing, we can consider a general dissipative control system

ṙ = A(ui, uj)r; A(ui, uj) =










a11u
2
1 . . . a1ju1uj . . . a1nu1un

...
...

. . .
...

...
aj1uju1 . . . ajju

2
j . . . ajnujun

...
...

. . .
...

...
an1unu1 . . . anjunuj . . . annu

2
n










= Au ◦ u (48)

where ◦ is Hadamard product and u = (u1, . . . , un)
′, with {A}ij = aij (A+AT is negative

definite). By making a change of time variable to τ , where
dτ
dt

=
∑

i u
2
i r

2
i , we can define mi =

uiri√∑
i
u2

i
r2
i

and pi =
r2
i

2
, we then have the system

dp

dτ
= Am ◦m. (49)
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Figure 3: Figure A shows the transfer efficiency for CROP sequence as a function of ka
J
, for

different values of kc
ka
. Figure B shows efficiency of various state of the art pulse sequences

as a function of ka
J

for the transfer in Eq. (45) for kc = .75. The CROP pulse sequences
developed using optimal control of system in Eq. (45) provide the optimal transfer.

By changing ui we change mi and hence we treat m as control.
One possible transfer is to transfer from a given initial state p = (1, 0, . . . , 0) to maximum

possible value pn.
The reachable set takes the form (diagA is diagonal of matrix A), for αi > 0

diag(
∑

i

αiAmim
T
i ) = diag(AM),

where M is a positive semidefinite (PSD) matrix. Thus the problem reduces to finding
optimal PSD M0 such that diag(AM0) = (−1, 0, . . . , 0, η2) for maximum possible η.

Remark 4 : Cone Separation Let C = diag(AM). Then C is a convex cone. It has
non-empty interior as we can find mi, i = 1, . . . , n such that Ami ◦ mi are independent,
else they lie in a subspace annihilated by e. If ek 6= 0 then eTAy ◦ y 6= 0, where y is 1 in
the kth spot. Then

∑

i αiAmi ◦mi for αi > 0 is an interior point. Note by Carathedory’s
theorem, B = {diag(∑i αiAmim

T
i ), ‖mi‖ = 1,

∑

i αi = 1, i = 1, . . . n+1} generates C. Since
A is negative definite A + A′ < 0, we have B bounded away from zero and B

‖B‖ a compact

set. For yi ∈ C converging to y∗i ,
yi

‖yi‖ ∈ B
‖B‖ converges to

y∗
i

‖y∗
i
‖ ∈ B

‖B‖ . Hence y∗i ∈ C. C is a

closed convex cone. Note diag(AM0) cannot be an interior point of C else we can proceed in
direction (0, . . . , 0, 1) and improve the efficiency. Hence x0 = diag(AM0) is a boundary point
of C and there exists λ = (λ1, . . . , λn) such that λTx0 = 0 and λTC ≤ 0. Let λ = diag(Λ).
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Then we have

tr(ΛAM) ≤ 0, ΛA+ A′Λ ≤ 0 (50)

tr((ΛA+ A′Λ)M0) = 0 (51)

In the following, we consider few examples. Applying remark 4 to

A =

[
−ξ −1
1 −ξ

]

,

as in Eq. (??), we obtain λ′x0 = λ′
[
−1
η2

]

= 0. For λ = (η2, 1),

[
η2 0
0 1

] [
−ξ −1
1 −ξ

]

+

[
−ξ 1
−1 −ξ

] [
η2 0
0 1

]

=

[
−2ξη2 1− η2

1− η2 −2ξ

]

, (52)

which is semidefinite, when

(η−1 − η) = 2ξ,

which gives η =
√

1 + ξ2 − ξ.
As another example consider

A =

[
−1 a
b −1

]

,

where b > 0 and −2 < (a+ b) < 2.

1

2
(

[
η2 0
0 1

] [
−1 a
b −1

]

+

[
−1 a
b −1

] [
η2 0
0 1

]

) =

[

−η2 aη2+b

2
aη2+b

2
−1

]

, (53)

which is semidefinite, when

aη + bη−1 = 2, (54)

and null vector is m = (1, η). Eq. 54 implies that

η = a−1 +
√

1−ab
a2

, when a is negative. This choice of root ensures η > 0. When a is

positive, we have η = a−1 −
√

1−ab
a2

as ṗ1 < 0 in Eq. 49 for this choice.

