
Chapter2: Quantum Control and
NMR spectroscopy

In last chapter, we talked about electron and its orbitals. Then we talked about spin of an
electron, and showed how spin of an electron can be coupled to orbital angular momentum to
give the fine structure of hydrogen. We then talked about coupling of the electron and orbital
angular momentum to nuclear spin and studied hyperfine structure. In this chapter, we will
entirely focus on the spin of nucleus and study methods to control and observe nuclear spin
using magnetic fields. This brings us to the subject of NMR (Nuclear magnetic resonance)
Spectroscopy, the focus of this chapter.

1 Nuclear Spin

Many atomic nuclei like 1H, 13C and 15N have the property that they behave like little bar
magnets. They respond to magnetic fields. This property arises due to instrinsic angular
momentum called spin. They are like little tops spinning around their axis. We studied all
this in last chapter. Let recapitulate a bit.

You are familiar with earth spinning on its axis. This gives earth a angular momentum.
Now imagine our earth was charged. Then spinning will give earth a magnetic moment.
Imagine a loop of wire carrying current (circulating charge), then it has a magnetic moment
M = I.A, where I is the current and A area of the loop, from your basic physics. Now imagine
a charge q going around in a loop of radius r, with angular velocity ω. Then it makes ω

2π

rotations per sec. The current is then qω
2π

and its magnetic moment is M = qωπr2

2π
= q

2m
(mvr)

where l = mvr is the angular momentum. Then M = q
2m
L, the ratio γ = q

2m
is called the

gyromagnetic ratio, it relates angular momentum to magnetic moment.
Now suppose we have our charged spinning earth and we apply a magnetic field B =

(Bx, By, Bz), then M = (mx,my,mz) = γ(lx, ly, lz) will experience a torque. This torque is
M × B, and changes the angular momentum as

L̇ =M ×B.

Relating M = γL, we have,

Ṁ = γM ×B = −γ(BzΩz + BxΩy + BzΩz)M, (1)
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where Ωx =





0 0 0
0 0 −1
0 1 0



, Ωy =





0 0 1
0 0 0
−1 0 0



 and Ωz =





0 −1 0
1 0 0
0 0 0



 are generator

of rotation. For reasons that will become clear as we go on denote ω0 = −γBz and u = −γBx

and v = −γBy and we get,

Ṁ = (ω0Ωz + uΩx + vΩy)M,

Note M(t) = ΘM(0) where

Θ̇ = (ω0Ωz + uΩx + vΩy)Θ, Θ(0) = I

Then Θ ∈ SO(3). M rotates in B. It precesses around B.
What concerns us is spin of a atomic nuclie. Many atomic nuclie like hydrogen, carbon,

nitrogen have spin 1
2
. This gives the nucleus a angular momentum and hence magnetic

moment. However because of quantum mechanics this angular momentum is quantized. If
we measure its value in say z direction, we will only find two values ~

2
and −~

2
, spinning up

and spinning down. The state of the nucleus is then written as a two dimensional vector

which is

[
1
0

]

when spinning up and

[
0
1

]

when spinning down. In general the state is

defined by a two dimensional complex vector ψ =

[
a
b

]

. For the spinning earth, we saw that

its magnetic moment precesses in a magnetic field given by Eq. (1). The two dimesnional
vector will also precess in a magnetic field with equation given by

ψ̇ = iγ(Bzσz + Bxσx + Byσy)ψ = −i(ω0σz + uσx + vσy)ψ, (2)

where in Eq. (1), we have replaced the generator of rotations in real three dimensions
Ωx,Ωy,Ωz with −iσx,−iσy,−iσz generator of rotations in complex two dimensions.

The evolution of ψ a two dimensional complex vector is given by ψ(t) = Uψ(0), where

U̇ = −i(ω0σz + uσx + vσy)U, (3)

where U is in SU(2).
In practice, in a NMR experiment, we have very large number of atoms of order 1023 and

each atom/nucleus has a spin state defined by a vector ψk, each ψk sees same magnetic field
and hence evolves according to equation

ψ̇k = −i(ω0σz + uσx + vσy)ψk, (4)

We can form an average subspace spanned by these ψk as ρ = 1
N

∑
ψkψ

†
k. ρ is called the

density matrix. Then ρ evolves as
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ρ̇ = [−i(ω0σz + uσx + vσy), ρ] (5)

ρ is a two dimensional Hermitian matrix and can be written as
ρ = 1

2
I + lxσx + lyσy + lzσz, where L = (lx, ly, lz)

′ represents average (x, y, z) angular
momentum of the of the ensemble. To see this remember for a spinor ψ

〈Lz〉 = 〈ψ|Lz|ψ〉 = 〈ψ|σz|ψ〉 (6)

Then for a ensemble we have

〈Lz〉 =
1

N

∑

k

〈ψk|σz|ψk〉 =
1

N

∑

k

tr(σz|ψk〉〈ψk|) = tr(σzρ) = lz (7)

This average or classical angular momentum evolves as

L̇ = (ω0Ωz + uΩx + vΩy)L, (8)

and denoting M = γL we have the same Eq. (1). These are called Bloch equations. Thus
we see how evolution of spin state of individual nuclie evloves as two dimensional complex
vector and how the average angular momentum and magnetic moment of the spin ensemble
evolves as a three dimensional Bloch vector.

Lets think of an ensemble in which all spins are up. Then all ψk =

[
1
0

]

and ρ = 1
2
I+σz.

Thus lz = 1 and we have an ensemble with net z angular momentum 1.

Lets think of an ensemble in which all spins are down. Then all ψk =

[
0
1

]

and ρ =

1
2
I − σz. This lz = −1 and we have an ensemble with net z angular momentum −1.

Lets think of an ensemble in which all spins are ψk = 1√
2

[
1
1

]

and ρ = 1
2
I + σx. This

lx = 1 and we have an ensemble with net x angular momentum 1.
Now lets understand the basic NMR experiment. In an NMR experiment we have spins

in a strong magnetic field along say z direction of order 10− 20 Tesla. Earths magnetic field
is around 10−5 tesla. In this magnetic field, up spins have lower energy than down spins and
so in thermal equilibrium, we have more spins up. The ratio of up to down spins is given
by Boltzmann disprtibution and is exp(∆E

kT
) where ∆E = µ ·B is energy difference between

down and up spins, which is small, as magnetic moment µ of a nuclear spin is small. Thus
at room temperature at such high fields, only 1 in 105 spins preferentiably points up. Thus

ρ = 1
2
I + ασz, where α ∼ 10−5, none the less the sample has a net angular momentum

along z and hence has a net magnetic moment along z direction. Thus in Eq. (1) we start

withM =





0
0
1



. Now we turn on x and y magnetic fields and rotate this vector to (1, 0, 0)′.
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How this is done will be discussed shortly. But imagine we have rotated M to (1, 0, 0)′ and
we switch off u, v in Eq. (1). Then M just rotates around B0 and we have an evolution
M(t) = (cosω0t, sinω0t, 0). This rotating magnetic moment will induce an emf in a nearby
coil with a frequency ω0 and hence we can measure ω0. At fields of 14 tesla the ω0 for
hydrogen is 600 MHz, for carbon is 150 MHz, and for nitrogen is 60 MHz. Thus frequency
of the induced emf tells us about chemical composition of the sample. This NMR can tell us
about composition of the sample. Now we come to the question of how we use u, v to rotate
M from (0, 0, 1) to (1, 0, 0).

