
Chapter3: Quantum Control and
Solid State Physics

1 Free Electrons

The free electron wavefunction is ψ = exp(ikx). The momentum is ~

i
∂
∂x
. This gives the

kinetic energy ǫ = p2

2m
= ~2k2

2m
, which for ǫ = ~ω gives,

ω(k) =
~k2

2m
. (1)

The dispersion is a parabola as shown below in figure 1 A.
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Figure 1: Figure A shows the dispersion ω(k) vs k for a free electron. Figure B shows a
wavepacket centered at k0.

Now, consider a wavepacket centered at k0, shown the figure 1 A, B. The packet takes
the form

φ(x) =
1√
N

∑

j

exp(ikjx), φ(x, t) =
1√
N

∑

j

exp(−iω(kj)t) exp(ikjx), (2)

where ω(kj) = ω(k0) + ω′(k0)∆kj where ∆kj = kj − k0. Denote vg = ω′(k0) =
~k0
m
, as the

group velocity. Then

φ(x, t) =
1√
N

exp(i(k0x− ω(k0)t))
∑

j

exp(i∆kj(x− vgt)). (3)

The function f(x) = 1√
N

∑

j exp(i∆kjx) =
2√
N

∑

j cos(∆kjx), is centered at origin with

width ∝ (∆k)−1 as shown in figure 1 B. Then
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|φ(x, t)| = |f(x− vgt)|, (4)

the free electron wavepacket moves with a group velocity vg.
Now lets apply an electrical field E in the x direction at t = 0. Then the Schröedinger

equation is

i~
∂ψ

∂t
=

1

2m
(−i~ ∂

∂x
)2 + eEx ψ. (5)

The equation is satisfied by time varying wavevectors exp(ik(t)x), where k(t) = k − eEt
~
,

with energy (dispersion) ω(k(t)) = ~(k(t))2

2m
=

~(k− eEt
~

)2

2m
, so that the wavefunction becomes

exp(−i
∫ t

0

ω(k(τ)) dτ) exp(ik(t)x).

The initial wavepacket φ(x) evolves to φ(x, t), where,

φ(x) =
1√
N

∑

j

exp(ikjx), φ(x, t) =
1√
N

∑

j

exp(−i
∫ t

0

ω(kj(τ))dτ) exp(ikj(t)x). (6)

The group velocity

vg(t) =
~k(t)

m
=

~(k − eEt
~
)

m
;
dvg(t)

dt
= −eE

m
. (7)

The electron wavepacket simply accelerates the way we know from classical mechanics.
Being more pedagogical, we have

φ(x, t) =
1√
N

∑

j

exp(−i
∫ t

0

ω(kj(t)) ) exp(ikj(t)x)

=
1√
N

exp(−i
∫ t

0

ω(k0(t)) ) exp(ik0(t)x)
∑

j

exp(i∆kj(x−
∫ t

0

vg(σ)dσ)). (8)

The wavepacket evolves with instantaneous velocity vg(t).
The above method can be generalized to arbitrary potential. Consider the Schröedinger

equation

i~
∂ψ

∂t
= (− ~

2

2m

∂

∂x2
− eV (x))ψ. (9)
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Figure 2: Figure shows linear approximation of potential V (x). The wavepacket φ(x) is
confined to a cell.

We approximate the potential V by piecewise linear potential such that V (x) = V (xi) +
V ′(xi)δx, where δx = x − xi, as shown in figure 2. We call these regions of linearized
potential, cells. We can rewrite the potential in a cell as V (x) = U(xi) + V ′(xi)x

We assume that the wavepacket has large k0 such that ∆k ∼
√
k0 is large and therefore

for the wavepacket, ∆x ∼ (∆k)−1 is small so that it fits well within one cell. Then in this
cell, the Schröedinger equation takes the form

i~
∂ψ

∂t
= (− ~

2

2m

∂

∂x2
− eV ′(xi)x− eU(xi))ψ. (10)

Since the wavepacket is confined to a cell, it evolution would be same if the potential we
have was not only true in the cell but globally true. This is because the wavepacket doesn’t
know what the potential is outside the cell, its confined to the cell. Then lets solve the
Schröedinger equation with this potential assumed globally true and see how wavepacket
evolves.