As another example consider Eq. (44),

A =

[
−ξ χ cos(θ + γ)

χ cos(θ − γ) −ξ

]

,
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we have

ΛA+ A′Λ =

[
−2ξη2 χ(η2 cos(θ + γ) + cos(θ − γ))

χ(η2 cos(θ + γ) + cos(θ − γ)) −2ξ

]

, (55)

which is semidefinite, when,

(η cos(θ + γ) + η−1 cos(θ − γ))2 =
4ξ2

χ2
,

which gives maximum value of η =
√

1 + ζ2 − ζ, when tan γ = tan θ 1−η2

1+η2
, for ζ2 = k2a−k2c

k2a+k2c
, as

in Eq. (44).
As another example, consider

A =





−ξ −1 0
1 −ξ −1
0 1 −ξ



 .

for

Λ =





λ1 0 0
0 λ2 0
0 0 1



 ,

we have

S = ΛA+ A′Λ =





−2ξλ1 λ2 − λ1 0
λ2 − λ1 −2ξλ2 1− λ2

0 1− λ2 −2ξ



 .

Note
[
λ1 λ2 1

]





−1
0
η



 = 0 implies λ1 > 0, we consider

uuT = ΛA+ A′Λ = S,

which is the case when S has a two-dimensional nullspace.
This is not possible as S13 = 0, while u21 = S11 6= 0 and u23 = S33 6= 0. This says that

semidefinite S cannot be rank 1. Hence it only has a one-dimensional null space. The null
vector m must satisfy

Am ◦m =





−1
0
η2



 ,

which makes m2 =
m1−m3

2ξ
or m2 = 0. On substituting we get
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d

dt

[
p1
p3

]

=

[
−m2

1 (1 + ξ2)−1m1m3

(1 + ξ2)−1m1m3 −m2
3

]

. (56)

From Eq. 42, we have a = b = (1 + ξ2)−1. The maximum transfer is η2, with η =
a−1 −

√

a−1(a−1 − b) = 1 + ξ2 − ξ
√

2 + ξ2.
Case m2 = 0, produces no transfer.

3 Finite Time Optimal Control

We now consider the system,

d

dt

[
r1(t)
r2(t)

]

=

[
−ξu21 −u1u2
u1u2 −ξu22

] [
r1(t)
r2(t)

]

. (57)

We consider the problem of steering (1, 0) to maximum possible value of r2 in finite time T .
In the finite time case, the optimal return function V (r1, r2, t) has explicit dependence on
time and by definition

V (r1, r2, t) = max
u1,u2

V (r1 + δt(−ξu21r1 − u1u2r2), r2 + δt(−ξu22r2 + u1u2r1), t+ δt).

Expanding in δt , we obtain the well known Hamilton Jacobi Bellman equation.

∂V

∂t
+max

u1,u2

[
∂V
∂r1

∂V
∂r2

]
[
−ξu21 −u1u2
u1u2 −ξu22

] [
r1
r2

]

= 0. (58)

From equation (58), define the adjoint variables (λ1, λ2) = ( ∂V
∂r1
, ∂V
∂r2

). LetH = −λ1r1[ξu21−
(a− b)u1u2 + ξabu22], where a = λ2

λ1

and b = r2
r1
. Then equation (58) can be written as

∂V

∂t
+max

u1,u2

H(u1, u2) = 0.

For the finite time problem maxu1,u2
H > 0. This implies (a− b)2 > 4ξ2ab, i.e. a−b

2ξab
a−b
2ξ

> 1.
We consider three separate cases for the problem.

1. Case I: If (a− b) ≤ 2ξ, then the maximum of H is obtained for u2 = 1 and u1 =
a−b
2ξ

.

2. Case II: If (a− b) > 2ξ and a−b
ab

> 2ξ, then the maximum of H is obtained for u1 = 1
and u2 = 1.