M(0)

Figure 1: Figure shows how the magnetic moment M(0) along z direction is rotated to
transverse plain and it then rotates around z field and induces a EMF in the coil.

In Eq. (1), B0 is much larger than Bx, By which are actually produced by rf-coil. To
give an idea if ω0 is 600 MHz, then u, v are only around 60 kHz. Around 105 times smaller.
Then we ask how can such small u, v effect a change in M(0). Beacuse suppose we choose
u = 1 and v = 0. Then since ω0 is 105 times u. The Eq. (1) essentially is rotating around z
axis. The figure 2 below

shows how the magnetic momentM(0) along z direction just rotates around an axis with
a small tilt of z axis when we apply a constant control u. Then a constant control u will not
rotates M(0) to transverse plain as desired, because u is too small compared to ω0. What
works and is used is instead a oscillatory control input, (u, v) = (A cosω0t, A sinω0t), with
frequency same as ω0. To understand how this control works, Eq. (1)

Ẋ = (ω0Ωz + A cosω0tΩx + A sinω0tΩy)X, A≪ ω0

we can write the above equation as

Ẋ = (ω0Ωz + A exp(ω0tΩz)Ωx exp(−ω0tΩz))X,

Lets make a change of cordinates Y = exp(−ω0tΩz)X, then
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Figure 2: Figure shows how the magnetic momentM(0) along z direction just rotates around
an axis with a small tilt of z axis when we apply a constant control u.

Ẏ = AΩxY,

this is great as ω0 has disappeared and Y starting from Y (0) =





0
0
1



 rotates to Y (T ) =





0
−1
0



 at T = π
2A
.

Then X(T ) = exp(ω0TΩz)Y (T ), a vector on the equator. Thus we have been able to
bring the Bloch vector in Eq. (1) to equator by use of an oscillatory controls. This is the
first lesson in quantum control. The controls we apply are much weaker compared to drift
in the system so constant control laws donot work. We need oscillatory controls. We need
to excite the system on resonance.

1.1 Rotating Wave Approximation

In practice what we have is the system

Ẋ = (ω0Ωz + A cosω0tΩx)X, A≪ ω0,

i.e, we only apply rf-field along X axis. We can write the above as

Ẋ = (ω0Ωz +
A

2
exp(ω0tΩz)Ωx exp(−ω0tΩz) +

A

2
exp(−ω0tΩz)Ωx exp(ω0tΩz))X,
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Lets make a change of cordinates Y = exp(−ω0tΩz)X, then

Ẏ = (
A

2
Ωx +

A

2
exp(−2ω0tΩz)Ωx exp(2ω0tΩz)
︸ ︷︷ ︸

fast oscillating

)Y,

We neglect the fast oscillating term as it oscillated much faster compared to rate at which
it evolves ω0 ≫ A. This is called rotating wave approximation. Then we have

Ẏ =
A

2
ΩxY,

this is great as ω0 has disappeared and Y starting from Y (0) =





0
0
1



 rotates to Y (T ) =





0
−1
0



 at T = π
A
.

Then X(T ) = exp(ω0TΩz)Y (T ), a vector on the equator. Thus we have been able to
bring the Bloch vector in Eq. (1) to equator by use of an oscillatory controls.

We said at B0 of 14 T we have for hydrogen ω0 = 600 MHz. This is not strictly true.
Hydrogen nucleus has electrons around it. These moving/hovering electrons produce local
magnetic fields and change the field from B0 to B0(1 − σ0) and hence ω0 changes from to
ω0(1 − σ0) = ω0 + ∆ω. This σ0 is of order few parts per million, i.e. 10−6 and hence
when ω0 = 600 Mhz we have ∆ω of order few kHz. This σ0 also called chemical shift is
characteristic of a electronic environment of nucleus. We talked about it in this first chapter.
We can measure ∆ω, when we measure frequencies in our EMF. For example in Ethanol
molecule we have three hydrogen, each with different chemical environment and hence three
different ∆ω. When we find three different ∆ω is our experiment at certain specific values,
then we know we have a fingerprint spectrum of Ethanol. This way chemical shifts help us
identify the molecules. Not only does NMR give information about the chemical composition
but also the chemical shifts can identify compounds.

Now how do we rotate M to equator when we have many ∆ω.
To understand how control works now, consider Eq. (1)

Ẋ = ((ω0 +∆ω)Ωz + A cos(ω0t+ φ)Ωx + A sin(ω0t+ φ)Ωy)X, A≪ ω0

Lets as before make a change of cordinates Y = exp(−ω0tΩz)X, then

Ẏ = (∆ωΩz + A cosφΩx + A sinφΩy)Y,
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this is great as before ω0 has disappeared but ∆ω stays and we have to now choose A and

φ as functions to time so that Y (0) =





0
0
1



 rotates to Y (T ) =





0
−1
0



.

This is an important control problem because we want our control to work for all ∆ω
in a given range. Size of ∆ω and A are comparable. This problem is called broadband

control. We now astudy this problem in stages. We first study how to rotate Y (0) =





0
0
1





to Y (T ) =





0
−1
0



. This is called broadband inversion.

In summary, we learnt about single spin 1
2
whose state is a 2 dimensional complex vector

evolving as
ψ̇ = −i(ω0σz

︸︷︷︸

H0

+u σx
︸︷︷︸

H1

+v σy
︸︷︷︸

H2

)ψ, (9)

As we saw this equation evolves as ψ(t) = U(t)ψ(0), where U(t) ∈ SU(2).
This is the simplest example of a quantum control system, where H0 is the drift Hamil-

tonian and H1, H2 are control Hamiltonians.

1.2 Broadband Inversion (Chirp or Adiabatic following)

Let

Ωx =





0 0 0
0 0 −1
0 1 0



 , Ωy =





0 0 1
0 0 0
−1 0 0



 , Ωz =





0 −1 0
1 0 0
0 0 0



 .

denote generator of rotations around x, y, z axis respectively. A x-rotation by flip angle θ is
exp(θΩx). To fix ideas, we start be talking about single spin 1

2
.

Given the Bloch equations in rotating frame,

Ẋ = (ω0Ωz + A cosφ Ωx + A sinφ Ωy)X,

where X is the magnetization vector and ω0 the offset. The chirp pulse has instantaneous
frequency φ̇ = ω = −C + at where a is the sweep rate and phase φ(t) = −Ct + at2

2
. The

frequency ω is swept from [−C,C], in time T = 2C
a

with offsets ω0 in the range [−B,B]. See
Fig. 3a.

In the interaction frame of the chirp phase, φ(t), we have Y (t) = exp(−φ(t)Ωz)X(t),
evolve as

Ẏ = ((ω0 − ω)Ωz + AΩx)Y = ωeff (cos θ(t) Ωz + sin θ(t) Ωy)Y, (10)
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where effective field strength ωeff =
√

(ω0 − ω(t))2 + A2 and tan θ(t) = A
ω0−ω(t)

. See Fig.
3b.

Now in interaction frame of θ where Z = exp(−θ(t)Ωy)Y , we have

Ż = (ωeffΩz − θ̇Ωy)Z.

If ωeff ≫ θ̇, which is true when sweep rate and rf-field strength satisfy a ≪ A2. Recall
ω̃ =

√

A2 + (ω0 + C − at)2, and tan θ(t) = A
(ω0+C−at)

. This gives

θ̇(t) =
Aa

A2 + (ω0 + C − at)2
. (11)

Largest value of θ̇ is a
A
and samllest value of ω̃ = A, then ωeff ≫ θ̇ when a≪ A2.