Then as before for the Schröedinger equation is solved by wavevector ψ = exp(ik(t)x).
Let x(t) denote coordinates of center of wavepacket, then

k(t) = k +
e
∫ t

0
V ′(x(τ))dτ

~
, ω(k(t)) =

~(k +
e
∫ t

0 V ′(x(τ))dτ

~
)2

2m
− e

∫ t

0
U(x(τ))dτ

~
. (11)

The group velocity

vg(t) =
~(k +

e
∫ t

0 V ′(x(τ))dτ

~
)

m
;
dvg(t)

dt
=
eV ′(x(t))

m
. (12)

This is classical mechanics. Therefore at high energies where k0 is large and wavepacket
is well confined, i.e., over the packet width, the second order change of potential is small,
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V ′′(x)∆x≪ V ′(x). A linearized potential is a good approximation and evolution in quantum
mechanics mimics classical mechanics.

2 Electrons in Periodic Potential

We now turn to electrons in a periodic potential created by periodic arrangement of ions in
crystal/solid. Once again to ease exposition, we first analyze everything in in one dimension.

Consider a periodic potential with period a.

U(x) =
n∑

l=1

V (x− al) =
∑

V (x− la).

where

V (x) = 2V0 cos
2(
πx

a
),

−a
2

≤ x ≤ a

2
(13)

= 0 |x| ≥ a

2
. (14)

The potential is shown below in Fig. 3.

a

Figure 3: Figure depicts the periodic potential in Eq. (13).

How does the wavepacket evolve in this potential. This potential is rapidly varying on
length sacels of a. To treat the particle classically, the packet width should be confined to
∆x ∼ a. This gives ∆k = a−1. This means that packet should have k0 ≫ a−1. However
if we think of lattice of length L = na lattice points, we have wavevectors kj = 2πj

L
= 2πj

na
,

for j = 0, ·, n. In each lattice site we have one electron, so if we start filling our kj, we fill
all kj between −

[
π
a
, π
a

]
. We have filled energy levels according to minimum energy. Infact

we can fill two electrons in every kj, so that we fill all kj between −
[

π
2a
, π
2a

]
. Then our

k0 ∈ −
[

π
2a
, π
2a

]
. Then its not true k0 ≫ a−1. Therefore when we treat electrons in lattice

potential of ions the potential varies quite rapidly and it is not correct to treat the problem
classically. We have to treat the problem quantum mechanically. Let see how we do this.
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Let a be the lattice constant such that periodic potential V (x) = V (x + a). We can
Fourier decompose

V (x) =
∑

k

Vk exp(ikx). V−k = V ∗
k .

For example when V (x) is as in Eq. (13), we have

V (x) = V0(1 + exp(i
2π

a
) + exp(−i2π

a
))

what does this potential do. It couples wavevectors k ± 2πm
a
. Then suppose we have a

wavefunction of the form

φ(x) =
∑

m

bm exp(i(k +
2πm

a
)x)

then we can write the Schröedinger equaion as

d

dt










...
b−1

b0
b1
...










= −iH










...
b−1

b0
b1
...










,

where,

H =












. . . . . . . . . . . . . . .

0
~
2(k+ 2π

a
)2

2m
+ V0 V0 . . . 0

0 V0
~
2k2

2m
+ V0 V0 0

0 0 V0
~
2(k− 2π

a
)2

2m
+ V0 V0

0 . . . . . . . . .
. . .












. (15)

The V0 on the diagonal is just a phase factor, we can remove it to get

H =












. . . . . . . . . . . . . . .

0
~
2(k+ 2π

a
)2

2m
V0 . . . 0

0 V0
~2k2

2m
V0 0

0 0 V0
~
2(k− 2π

a
)2

2m
V0

0 . . . . . . . . .
. . .












. (16)

The eigenfunctions of the Bloch electrons take the general form
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ψk(x) = exp(ikx)uk,n(x),

where k is the crystal momentum lying in range −π
a

≤ k ≤ π
a
, uk,n(x + a) = uk,n(x) is the

periodic part of the wavefunction and n is the band index. We have

uk,n(x) =
∑

k

bk exp(−i
2πkx

a
)

The corresponding energies ωk,n are eigenvalues of the system Hamiltonian

H =












. . . . . . . . . . . . . . .