3. Case III: If b−1− a−1 = a−b
ab

≤ 2ξ, then the maximum of H is obtained for u1 = 1 and
u2 =

a−b
2ξab

.
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From equation (58), the adjoint variables (λ1, λ2) = ( ∂V
∂r1
, ∂V
∂r2

) satisfy the equations λ̇1 = − ∂H
∂r1

and λ̇2 = − ∂H
∂r2

, i.e.

d

dt

[
λ1
λ2

]

=

[
ξu21 −u1u2
u1u2 ξu22

] [
λ1
λ2

]

, (59)

where (λ1(T ), λ2(T )) = (0, 1). From equation (57, 59), we deduce that V = λ1r1 + λ2r2 is
a constant for optimal trajectory and equals the optimal cost r2(T ) = λ1(0). Writing the
equation for adjoint variables backward in time, let σ = T − t then

d

dσ

[
λ1
λ2

]

=

[
−ξu21 u1u2
−u1u2 −ξu22

] [
λ1
λ2

]

,

where (λ1(σ), λ2(σ))σ=0 = (0, 1). Now u1(σ) and u2(σ) should be chosen to maximize
λ1(σ)|σ=T . Observe this is exactly the same optimization problem as (57), where the roles
of u1 and u2 have been switched. From the symmetry of these two optimization problems,
we then have

u∗1(t) = u∗2(T − t)

r1(t) = λ2(T − t) ; r2(t) = λ1(T − t)

ab(
T

2
) = 1 ; V = 2r1(

T

2
)r2(

T

2
)

(b−1 − a−1)(T − t) = (a− b)(t)

Observe from (57, 59), that ab(t) is monotonically increasing and since ab(0) = 0 and

ab(T
2
) = 1, we have ab(t) < 1 for t < T

2
and therefore (a−b)

2ξab
> 1 for t < T

2
(else a−b

2ξ
> 1

and ab < 1 implies the stated). Therefore u∗2(t) = 1 for t < T
2
. Depending on a(0), we have

two cases. Case A In this case a(0)
2ξ

≥ 1. Then we start in the case II discussed above and

verify that in this case a − b is increasing for ab < 1, implying a−b
2ξab

> 1 Therefore we stay

in this case for all t ∈ [0, T
2
] and therefore u∗1 = u∗2(t) = 1 for all t. Since b(0) = 0, we have

b(T
2
) = tan T

2
. Similarly,

a(
T

2
) =

a(0) + tan(T
2
)

1− a(0) tan(T
2
)
.

If ab(T
2
) = 1, then above equation implies that tan(T ) ≤ 1

2ξ
, as a(0) > 2ξ.

Case B If a(0)
2ξ

< 1, then u∗1(0) =
a(0)
2ξ

and the system begins in case I. Let κ(t) satisfy

dκ

dt
=
κ2 − 2κ+ 1

2ξ
− 2ξκ, κ(0) = 0.

The solution to this equation is given by κ(t) = 1 + 2ξ2 − 2ξ
√

1 + ξ2 coth(
√

1 + ξ2t + 2β),
where sinh(β) = ξ. It can be verified that in case I, the optimal trajectory satisfies b

a
(t) =
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κ(t). a − b is increasing. After time τ , a−b
2ξ

becomes equal to 1 and the system switches to

case II. Putting a−b
2ξ

= 1 and b
a
(t) = κ(t), we get r2(τ)

r1(τ)
= 2ξκ(τ)

1−κ(τ)
(denote this ratio by tan θ1,

see Fig 4, Panel B). Then again by symmetry at time T − τ we have 1
2ξ
(1
b
− 1

a
) = 1 and the

system switches from case II to case III. In case III, verify b
a
(t) = κ(T − t) and the switching

to this case occurs at tan θ2 = r2
r1

= 1−κ(τ)
2ξ

. Thus the system spends T − 2τ in region II.
Then we have

T − 2τ = tan−1 1− κ(τ)

2ξ
− tan−1 2ξκ(τ)

1− κ(τ)
.