B−B
ω

Z

ω

(t)

eff

a b

X

θ

C−C

A

Figure 3: Fig. a shows the amplitude A of the chirp pulse as function of sweep frequency
ω(t) as it is swept from −C to C. Fig b shows how Y (t) in Eq. (31) follows the effective
field as θ goes from 0 to π.

Until now we talked about broadband

1.3 Broadband Excitation

In section, we present the theory of broadband excitation.
Let

Ωx =





0 0 0
0 0 −1
0 1 0



 , Ωy =





0 0 1
0 0 0
−1 0 0



 , Ωz =





0 −1 0
1 0 0
0 0 0



 .

denote generator of rotations around x, y, z axis respectively. A x-rotation by flip angle θ is
exp(θΩx).
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We consider the problem of broadband excitation. Consider the evolution of the Bloch
vector X of a spin 1

2
in a rotating frame, rotating around z axis at Larmor frequency.

dX

dt
= (ωΩz + A(t) cos θ(t)Ωx + A(t) sin θ(t)Ωy)X, (12)

where A(t) and θ(t) are amplitude and phase of rf-pulse and we normalize the chemical shift
in the range ω ∈ [−1, 1]. In what follows, we choose phase sin θ(t) = 0 and let

dX

dt
= (ωΩz + u(t)Ωx)X, (13)

for t ∈ [0, T ].
Going into the interaction frame of chemical shift, using Y (t) = exp(−ω(t− T

2
)Ωz)X(t),

we obtain,

dY

dt
= u(t)(cosω(t− T

2
) Ωx − sinω(t− T

2
) Ωy)Y ; Y (0) = exp(ωΩz

T

2
)X(0). (14)

We design u(t), such that for all ω, we have

∫ T

0

u(t) cosω(t− T

2
) dt ∼ π

2
,

∫ T

0

u(t) sinω(t− T

2
) dt = 0. (15)

Divide [0, T ] in intervals of step, ∆t, over which u(t) is constant. Call them {u−M , . . . , u−k, . . . , u0}
over [0, T

2
] and {u0, . . . , uk, . . . , uM} over [T

2
, T ].

∫ T

0

u(t) cosω(t− T

2
) ∼ (u0 +

M∑

k=−M

uk cos(ωk∆t))∆t, (16)

where write ∆t = π
N

and choose uk = u−k. This insures that sine equation above is
automatically satisfied. Then we get

∫ T

0

u(t) cosω(t− T

2
) ∼ 2

M∑

k=0

uk cos(ωk∆t)∆t = 2
M∑

k=0

uk cos(kx)∆t, (17)

where for x ∈ [− π
N
, π
N
], we have 2

∑M
k=0 uk cos(kx)∆t ∼ θ and 0 for x outside this range.

This is a Fourier series, and we get the Fourier coeffecients as,

u0 =
θ

2π
; uk =

2θ

π

sin(kπ
N
)

2kπ
N

. (18)

For θ = π
2
, we get,

9



u0 =
1

4
; uk =

sin(kπ
N
)

2kπ
N

. (19)

In Eq. (14), using small flip angle θ, we approximate,

Y (T ) ∼ exp(

∫ T

0

u(t) cosω(t− T

2
)Ωx)Y (0). (20)

Starting from the initial state X(0) =





0
0
1



, we have from Eq. 14,

X(T ) ∼ exp(
ωT

2
Ωz) exp(

∫ T

0

u(t) cosω(t−T
2
)Ωx) exp(

ωT

2
Ωz)X(0) ∼ exp(

ωT

2
Ωz) exp(

π

2
Ωx)X(0).

(21)
This state is dephased on the Bloch sphere equator. We show how using a double adia-

batic sweep, we can refoucs the phase. Let Θ(ω) be the rotation for a adiabatic inversion of
a spin. We can use Euler angle decomposition to write,

Θ(ω) = exp(α(ω)Ωz) exp(πΩx) exp(β(ω)Ωz). (22)

The center rotation shold be π for Θ(ω) to do inversion of





0
0
1



 →





0
0
−1



.

We can use this to refocus the forward free evolution. Observe

∆(ω,
T

2
) = exp(−ωT

2
Ωz) = Θ(ω) exp(

ωT

2
Ωz)Θ(ω). (23)

Then

∆(ω,
T

2
)X(T ) = Θ(ω) exp(

ωT

2
Ωz) Θ(ω)X(T ) ∼ exp(

π

2
Ωx)X(0), (24)

which is a broadband excitation.
The pulse sequence consists of a sequence of x-phase pulses, which produce the evolution

U(ω, θ) = exp(
ωT

2
Ωz) exp(θΩx) exp(

ωT

2
Ωz) (25)

where θ = π
2
, as described above, followed by a double sweep rotation ∆(ω, T

2
). From Eq.

(19) this requires a peak amplitude of u(t) ∼ 1
2
. We now show how we can accomplish the
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T T/2

chirp chirp

180 180

Figure 4: The figure shows the amplitude of the basic pulse sequence with a double sweep
that performs broadband excitation as in Eq. (24).
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above with lower peak amplitude, using multiple sweeps. If peak amplitude is 1
4
≤ u < 1

2
,

we can prepare U(ω, π
4
) and combine two such rotations with two double sweeps as follows

U1 = ∆(ω,
T

2
) U(ω,

π

4
) ∆(ω, T ) U(ω,

π

4
). (26)

In general, if 1
2n

≤ u < 1
2(n−1)

, then we can produce a broadband excitation as

U1 = ∆(ω,
T

2
) U(ω,

π

2n
)
(

∆(ω, T ) U(ω,
π

2n
)
)n−1

. (27)

When n = 3, we do three double sweeps.
Thus we can produce broadband excitation for arbitary small rf-amplitude or viceversa,

for a given rf-amplitude, we can cover arbitrary large bandwidths.
We talked about broadband excitations. Now we discuss broadband π

2
rotations. This is

simply obtained from above by an initial double sweep. Thus

U1 = ∆(ω,
T

2
) U(ω,

π

2
) ∆(ω,

T

2
), (28)

is a π
2
rotation around x axis.

If peak amplitude is 1
4
≤ u < 1

2
we can prepare U(ω, π

4
) and combine two such rotations

with three double sweeps as follows

U1 = ∆(ω,
T

2
) U(ω,

π

4
) ∆(ω, T ) U(ω,

π

4
) ∆(ω,

T

2
), (29)

to get a broadband π
2
rotation around x axis.

In general, if 1
2n

≤ u < 1
2(n−1)

, then we can produce a broadband π
2
, x rotation as

U1 = ∆(ω,
T

2
) U(ω,

π

2n
)
(

∆(ω, T ) U(ω,
π

2n
)
)n−1

∆(ω,
T

2
). (30)

2 Simulations

We normalize ω in Eq. (12), to take values in the range [−1, 1]. We choose time T
2
= Mπ,

where we choose M = 10 and N = 20 in ∆t = π
N

in Eq. (16). Choosing θ = π
2
and

coeffecients uk as in Eq. (19), we get the value of the Eq. (17) as a function of bandwidth as
shown in left panel of Fig. 5. This is a decent approximation to π

2
over the entire bandwidth.