0
~
2(k+ 2π

a
)2

2m
+ V0 V0 . . . 0

0 V0
~
2k2

2m
+ V0 V0 0

0 0 V0
~
2(k− 2π

a
)2

2m
+ V0 V0

0 . . . . . . . . .
. . .












. (17)

which for different l, couples free electron states exp(i(k+ 2πl
a
)), with the periodic potential.

If (. . . , b1, b0, b−1, . . . )
′ is the eigenvector of H in Eq. (17) corresponding to energy ǫk,n =

~ωk,n, then

uk,n(x) =
∑

l

bl exp(i
2πl

a
x); ψk,n(x) =

∑

l

bl exp(i(k +
2πl

a
)x).

H =












. . . . . . . . . . . . . . .

0
~2(k+ 2π

a
)2

2m
V0 . . . 0

0 V0
~2k2

2m
V0 0

0 0 V0
~2(k− 2π

a
)2

2m
V0

0 . . . . . . . . .
. . .












. (18)

Let us focus on a two by two block as shown below. For k ∈ [0, π
a
], the remaining matrix

in Eq. (17) can be taken to be diagonal as offdiagonal entries are truncated.

H =

[
~2k2

2m
V0

V0
~
2(k− 2π

a
)2

2m

]

. (19)

In fig. (4), we sketch ω(k) as function of k (right half).
The eigenevalues of (19) can be written in closed form. For

H =

[
µ1 V0
V0 µ2

]

, (20)
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(k)ω

π/aπ/a− k

Figure 4: Figure depicts the ebergy ωk as function of k for periodic potential in Eq. (??).

we have the eigenevalues

µ1 + µ2

2
±

√

(
µ1 − µ2

2
)2 + V 2

0 .

At k = π
a
, we have µ1 = µ2 and the difference of eigenvalues is called the band gap.

For k ∈ [−π
a
, 0], we focus on the following subblock of Eq. (17).

H =

[
~
2k2

2m
V0

V0
~
2(k+ 2π

a
)2

2m

]

. (21)

This helps us sketch ω(k) as function of k (left half).
We now consider when only n = 0 is populated, we suppress band index from now with

n = 0 implied. Now consider a wavepacket around k = k0 written as

φ(x) =
1√
N

∑

j

ψkj(x) =
1√
N
u(x)

∑

j

exp(ikjx),

where uk(x) for k around k0 are approximated to be same u(x). Then this wavepacket evolves
as

φ(x, t) =
u(x)√
N

∑

j

exp(−iω(kj)t) exp(ikjx)

=
u(x)√
N

exp(−iω(k0)t) exp(ik0x)
∑

j

exp(i∆kj(x− vgt)).
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where vg =
dω
dk
|k0 . The wavepacket evolves with velocity vg.

Now lets analyze the evolution of the wavepacket in the presence of an electric field E,
say in x direction. We again introduce time varying k(t) with

k(t) = k +
eA(t)

~
, A(t) = −Et.

then

H(t) =












. . . . . . . . . . . . . . .

0
~
2(k+ 2π

a
+

eA(t)
~

)2

2m
+ V0 V1 . . . 0

0 V−1
~
2(k+

eA(t)
~

)2

2m
+ V0 V1 0

0 0 V−1
~
2(k− 2π

a
+

eA(t)
~

)2

2m
+ V0 V1

0 . . . . . . . . .
. . .












. (22)

Then observe
ωk,n(t) = ω

k+
eA(t)

~
,n
= ωk− eEt

~
,n. (23)

This is how energies of H(t) change when we apply electric field. To solve for time varying
Schröedinger equation we have to realize that for moderate E, the change of H(t) is adiabatic
and hence we really just follow the eigenvectors of H(t). To see how this adiabatic following
works, say at t = 0, we are in the ground state say X(0) (note X(0) = (. . . , a1, a0, a−1, . . . )

′,
where ψk(x) =

∑

l al exp(i(k +
2πl
a
)x).) then X(t) satisfies the Schröedinger equation

Ẋ =
−i
~
H(t)X.