We now derive an explicit expression for r2(T ). For t ≥ T − τ ,

V (t) =
√

r22(t) + κ(T − t)r21(t), (60)

is constant along the system trajectories and equals the optimal return function r2(T ). At

t = T − τ , we have r2(T−τ)
r1(T−τ)

= tan θ2 =
1−κ(τ)

2ξ
and therefore from (60), we have

V (T − τ) = R1

√

sin2 θ2 + cos2 θ2 − 2ξ sin θ2 cos θ2, (61)

where R1 =
√

r21(t) + r22(t) for t = T − τ . Also note V (T
2
) = 2r1(

T
2
)r2(

T
2
). At time t = T

2
,

we then have r2
r1

= tan( θ1+θ2
2

) and therefore

V (
T

2
) = R2

2 sin(θ1 + θ2) (62)

where R2 =
√

r21(
T
2
) + r22(

T
2
). Note between T

2
and T − τ , the system evolves under u1 =

u2 = 1. Therefore R1 = R2 exp(−(T
2
− τ)). Since V is constant, equating (61) and (62), we

get equation V (T − τ) = V (T
2
) = ηT (63).

At time τ , the optimal trajectory (r1, r2) passes from phase I to II and makes an angle
θ1 with the r1 axis and at time T − τ the optimal trajectory passes from phase II to phase
III and makes an angle θ2 with the r1 axis (see Fig. 4). The optimal efficiency ηT for the
finite time T is expressed in terms of these angles as

ηT =
exp(ξ(θ1 − θ2))(1− ξ sin 2θ2)

sin(θ1 + θ2)
. (63)

In the limit, T goes to infinity τ = T
2
and θ1 = θ2 = tan−1

√

1 + ξ2 − ξ and ηT approaches η
in (??). This corresponds to the unconstrained time case we discussed initially.
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Figure 4: Phase trajectory of the controls u1 and u2 (panel A) and ~r(t) (panel B) for a
finite-time ROPE sequence (ξ = 1).

We now study control of coupled spin dynamics in presence of longitudinal relaxation.
For this we consider the system,

d

dt







z1
x1
x2
z2






=







−k1 −u(t) 0 0
u(t) −k −J 0
0 J −k v(t)
0 0 −v(t) −k2













z1
x1
x2
z2






, k1, k2 ≤ k (64)

where goal is to drive the system from (1, 0, 0, 0)′ to maximum possible value of z2. Since
the controls can be made much larger than the natural parameters in the system, we define
r1 =

√

z21 + x21, r2 =
√

z21 + x21, tan θ1 =
z1
x1

and tan θ2 =
z2
x2

. Writing an equation for r1 and
r2, gives us scaled equation

d

dt

[
r1(t)
r2(t)

]

=

[
−(k1

J
+ ξ1u

2
1) −u1u2

u1u2 −(k2
J
+ ξ2u

2
2)

] [
r1(t)
r2(t)

]

, ξi =
k − ki
J

(65)

In the finite time case, the optimal return function V (r1, r2, t) has explicit dependence
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on time and by definition,

∂V

∂t
+max

u1,u2

[
∂V
∂r1

∂V
∂r2

]
[
−(k1

J
+ ξ1u

2
1) −u1u2

u1u2 −(k2
J
+ ξ2u

2
2)

] [
r1
r2

]

= 0. (66)

Let H = −λ1r1[(k1J + ξ1u
2
1) − (a − b)u1u2 + (k2

J
+ ξ2u

2
2)ab], where a = λ2

λ1

and b = r2
r1
. Then

equation (66) can be rewritten as

∂V

∂t
+max

u1,u2

H(u1, u2) = 0.

For the finite time problem ∂V
∂t

−λ1r1 k1J −λ2r2 k2J < 0. This implies a−b
2ξ2ab

a−b
2ξ1

> 1. We consider
three separate cases for the problem

1. Case I: If (a− b) ≤ 2ξ1, then the maximum of H is obtained for u2 = 1 and u1 =
a−b
2ξ1

.

2. Case II: If (a−b) > 2ξ1 and
a−b
ab

> 2ξ2, then the maximum of H is obtained for u1 = 1
and u2 = 1.

3. Case III: If b−1 − a−1 = a−b
ab

≤ 2ξ2, then the maximum of H is obtained for u1 = 1
and u2 =

a−b
2ξ2ab

.