The right panel of Fig. 5, shows the excitation profile i.e., the −y cordinate of the bloch
vector after application of the pulse in Eq. (24), where we assume that adiabatic inversion
is ideal. The peak rf-amplitude A ∼ 1

2
.

Next, we implement the non-ideal adiabatic sweep, by sweeping from [−1.5, 1.5] in 150
units of time with amplitude A. The shape of chirp is as in Fig. 4, with peak amplitude
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Figure 5: Left panel shows value of the Eq. (17) as a function of bandwidth when we choose
T = 20π and ∆ = π

20
. The right panel shows the excitation profile i.e., the −y cordinate of

the Bloch vector after application of the pulse in Eq. (24), with uk as in Eq. (19) and we
assume that adiabatic inversion is ideal. This shows that approximation in Eq. (20) works
well. The peak rf-amplitude A ∼ 1

2
.

of chirp when we sweep between [−1, 1]. This gives a sweep rate 1
50

≪ A2, where A = 1
2
.

The resulting excitation profile of Eq. (24) is shown in Fig. 6 A, where we show the −y
coordinate of the Bloch vector. For A = 10 kHz, this pulse takes 3.82 ms, and excites a
bandwidth of [−20, 20] kHz.

Next, we simulate the excitation with reduced amplitude A = 1
4
, as in Eq. (26). This

requires to perform double sweep twice, as in Eq. (26). Adiabatic sweep is implemented as
above by sweeping [−1.5, 1.5] in 300 units of time. This gives a sweep rate 1

100
≪ A2, where

A = 1
4
. The resulting excitation profile of Eq. (26) is shown in Fig. 6 B, where we show the

−y coordinate of the Bloch vector. For A = 10 kHz, this pulse takes 6.41 ms, and excites a
bandwidth of [−40, 40] kHz.

Next, we simulate the excitation with reduced amplitude A = 1
6
, as in Eq. (27) for n = 3.

This requires to perform double sweep thrice as in Eq. (27). Adiabatic sweep is implemented
as above by sweeping [−1.5, 1.5] in 800 units of time. This gives a sweep rate 3

800
≪ A2,

where A = 1
6
. The resulting excitation profile of Eq. (27) is shown in Fig. 6 C, where we

show the −y coordinate of the Bloch vector. For A = 10 kHz, this pulse takes 14.32 ms, and
excites a bandwidth of [−60, 60] kHz.

Next, we simulate the broadband x rotation as in Eq. (28), with peak amplitude A = 1
2
.

This requires to perform double sweep twice as in Eq. (28). Adiabatic sweep is implemented
as above by sweeping [−1.5, 1.5] in 150 units of time. This gives a sweep rate 1

50
≪ A2,

where A = 1
2
. The resulting excitation profile of Eq. (28) is shown in Fig. 7 A, where we

show the z coordinate of the Bloch vector starting from initial y = 1. For A = 10 kHz, this
pulse takes 6.66 ms, and excites a bandwidth of [−20, 20] kHz.
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Next, we simulate the broadband x rotation as in Eq. (29), with peak amplitude A = 1
4
.

This requires to perform double sweep thrice as in Eq. (29). Adiabatic sweep is implemented
by sweeping [−1.5, 1.5] in 300 units of time. This gives a sweep rate 1

100
≪ A2, where A = 1

4
.

The resulting excitation profile of Eq. (29) is shown in Fig. 7 B, where we show the z
coordinate of the Bloch vector starting from initial y = 1. For A = 10 kHz, this pulse takes
9.0049 ms, and excites a bandwidth of [−40, 40] kHz.

Next, we simulate the broadband x rotation as in Eq. (30), with peak amplitude A = 1
6

and n = 3. This requires to perform double sweep four times as in Eq. (30). Adiabatic
sweep is implemented by sweeping [−1.5, 1.5] in 800 units of time. This gives a sweep rate
3

800
≪ A2, where A = 1

6
. The resulting excitation profile of Eq. (30) is shown in Fig. 7 C,

where we show the z coordinate of the Bloch vector starting from initial y = 1. For A = 10
kHz, this pulse takes 18.66 ms, and excites a bandwidth of [−60, 60] kHz.

3 Chirp Excitation

We now look at another method of broadband excitation. We present the theory of chirp
excitation.

Let

Ωx =





0 0 0
0 0 −1
0 1 0



 , Ωy =





0 0 1
0 0 0
−1 0 0



 , Ωz =





0 −1 0
1 0 0
0 0 0



 .

denote generator of rotations around x, y, z axis respectively. A x-rotation by flip angle θ is
exp(θΩx).

A chirp excitation pulse is understood as concatenation of three rotations

exp(θ0Ωy)
︸ ︷︷ ︸

III

exp(αΩx)
︸ ︷︷ ︸

II

exp(θ0Ωy)
︸ ︷︷ ︸

I

,

which satisfy cosα = tan2 θ0. Lets see how.
Given the Bloch equation,

Ẋ = (ω0Ωz + ω1 cosφ Ωx + ω1 sinφ Ωy)X,

where X is the magnetization vector, the chirp pulse has instantaneous frequency φ̇ = ω =
−A + at where a is the sweep rate and phase φ(t) = −At + at2

2
. The frequency ω is swept

from [−A,A], in time T = 2A
a

with offsets ω0 in the range [−B,B].
In the interaction frame of the chirp phase, φ(t), we have Y (t) = exp(−φ(t)Ωz)X(t),

evolve as
Ẏ = ((ω0 − ω)Ωz + ω1Ωx)Y = ωeff (cos θ(t) Ωz + sin θ(t) Ωy)Y, (31)
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where effective field strength ωeff =
√

(ω0 − ω(t))2 + ω2
1 and tan θ(t) = ω1

ω0−ω(t)
.

The three stages of the chirp excitation are understood in this frame.
The first rotation, I, arises as frequency of the chirp pulse ω is swept from a large

negative offset −A to ω−ω0 = −ω1 cot θ0 (1 < cot θ0 < 2, see below). As a result, the initial
magnetization follows the effective field and is transferred to





0
0
1



 →





sin θ0
0

cos θ0



 .

During the phase II of the pulse the frequency ω−ω0 is swept over the range [−ω1 cot θ0, ω1 cot θ0]
in time α

ω1
and for cot θ0 not very larger than 1, we can approximate the evolution in this

phase II as

∼ exp(

∫ α/ω1

0

(ω0 − ω)Ωz + ω1Ωx) dt = exp(αΩx).

This produces the evolution





sin θ0
0

cos θ0



 →





sin θ0
− cos θ0 sinα
cos θ0 cosα



 .

Finally, during phase III, the frequency is swept from ω1 cot θ0 to a large positive offset
A in time tf . This produces the transformation

exp(−
∫

ωeff(t) dt
︸ ︷︷ ︸

Φ(ω0)

Ωz) exp(θ0 Ωy)





sin θ0
− cos θ0 sinα
cos θ0 cosα



 . (32)

To see this, observe, given

Ẏ = ωeff (cos θ Ωz + sin θ Ωy)Y,

in the interaction frame of θ where Z = exp(−θ(t)Ωy)Y , we have,

Ż = (ωeffΩz − θ̇Ωy)Z.