Lets diagnolize H(t) as

H(t) = Θ(t)Λ(t)Θ′(t),

where Θ(t) is matrix of eigenvectors and Λ(t) eigenvalues. Let us assume that V−l = Vl
in Eq. (22), that is to say periodic potential is symmetric around origin. Then H(t) is
symmetric and Θ(t) a real rotation matrix. As we will see, this will ensure we don’t have
any geometric phases in our adiabatic evolution. Then we have Θ̇(t) = Ω(t)Θ, where Ω(t) is
a skew symmetric matrix and we get for Y (t) = Θ′(t)X(t),

Ẏ = (
−i
~








λ1 0 0 0
0 λ2 0 0
... . . .

. . .
...

0 0 0 λn







+Θ′Ω(t)Θ
︸ ︷︷ ︸

Ω̄

)Y. (24)
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where λ1 is the smallest eigenvalue and so on. Note Y (0) = (1, 0, . . . , 0)′.
Now there is a gap between the lowest eigenvalue and higher eigenvalues which is atleast

the band gap in range of eV. Ω̄1j(t) are comparatively small as we will show in following,
and therefore they average out and Y (t) simply evolves at Y (t) = exp(− i

~

∫
λ1(σ))Y (0) =

exp(−i
∫
ωk(σ))Y (0) and we get that we just adiabatically follow the eigenvector of H to get

ψ(t) = exp(−i
∫

ωk(σ)dσ)ψk+
eA(t)

~

= exp(−i
∫

ωk− eEσ
~

dσ)uk− eEt
~

(x) exp(ik(t)x).

To estimate how big are elements Ω̄1j(t), observe

Ḣ = Θ(t)Λ̇(t)Θ′(t) + [Ω, H]

Θ′(t)ḢΘ(t) = Λ̇(t) + [Ω̄,Λ]

‖[Ω̄,Λ]‖ ≤ ‖Θ′(t)ḢΘ(t)‖ = ‖Ḣ‖.

Let Ω̄∗(t) = max{Ω̄1j(t)}, then we have

(λ1 − λ2)Ω̄∗(t) ≤ ‖[Ω̄,Λ]‖ ≤ ‖Ḣ‖. (25)

Note we truncate H in Eq. (17) to finite size, because when l on diagonal terms of H
become large the corresponding offdiagonals are rapidly truncated and in computing the
ground state the submatrix with few small l suffices. Usually n = 10 is appropriate when Vl
are of order eV .

When we compute Ḣ we only have terms on diagonal and they are of the form

eE~

m
(k +

eA(t)

~
),

then

‖Ḣ‖ =
eE√
m

√
√
√
√

∑

l

~2(k + 2πl
a

+ eA(t)
~

)2

m
=

eE√
m

√

2tr(H̄). (26)

where H̄ is just H without V0 on the diagonal. Then Ω̄∗(t) from Eq. (25) satisfies ,

~Ω̄∗(t) ≤
~eE√

m(λ1 − λ2)

√

2tr(H̄). (27)

Observe (λ1 − λ2) is few eV and tr(H̄) is also tens of eV , but for field say E = 10V/m, the
term
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~eE√
m

∼ 10−33 × 10−18

10−15
= 10−36.

~eE√
m(λ1 − λ2)

√

tr(H̄) = 10−36/
√
10−18 = 10−27J = 10−8eV.

Now we observe that (λ1 − λ2) is of order eV while ~Ω̄∗(t) is of order 10−8eV , then in
Eq. (24), we have elements Ω̄1l average out, giving us a pure adiabatic evolution.

It should be noted that in the equation

ωk(t) = ωk− eEt
~

.

we treat k − eEt
~

in reduced Brillouin zone i.e, for b > 0, k − eEt
~

= π
a
+ b is reduced to

−π
a
+ b ∈ [−π

a
, π
a
].