From equation (66), the adjoint variables (λ1, λ2) = ( ∂V
∂r1
, ∂V
∂r2

) satisfy the equations λ̇1 = − ∂H
∂r1

and λ̇2 = − ∂H
∂r2

, i.e.

d

dt

[
λ1
λ2

]

=

[
(k1
J
+ ξ1u

2
1) −u1u2

u1u2 (k2
J
+ ξ2u

2
2)

] [
λ1
λ2

]

, (67)

where (λ1(T ), λ2(T )) = (0, 1). From equation (65, 67), we deduce that V = λ1r1 + λ2r2 is a
constant for optimal trajectory and equals the optimal cost r2(T ) = λ1(0).

Observe from (65, 67), that ab(t) is monotonically increasing. (a − b) is increasing in

case I and II. (a− b)/ab is decreasing in case II and III. (a−b)
2ξ2ab

> 1 to begin with. Therefore

u∗2(t) = 1 to begin with. Depending on a(0), we have following cases. If we start in case I,
we can increase a − b and switch to case II. If (a − b)/ab decreases below a threshold, we
switch to case III and stay there. We may start in case II and switch to case III and stay
there or we may always stay in II. In more detail,
If a(0)

2ξ
< 1, then u∗1(0) =

a(0)
2ξ

and the system begins in case I. Let κ1(t) =
b
a
. It satisfies

dκ1
dt

=
κ21 − 2κ1 + 1

2ξ1
− 2ξ1κ1, κ1(0) = 0.
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The solution to this equation is given by κ1(t) = 1+ 2ξ21 − 2ξ1
√

1 + ξ21 coth(
√

1 + ξ21t+2β),
where sinh(β) = ξ1. After time τ1,

a−b
2ξ1

becomes equal to 1 and the system switches to case

II. Putting a−b
2ξ1

= 1 and b
a
(t) = κ1(t), we get r2(τ1)

r1(τ1)
= 2ξκ1(τ1)

1−κ1(τ1)
(denote this ratio by tan θ1).

In the case a(0)
2ξ

> 1. Then we start in the case II discussed above and verify that in this

case a − b is increasing and a − b/ab, decreasing. Therefore we stay in this case for where
u∗1 = u∗2(t) = 1, before we may switch to case III.

In phase III, Let κ2(t) =
b(T−t)
a(T−t)

. It satisfies

dκ2
dt

=
κ22 − 2κ2 + 1

2ξ2
− 2ξ2κ2, κ2(0) = 0.

The solution to this equation is given by κ2(t) = 1+ 2ξ22 − 2ξ2
√

1 + ξ22 coth(
√

1 + ξ22t+2β),
where sinh(β) = ξ2.

At time T−τ2, when we switch to case III, we have a−b
2ξ2ab

= 1 with b
a
(T−τ2) = κ2(τ2). The

switching to this case occurs at tan θ2 =
r2
r1

= 1−κ2(τ2)
2ξ2

. Thus the system spends T − τ1 − τ2
in region II. Then we have

T − τ1 − τ2 = tan−1 1− κ2(τ2)

2ξ2
− tan−1 2ξ1κ1(τ1)

1− κ1(τ1)
(68)

= tan−1 1− κ1(τ1)

2ξ1
− tan−1 2ξ2κ2(τ2)

1− κ2(τ2)
. (69)

where the last equation follows from duality of r and λ, where we drive the λ equation
backwards in time from initial value λ(T ) = (0, 1) to maximum possible value of λ1(0).
Given ξ1 < ξ2, we stay all the time in case II, when T ≤ tan−1 1

2ξ2
. For T > tan−1 1

2ξ2
, we

have II for time T − τ2 followed by III for time τ2, for a total time τ2+tan−1 1−κ2(τ2)
2ξ2

, as long
as

tan−1 1− κ2(τ2)

2ξ2
+ tan−1 2ξ2κ2

1− κ2(τ2)
≤ tan−1 1

2ξ1

If T is made even larger, we see all three phases. When ξ2 < ξ1, we stay all the time in
case II, when T ≤ tan−1 1

2ξ1
. For larger T ≥ tan−1 1

2ξ1
, we have I for time τ1 followed by II

for time T − τ1, as long as

tan−1 1− κ1(τ1)

2ξ1
+ tan−1 2ξ1κ1

1− κ1(τ1)
≤ tan−1 1

2ξ2
.

For even larger T , we have all three stages.
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