If ωeff ≫ θ̇, which is true in phase III of the pulse, where a ≪ ω2
eff , as will be shown

below. Then in the interaction frame of W = exp(−
∫ t

0
ωeff(t) dt Ωz)Z, we average W (t) to

I. Therefore the evolution of the Bloch equation for the chirp pulse takes the form
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Y (tf ) = exp(θ(tf )Ωy)Z(tf )

= exp(θ(tf )Ωy) exp(

∫ tf

0

ωeff dt Ωz) exp(−θ(0)Ωy) Y (0)
︸ ︷︷ ︸

Z0

,

Y (tf ) = exp(π Ωy) exp(

∫

ωeff dt
︸ ︷︷ ︸

Φ(ω0)

Ωz) exp(−θ(0)Ωy)Y (0), (33)

where 0 marks beginning of phase III and θ(0) = π − θ0, and θ(tf ) = π. See Fig. 8 left
panel. Then this gives Eq. (32).

Now for this to be an excitation, the z coordinate should vanish, which means,

cos θ0 cosα

sin θ0
= tan θ0. (34)

tan2 θ0 = cosα. (35)

For example, when cot2 θ0 = 2, we have cosα = 1
2
, i.e, α = 1.0472. Thus phase II is

traversed in time αω−1
1 = 1.0472ω−1

1 . The frequency swept in this time is 2ω1 cot θ0 = 2ω1

√
2.

The sweep rate is a = 2
√
2

1.0472
ω2
1 = 2.7ω2

1. The smallest effective field in phase I and III is
ω2
eff = ω2

1(1 + cot2 θ0) = 3ω2
1 in phase I and III. Therefore, in phase I and III, we have

a ≤ ω2
eff and adiabatic approximation is valid. In nutshell sweep rate a = 2.7ω2

1.
For another example, when cot2 θ0 = 3, we have cosα = 1

3
, i.e, α = 1.23. Thus phase II

is traversed in time αω−1
1 = 1.23ω−1

1 . The frequency swept in this time is 2ω1 cot θ0 = 2ω1

√
3.

The sweep rate is a = 2
√
3

1.23
ω2
1 = 2.81ω2

1. The smallest effective field in phase I and III is
ω2
eff = ω2

1(1 + cot2 θ0) = 4ω2
1 in phase I and III. Therefore, in phase I and III, we have

a ≤ ω2
eff and adiabatic approximation is valid.

In remaining paper we take a = 2.7ω2
1. The chirp excitation doesn’t produce a uniform

excitation phase for all offsets.
To understand this refer to Figure 9, where offsets very from [−B,B] and we sweep

from [−A,A] at rate a. It takes T0 units of time to sweep from −A to −B and T1 units
of time to sweep from −B to A. Let T = T0 + T1 be total time. It takes t1 units of time
to sweep from ω(t) − ω0 = 0 to ω(t) − ω0 = ω1 cot θ0. Then the phase Φ accumulated in

Eq. 32 for the offset −B is Φ(−B) =
∫ T1

t1
ωeff(t) dt and for offset −B + ∆ω = −B + a∆ is

Φ(−B + a∆) =
∫ T1−∆

t1
ωeff(t) dt.

Note when (ω0 − ω(t)) ≫ ω1 , we approximate,

ωeff =
√

(ω0 − ω(t))2 + ω2
1 ∼ (ω0 − ω(t)) +

ω2
1

2(ω0 − ω(t))
.
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The difference of the phases is

∫ T1

T1−∆

ωeff(t) dt ∼
∫ T1

T1−∆

(at+
ω2
1

2at
) dt =

a

2
(T 2

1 − (T1 −∆)2) +
ω2
1

2a
ln

T1
T1 −∆

. (36)

=
a

2
(−∆2 + 2T1∆) +

ω2
1

2a
ln

T1
T1 −∆

. (37)

We can refocus this phase by following the chirp excitation pulse with a chirp π pulse at
twice the sweep rate 2a and rf-field strength ω2

2 ≫ 2a. To understand this, consider again
the Bloch equation

Ẋ = (ω0Ωz + ω2 cosφ Ωx + ω2 sinφ Ωy)X,

where the chirp frequency φ̇ = ω = −A+ 2at is swept from [−A,A].
In the interaction field of the chirp phase, φ(t), we have Y (t) = exp(−φ(t)Ωz)X(t), and

Ẏ = ((ω0 − ω)Ωz + ω2Ωx)Y = ωeff (cos θ Ωz + sin θ Ωy)Y,

where effective field strength ωeff =
√

(ω0 − ω(t))2 + ω2
2 and tan θ = ω2

ω0−ω
.

Now in interaction frame of θ where Z = exp(−θ(t)Ωy)Y , we have

Ż = (ωeffΩz − θ̇Ωy)Z.

If ωeff ≫ θ̇, which is true when rf-field strength ω2
2 ≫ 2a, in the interaction frame of

W = exp(−
∫ t

0
ωeff dt Ωz)Z, we average W (t) to I. Therefore the evolution of the Bloch

equation for the chirp pulse takes the form

X(t) = exp(φ(t) Ωz) exp(θ(t) Ωy) exp(

∫ t

0

ωeff dt

︸ ︷︷ ︸

Φ1(ω0)

Ωz)X(0), (38)

where φ(0) = φ(T ) = 0 and θ(0) = 0 and θ(T ) = π and now we can again evaluate
Φ1(−B)− Φ1(−B + a∆). Observe

17



Φ1(−B) =

∫ T0
2

0

√

(2at)2 + ω2
2 dt+

∫ T1
2

0

√

(2at)2 + ω2
2 dt.

Φ1(−B + a∆) =

∫ T0+∆

2

0

√

(2at)2 + ω2
2 dt+

∫ T1−∆

2

0

√

(2at)2 + ω2
2 dt.

Φ1(−B)− Φ1(−B + a∆) =

∫ T1
2

T1−∆

2

√

(2at)2 + ω2
2 dt−

∫ T0+∆

2

T0
2

√

(2at)2 + ω2
2 dt.

∫ T1
2

T1−∆

2

√

(2at)2 + ω2
2 dt ∼ a

4
(T 2

1 − (T1 −∆)2) +
ω2
2

4a
ln

T1
T1 −∆

.

Φ1(−B)− Φ1(−B + a∆) ∼ a

4
(−2∆2 + 2(T1 − T0)∆) +

ω2
2

4a
ln

T1T0
(T1 −∆)(T0 +∆)

.

Now if we combine the phase due to chirp excitation excitation pulse and the chirp π
pulse we get

{Φ1(−B + a∆)− Φ1(−B)} − {Φ(−B + a∆)− Φ(−B)} =
a(T1 + T0)∆

2
− ω2

2

4a
ln

T1T0
(T1 −∆)(T0 +∆)

+
ω2
1

2a
ln

T1
T1 −∆

.

If chirp π pulse is followed by free evolution for T
2
where T = T1 + T0, it refocuses the

phase a(T1+T0)∆
2

= T∆ω
2

. See Fig. 10A. The only phase dispersion that is left is

ω2
2

4a
ln

(T1 −∆)(T0 +∆)

T1T0
+
ω2
1

2a
ln

T1
T1 −∆

. (39)

For a∆ = 2B, the other extreme of the spectrum, the above expression simplifies to

ω2
1

2a
ln

1 + B
A

1− B
A

. (40)

As described before for a = 2.7ω2
1 and when B

A
≪ 1 say B

A
= 1/3, this dispersion is small

around 7◦.
The factor

ω2
2

4a
ln (T1−∆)(T0+∆)

T1T0
in Eq. (39) can be cancelled by introducing a π pulse of

amplitude ω2√
2
, and sweep rate a, following π

2
chirp pulse and then a delay of T

2
, and finally

the π pulse of amplitude ω2 and sweep rate 2a. See Fig. 10B. Then all phase dispersion
cancel except the one in Eq. (40). We can make this dispersion small by B

A
≪ 1.
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4 Coupling

Until now we talked about single spin 1
2
. How to excite them with rf-field. How to detect

them and read their frequencies. Now we talk about two spin coupled to each other, Like
two magnets talking to each other. To make this happen we first enter into few generalities.