Now lets envisage a situation where we turn on a electric field in a conductor for some
time τ and switch it off. Then A(t) = −

∫ t

0
E(τ)dτ rises from 0 to a steady value A. This can

be achieved as shown below in figure 5, where a conducting loop is pierced by a solenoid of
area ar. When current in the solenoid is turned on from 0 to a steady state value, that creates
a magnetic field B(t) which goes from 0 to a steady state value B and hence establishes a
transient electric field in the conducting loop and finally results in a steady A in the loop
such that

A =
Bar
2πr

.

Then the electron wavefunction ψk = exp(ikx)uk(x) is adiabatically transformed to
exp(i(k + eA

~
)x)uk+ eA

~

(x). The initial wavepacket

φ(x) = 1√
N
uk0(x)

∑

j exp(kjx) is adiabatically transformed to

φ(x) =
1√
N
uk0+ eA

~

(x)
∑

j

exp((kj +
eA

~
)x).

If initially the wavepacket was moving with a group velocity vg = dω(k)
dk

|k0 , now it moves

with a group velocity vg = dω(k)
dk

|k0+ eA
~

. This is shown in Fig. 6, where E(t) is transiently

turned on and off and A(t) reaches a steady state value A. The figure shows how A in the
conducting loop shifts the energy of a wavepacket and thereby changes the group velocity
and hence accelerates the wavepacket. Lets estimate the shift eA

~
for the example we have.

Suppose solenoid has N = 10 turns per c.m. and carries a final current of I = 1 milli
Ampere. Then it establishes a B field of B = µ0NI. Let r be .1 m and ar = 1 cm2. Then
we have eA

~
= 104m−1. At half filling k0 =

π
2a
, with a = 1A◦, k0 ∼ 1010m−1 and is displaced

.0001% by electric field.
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B

E

A

r

Figure 5: Fig. shows a solenoid inside a loop conductor. As current in solenoid is turned on
a magnetic field B is established inside the solenoid, which creates a E in the loop that rises
and decays and A that goes from 0 to a steady state value.

n=1

n=0

a

− ππ/2a /2a

t t

E(t)
A(t)

k

(k)ω

Figure 6: Bottom figure shows how application of current in solenoid in Fig. 5 establishes
a transient E and A in the conducting loop which shifts the energy of a wavepacket and
thereby changes the group velocity and hence accelerates the wavepacket as in top figure.
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We can now understand conduction in solids. Consider a half filled band in a conductor
(say the conducting loop in above example) as shown in the figure 7a. There is no net
velocity of electrons. There are as many wavepackets moving in the positive direction as
negative direction. While the wavepacket centered at k0 has group velocity vg = dω

dk
|k0 ,

there is a wavepacket at −k0 with group velocity −vg. There is no net current, though
electrons are itenerant. Now say we apply a transient electric field as in solenoid example
above which shifts the energy ωk → ωk+ eA

~

. Then we reach a configuration as shown in Fig.

7b. Then we see we have excess of wavepackets with positive vg. In the solenoid example
we calculated the excess to be around .0001%. This gives net conduction and current.
Therefore half filled bands conduct. Now imagine a insulator where band is completely
filled, then all k ∈ [−π

a
, π
a
] are occupied. After application of E we have ωk → ωk+ eA

~

, but

because we are in the reduced Brillouin zone, nothing happens, as all energies are simply
shifted, the energy of one wavepacket takes the value of another and so on. Although
individual wavepackets are accelerated and deaccelerated the sum total of velocities is still
zero. It is a common understanding that in a insulator all k′s are filled so electric field
cannot accelerate a wavepacket and everything is stuck. In our picture, wavepackets are
accelerated/deaccelerated but sum total of vg of all the wavepackets remains zero.

n=1

n=0

n=1

n=0

E

a b
− −ππ π π/2a /2a /2a /2a

k

(k)ω

Figure 7: Fig. a shows a half filled band. Fig. b shows how by application of electric field,
the energies are shifted.

In an insulator as the electron wavefunction ψk = exp(ikx)uk(x) is adiabatically trans-
formed to exp(i(k + eA

~
)x)uk+ eA

~

(x), when k + eA
~
> π

a
, then putting it back in reduced

Brillouin zone let k + eA
~

= 2π
a
− k′, with k′ ∈ [−π

a
, π
a
], then observe uk+ eA

~

(x) really means

exp(−i2π
a
x)u−k′(x).