Now as a general rule, we can have a quantum system A of dimension n1, which means
its state is a n1 dimensional complex vector evolving as

ψ̇ = −iHψ,
where H is a n1×n1 Hermitian matrix, such that ψ(t) = U(t)ψ(0) = exp(−iHt)ψ(0), where
−iH is skew Hermitian and U(t) ∈ SU(n).

If we have a quantum system A of dim n1 and a quantum system B of dim n2, then when
we bring the two systems together and make them interact, we get a a quantum system of
dim n1×n2, whose state is a complex vector in a vector space of size n1n2, spanned by a basis
of the form ei⊗fj where ei are basis for space A and fj are basis for space B. A state ψ that
can be written as ψa ⊗ ψb is called a separable state, else it has the form ψ =

∑

ij αijei ⊗ fj
and is called an entangled state.

The hamiltonian for the joint system

H =
∑

H i
a ⊗Hj

b ,

where H i
a are Hamiltonians for system A and Hj

b are Hamiltonians for system B. Hamil-
tonians of the form Ha ⊗ I and I ⊗Hb are called local Hamiltonians, beacuse if we have a
seprable space ψa ⊗ ψb and we evolve it under Ha ⊗ I, then

exp(−iHa ⊗ I) = exp(−iHa)⊗ I

and

exp(−iHa ⊗ I)ψa ⊗ ψb = (exp(−iHa)ψa)⊗ ψb

The Hamiltonian only evoves A part of the subsystem. Similarly

exp(−iI ⊗Hb)ψa ⊗ ψb = ψa ⊗ (exp(−iHb)ψb).

On the other hand if we have a Hamiltonian of the form Ha⊗Hb, we call it an interaction
Hamiltonian.

Then Hamiltonians for the joint system are of the general form

{Ha ⊗ I, I ⊗Hb, Ha ⊗Hb}.
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If we count dimensions there are n2
1 − 1 (traceless Hermitian) Hamiltonians of the form

Ha ⊗ I and n2
2 − 1 of form I ⊗ Hb and (n2

1 − 1)(n2
2 − 1) of form Ha ⊗ Hb and if we count

them all we get total of (n1n2)
2−1 which is indeed the dimension of Hamiltonians for a n1n2

dimensional space.
To make all this concrete consider again spin 1

2
. It state space is 2 dimensional complex

space with basis |0〉 =
[
1
0

]

and |1〉 =
[
0
1

]

. They are up-down states of spin. Like classical

bits, a spin 1
2
is called a quantum bit or qubit. However unlike a classical bit we can evolve

our spin and prepare a state

1√
2

[
1
1

]

=
1√
2
(|0〉+ |1〉).

This is called a superposition of 0 and 1. Now lets consider 2 spin 1
2
. Then the basis of our

state space are

|00〉 =

[
1
0

]

⊗
[
1
0

]

=







1
0
0
0







|01〉 =

[
1
0

]

⊗
[
0
1

]

=







0
1
0
0







|10〉 =

[
0
1

]

⊗
[
1
0

]

=







0
0
1
0







|11〉 =

[
0
1

]

⊗
[
0
1

]

=







0
0
0
1







Two spin 1
2
are called coupled qubits. The Hamiltonians for the coupled qubit system

are of the following kind

{ −iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz,

−iσx ⊗ σx,−iσx ⊗ σy,−iσx ⊗ σz,−iσy ⊗ σx,−iσy ⊗ σy,−iσy ⊗ σz,−iσz ⊗ σx,−iσz ⊗ σy,−iσz ⊗ σz}
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They ae 15 in all of these σα ⊗ I and I ⊗ σβ are local Hamiltonians and σα ⊗ σβ are
interaction Hamiltonians where α, β ∈ {x, y, z}.

Now suppose we start in the state |00〉 and evolve this state under Hamiltonian −iσx⊗ I
for time π then we get

exp(−iσy ⊗ Iπ)(

[
1
0

]

⊗
[
1
0

]

) = (exp(−iπσy)
[
1
0

]

)⊗
[
1
0

]

Now direct calculation shows that

exp(−iθσy) = cos
θ

2
I − 2i sin

θ

2
σy =

[
0 −1
1 0

]

Then

exp(−iσy ⊗ Iπ)(

[
1
0

]

⊗
[
1
0

]

) = (

[
0
1

]

⊗
[
1
0

]

) = |10〉

Thus by evolving the system under the given Hamiltonian we invert the state of the first
spin. We have built an inverter. This is like a inverter in boolean/computer circuits but now
done on a qubit. We say we have built an inverter gate.

Now in quantum mechanics we donot distinguish between state vector ψ and exp(iα)ψ,
they differ by a so called global phase and are considered state. Therefore, we can also invert
by

exp(−iσx ⊗ Iπ)(

[
1
0

]

⊗
[
1
0

]

) = (−i
[
0
1

]

⊗
[
1
0

]

) = −i|10〉

which is same as |10〉.
Now can we do something more interesting. Can we say evolve an Hamiltonian that will

swap the state of two spins. Such that

|10〉 → |01〉, |01〉 → |10〉
To do this we have to make the qubits interact using an interaction Hamiltonian.
Lets evolve under the hamiltonian

U = exp(−iπ(σx ⊗ σx + σy ⊗ σy))

σxσx + σyσy =
1

4
(

[
0 1
1 0

]

⊗
[
0 1
1 0

]

+

[
0 −i
i 0

]

⊗
[
0 −i
i 0

]

) =
1

2







0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0






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U =







1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1







Then

U |01〉 = U(

[
1
0

]

⊗
[
0
1

]

) = −i







0
0
1
0






= |10〉

U |10〉 = U(

[
0
1

]

⊗
[
1
0

]

) = −i







0
1
0
0






= |01〉

U |00〉 = |00〉
U |11〉 = |11〉

We have built a SWAP gate. Another interesting gate is so called C-NOT gate. It inverts
the state of the second qubit conditioned on the state of first qubit. If the state of first qubit
is 0 we don’t do anything else we invert.

|00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉
Let

U = exp(−iπ(I
2
− σz)⊗ σx) =







1 0 0 0
0 1 0 0
0 0 0 −i
0 0 −i 0







Then check we have built a CNOT gate.
Now we can generalize all this. We can have say n qubits. The state space is 2n dimen-

sional. The state

|000 . . . 0〉 =
[
1
0

]

⊗
[
1
0

]

⊗ · · · ⊗
[
1
0

]

is all qubits in state zero. We can evolve a Hamiltonian σx ⊗ I · · · ⊗ I, which is a
local Hamiltonian that will only evolve the first qubit. Similarly a hamiltonian of the form
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σx ⊗ σx ⊗ I · · · ⊗ I, will make first two qubits interact and do a two qubit operation. So we
can evolve Hamiltonians and do single qubit and two qubit operations. Now we can do any
Boolean operation on n qubits and we have built a quantum computer. We can do operations
as in classical computer but at the same time generate superpositions and do more powerful
things we cannot do in classical computers. This allows us to do things we cannot do on a
classical computer. Like we can factor very large integers in polynomial time. This is not
possible on classical computers else we will break all existing crypto-systems which rely on
the fact that it is hard to factor large integers.

Next we ask physically how do we get these Hamiltonians that we use to evolve our
system. We saw for a single spin, when we but the spin in a magnetic field we get the
evolution in Eq. (9), we then have our Hamiltonians, one drift H0 and two control H1 and
H2.

Interaction Hamiltonians arise because spins have magnetic moments and magnets in-
teract. For example two magnetic moments in space µ1 and µ2 have hamiltonian (energy)
as

H =
µ0

4πr3
(µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂))

where r is the distance between moments and r̂ is the unit vector connecting them.
Once again consider two qubits (spin 1

2
) and consider the evolution of the state vector ψ

as

ψ̇ = −i{u1 σx ⊗ I
︸ ︷︷ ︸

H1

+u2 σy ⊗ I
︸ ︷︷ ︸

H2

+u3 I ⊗ σx
︸ ︷︷ ︸

H3

+u4 I ⊗ σy
︸ ︷︷ ︸

H4

+J σz ⊗ σz
︸ ︷︷ ︸

H0

}ψ (41)

Observe ψ(t) = U(t)ψ(0) , where U(t) ∈ SU(4). Can we produce any unitary transformation
on ψ. This is same as asking, is my system

U̇ = −i{u1σx ⊗ I + u2σy ⊗ I + u3I ⊗ σx + u4I ⊗ σy + J σz ⊗ σz
︸ ︷︷ ︸

}U (42)

controllable. Observe we have four control Hamiltonians, which are local Hamiltonians. The
first two rotate qubit 1 and last two rotate qubit 2. The drift hamiltonian is a interaction
Hamiltonian and arises fron spin-spin interaction. The local Hamiltonians are produced by
applying magnetic fields to the spins. Now to answer controllability question we have to use
lie brackets.

By calculations like [−iσx ⊗ I,−iσy ⊗ I] = −iσz ⊗ I we can show that brackets of
H1, H2, H3, H4 generate all local Hamiltonians

{−iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz}
Now we can take brackets with drift and find we generate all the interaction generators,
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{−iσx⊗σx,−iσx⊗σy,−iσx⊗σz,−iσy⊗σx,−iσy⊗σy,−iσy⊗σz,−iσz⊗σx,−iσz⊗σy,−iσz⊗σz}

In taking Lie brackets we used the following identities

[A⊗ B,C ⊗D] = [A,C]⊗ BD + CA⊗ [B,D]

and

σxσy = −σyσx =
i

2
σz

σyσz = −σzσy =
i

2
σx

σzσx = −σxσz =
i

2
σy

For example,

[−iσz ⊗ σz,−iσx ⊗ I] = [−iσz,−iσx]⊗ σz + (−iσx − iσz)⊗ [σz, I] = −iσy ⊗ σz

[−iσz ⊗ σz,−iσx ⊗ σx] = [−iσz,−iσx]⊗ σzσx + (σxσz)⊗ [−iσz,−iσx] =
1

2
(σy ⊗ σy − σy ⊗ σy)

The Lie algebra g = su(4) is 15 dimensional and spanned by

g = {−iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz,

−iσx ⊗ σx,−iσx ⊗ σy,−iσx ⊗ σz,−iσy ⊗ σx,−iσy ⊗ σy,−iσy ⊗ σz,−iσz ⊗ σx,−iσz ⊗ σy,−iσz ⊗ σz}

This vector space g has two orthogonal subspaces

k = {−iσx ⊗ I,−iσy ⊗ I,−iσz ⊗ I,−iI ⊗ σx,−iI ⊗ σy,−iI ⊗ σz}
the local generators and the interaction generators

p = {−iσx⊗σx,−iσx⊗σy,−iσx⊗σz,−iσy⊗σx,−iσy⊗σy,−iσy⊗σz,−iσz⊗σx,−iσz⊗σy,−iσz⊗σz}

k is 6 dimensional and p is 9 dimesnional and in total 15 dimensions. You should check
that following commutations relations hold
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[k, k] ⊂ k, [p, k] ⊂ p, [p, p] ⊂ k (43)

In general decomposition of a Lie algebras g, into a direct sum of two vector subspaces

g = p⊕ k

such that Eqs. 43 are true, is called a Cartan decomposition.
Now coming back to Eq. 41, we have shown controllability. We can generate any U ∈

SU(4)
We introduce a notaion used in NMR literature.
Given two spins or qubits, we call the first one I and second one S. Then the hamiltonian
σx ⊗ I is written as Ix and I ⊗ σx as Sx and

σx ⊗ σx = (σx ⊗ I)(I ⊗ σx) = IxSx

In this notation

g = {−iIx,−iIy,−iIz,−iSx,−iSy,−iSz,

−iIxSx,−iIxSy,−iIxSz,−iIySx,−iIySy,−iIySz,−iIzSx,−iIzSy,−iIzSz}

4.1 Polarization Transfer

We talked about basic NMR experiment on spin 1
2
. It can be be done on spin 1H or 13C.

The experiment on 1H is more sensitive than 13C as it has larget γ and hence larger thermal
polarization. However if we have coupling between 1H and 13C then we can transfer polar-
ization from 1H to 13C. To undertand what we mean. Suppose we start with a sample with
all 1H in state |0〉 and half of 13C in state |0〉 and remaining in half of 13C in state |1〉. This
approximates the case where 1H are highly poalrized and 13C are poorly polarized. Then
half of my ensemble is |00〉 and half in |01〉. If we have coupling between the spins the first
do a CNOT gate based on 13C, that makes the ensemble half |00〉 and half |11〉. Now do
a CNOT gate based on 1H, that makes the ensemble half |00〉 and half |10〉. See what we
have achieved is we have an ensemble where all 13C are polarized while 1H is unpolarized.
This way we have been able to transfer Polarization from 1H to 13C and then can do a much
sensitive detection of 13C.

4.2 Coherence Transfer and 2D NMR

We talked about chemical shifts and how using an NMR experiment when we observe fid
whose Fourier transform gives location of frequencies present and hence chemical shifts. In
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a big molecule when we do experiment on 1H we can have many many chemical shifts and
peaks in fourier transform have finite widths due to decaying nature of FID then these peaks
overlap and we cannot resolve the frequencies. Fig. A shows molecule with few chemical
shifts well separated and easily resolved. Fig. B shows molecule with many chemical shifts
overlapping and not easily resolved.

How do we resolve these overlapping chemical shifts. We again make use of coupling
between the spins. Agin think we have 1H coupled to 13C. When we do a experiment on 1H
then we measure the frequency ωH . Now suppose we do an experiment where we measure the
pair (ωH , ωC). Then when we plot all (ωH , ωC) in two dimensions. This has more resolution
as everythings gets spread out in 2D comapred to crowded 1D. Then the challenge is how to
generate the joint frquency information (ωH , ωC). The basic idea istems from the polarization
transfer experiment. We transfer polarization from 1H to 13C but we arranhe matters so that
the polarization of 1H is propotional to cosωHt1 where ωH is the frequency of interest and t1
is an auxillary time variable. After this we can do a standard experiment on 13C and detect
a signal of the form M(0) cosωCt2, where now M(0) ∝ cosωHt1 and t2 is real time. Then
we have a signal of the form cosωHt1 cosωCt2 where we can repeat this experiment many
times by incrementing t1 and build a genuine 2D signal s(t1, t2) = cosωHt1 cosωCt2 whose
2D fourier transforms gives peaks at (ωH , ωC).

Now how do we arrange matters so that the polarization of 1H is propotional to cosωHt1.
lets say we start with 1H, with all spins |0〉 when we give a π

2
pulse we create the state 1√

2
(|0〉+

|1〉). Then it evolves under natural precession (chemical shifts) to 1√
2
(exp(−j ωH

2
t1)|0〉 +

exp(j ωH

2
t1)|1〉) which can be written as

cos
ωH
2

t1√
2

(|0〉+ |1〉)+ i sin
ωH
2

t1√
2

(|0〉− |1〉). We again give

a π
2
pulse we create the state cos ωH

2
t1|0〉 + i

sin
ωH
2

t1√
2

(|0〉 − |1〉). The resulting polarization

cos2 ωH t1
2

= 1
2
(1 + cosωHt1) is the polarization that is then transferred. The remianing part

has no polarization.

5 Decoupling

In 2D NMR experiment when we let spins evlove we donot want coupling between the spins
to be active. Therefore we have to decouple the spins. This is done with a decoupling pulse
sequence. Suppose we want to evolve spin I. Given the Hamiltonian

H = ωIIz + ωSSz + JIzSz
︸ ︷︷ ︸

Ho

+A(t)(Ix + Sx)

Then since |ωI − ωS| ≫ A≫ J , we can produce evolution exp(−iπSx), then

exp(−iH0
∆t

2
) exp(−iπSx) exp(−iH0

∆t

2
) exp(iπSx) = exp(−iωIIz∆t).
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6 Problems

1. Consider the Bloch Eq.

Ẋ = (ω0Ωz + uΩx + vΩy)X,

Simulate the evolution with on-resonance control (u, v) = A(cosω0t, sinω0t), with A =

1, ω0 = 105 and X(0) =





0
0
1



. Simulate for time T = π
2
and T = π and plot

trajectories. Repeat with a constant control (u, v) = A(1, 0).

2. Consider the Bloch Eq.

Ẋ = (ω0Ωz + uΩx)X,

Simulate the evolution with on-resonance control u = A cosω0t, with A = 1, ω0 = 105

and X(0) =





0
0
1



. Simulate for time T = π and T = 2π and plot trajectories. Repeat

with a constant control u = A.

3. Consider the Bloch Eq.

Ẋ = (ωΩz + A cosφ(t)Ωx + A sinφ(t)Ωy)X,

Simulate the adabatic inversion with A = 1, ω ∈ [−5, 5] by sweeping from [−15, 15]
with a = 1

30
≤ A2 = 1. Plot X3(ω) for ω ∈ [−5, 5].

4. Consider the Bloch Eq.

Ẋ = (ωΩz + A cosφ(t)Ωx + A sinφ(t)Ωy)X,

Simulate the adabatic inversion with A = 1, ω ∈ [−5, 5] by sweeping from [−6, 6] with
tapered ends and a = 1

30
≤ A2 = 1. Plot X3(ω) for ω ∈ [−5, 5].

5. Consider the Bloch Eq.

Ẋ = (ωΩz + A cosφ(t)Ωx + A sinφ(t)Ωy)X,

Implement broadband excitation pulse using method of double sweep with A = 1,
ω ∈ [−3, 3]. Plot X2(ω) for ω ∈ [−3, 3].
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6. Consider the Bloch Eq.

Ẋ = (ωΩz + A cosφ(t)Ωx + A sinφ(t)Ωy)X,

with A = 1, ω ∈ [−3, 3], implement band-selective excitation pulse using with exci-
tation in range [−.5, .5] using method of double sweep with A = 1, ω ∈ [−3, 3]. Plot
X2(ω) for ω ∈ [−3, 3].

7. Consider the Bloch Eq.

Ẋ = (ωΩz + A cosφ(t)Ωx + A sinφ(t)Ωy)X,

Implement chirp excitation with A = 1, ω ∈ [−50, 50] with one refocusing (the two
pulse sequence). Plot X1(ω) and X2(ω) for ω ∈ [−50, 50].

8. Consider the Bloch Eq.

Ẋ = (ωΩz + A cosφ(t)Ωx + A sinφ(t)Ωy)X,

Implement chirp excitation with A = 1, ω ∈ [−50, 50] with double refocusing (the
three pulse sequence). Plot X1(ω) and X2(ω) for ω ∈ [−50, 50].

9. Consider the coupling hamiltonian of two spin system

H = ωIIz + ωSSz + JIzSz + A(t)(Ix + Sx)

with ωI = 105 and ωS = 2× 105 and J = 10−3 and A = 1, design a pulse sequence to
implement a CNOT gate based on spin I. Simulate starting from initial state |01〉.

10. In above implement polarization transfer from I to S. Simulate starting from initial
states |01〉. and |00〉.
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Figure 6: Fig. A shows the simulations of excitation profile (the −y cordinate of Bloch
vector) for the basic excitation pulse in Eq. (24) with peak amplitude A = 1

2
. Fig. B shows

the simulations of excitation profile for the excitation pulse in Eq. (26) with peak amplitude
A = 1

4
. Fig. C shows the simulations of excitation profile for the basic excitation pulse in

Eq. (27) with n = 3, with peak amplitude A = 1
6
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Figure 7: Fig. A shows the simulations of the y to z rotation profile (the z cordinate of
Bloch vector) for the broadband x rotation pulse in Eq. (28) with peak amplitude A = 1

2
.

Fig. B shows the simulations of the rotation profile for the broadband x rotation pulse in
Eq. (29) with peak amplitude A = 1

4
. Fig. C shows the simulations of the rotation profile

for the broadband x rotation pulse in Eq. (30) with n = 3, with peak amplitude A = 1
6
.
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Figure 8: The left panel shows the effective field for the chirp excitation. The effective field
starts along z axis and after phase I is rotated by θ0. After phase II, it makes angle of θ0
with −z axis and finally at end of phase III ends up at the −z axis. The right panel shows
how magnetization initially along z axis evolves in three stages in frame of phase φ(t) as in
Eq. (31). It is rotated along y axis in phase I by angle θ0 and then along x axis by angle α
in phase II and finally along y axis by θ0 in phase III.

T T

∆

0 1

−B B−A A

Figure 9: The figure shows the offsets in range [−B,B] and the sweep of chirp from [−A,A].
T1 is the time it takes to sweep from −B to A and T0 is the time to sweep from −A to −B.
Also shown is a offset that takes ∆ time to reach from −B, at sweep rate a.
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Figure 10: Fig. A shows the pulse sequence with a π
2
excitation pulse of duration T followed

by a π inversion pulse of duration T
2
at twice the sweep rate and finally a free evolution for

time T
2
. Fig. B shows the pulse sequence with a π

2
excitation pulse of duration T followed

by a π inversion pulse of duration T both at same sweep rate and finally a free evolution for
time T

2
followed by a π inversion pulse of duration T

2
at twice the chirp rate. The ratio of

amplitude of last π pulse to center π pulse is
√
2.
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A B

Figure 11: Fig. A shows spectrum of a molecule with few chemical shifts well separated and
easily resolved. Fig. B shows molecule with many chemical shifts overlapping and not easily
resolved.

ω

ωC

H

Figure 12: Fig. shows a 2D spectrum with joint frequency (ωH , ωC). See peaks are well
resolved as there is more room/space.
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