Now in presence of an electric field we have,

12



ωk(t) = ωk− eEt
~

. (28)

Then the group velocity satisfies,

vg(t) =
dωk− eEt

~

dk
, (29)

dvg(t)

dt
=

d

dk

dωk− eEt
~

dt
=
d2ωk− eEt

~

dk2
eE

~
= ~

−2
d2ǫk− eEt

~

dk2
eE = − 1

m∗ eE, (30)

where m∗ = ~
2(

d2ǫ
k+ eEt

~

dk2
)−1 is the effective mass.

For pedagogical reasons we have restricted to 1D , we can easily generalize the above
to 3D. Let ∇′ be gradient written as a column vector and ∇ be gradient written as a row
vector. Writing vg as column 3 vector,

vg(t) = ∇′
kωk+ eEt

~

, (31)

dvg(t)

dt
= ∇′

k

dωk− eEt
~

dt
= ∇′

k∇kωk− eEt
~

eE

~
= ~

−2∇′
k∇kǫk− eEt

~

eE = − 1

m∗ eE, (32)

where m∗ = ~
2(∇′

k∇kǫk+ eEt
~

)−1 is the effective mass matrix.

We have studied the acceleration of the wavepacket in presence of electric field. We may
easily generalize it to a magnetic field Bẑ in the ẑ direction. We just note that

vg(t) = ∇′
kωk(t). (33)

dvg(t)

dt
= ∇′

k

dωk(t)

dt
= ∇′

k∇kωk(t)k̇(t) = ~
−1∇′

k∇kǫk(t)k̇ =
~

m∗ k̇. (34)

Then we get,

dvg
dt

= − e

m
vg ×B. (35)

Thus we derived wavepacket dynamics of an electron in periodic potential. Of course,
the whole treatment in this paper is in the absence of a resistance. The wavepacket in reality
scatters of phonons and impurites. The present paper only details the dynamics of electron
wavepacket between collisions with lattice.
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Figure 8: Fig. shows a 3D lattice made from periodic arrangement of positively charged
ions.

3 Periodic potential in three dimensions: real solids

In last section, we studied one dimensional periodic lattices, and showed how electron energies
get organized as bands, where each band is made up of block vectors with their wavevector
taking on values between [−π

a
, −π

a
]. All this can be generalized to three dimensions. We can

talk about plain wave states exp(−i(kxx+ kyy + kzz)), which we abbreviate (kx, ky, kz), for
the electrons and how periodic potential couples them. For example periodic potential can
be simplified to

V (x, y, z) = V0 cos
2(
πx

a
) cos2(

πy

a
) cos2(

πz

a
) (36)

which is a periodic potential in three dimensions, with period a. The potential will couple
plain wave states (kx ± 2πl

a
, ky ± 2πm

a
, kz ± 2πn

a
). Let

E(kx, ky, kz) =
~
2(k2x + k2y + k2z)

2m
,

Then for each (kx, ky, kz), we can form the matrix

14



H =










. . . . . . . . . . . . . . .
0 E(kx +

2π
a
, ky, kz) V0 . . . 0

0 V0 E(kx, ky, kz) V0 0
0 0 V0 E(kx − 2π

a
, ky, kz) V0

0 . . . . . . . . .
. . .










. (37)

when we diagonalize this matrix, we get the energies ǫn(kx, ky, kz), where n indices the various
bands. The corresponding eigenvectors are

un(kx, ky, kz) =
∑

lmn

blmn(kx ±
2πl

a
, ky ±

2πm

a
, kz ±

2πn

a
).

we do it for all −π
a
≤ kx, ky, kzleq

π
a
and obtain energy bands. Fig. 10 shows energybands for

periodic lattice in two dimensions.
In this approach, we have outlined, we treat the lattice as periodic potential and solve

for electron energies and wavefunctions. There is nothing wrong with this approach, and it
is most natural yet there is a shortcoming to it. We have neglected completely the screening
of ion charge due to electrons. Therefore the energies we get are much lower than what
we will obtain if we accounted for screening/repulsion due to electronic charge. Therefore
our eigenvectors and energies do not reflect the true ground states. How do we get true
electron energies and wavevectors, taking into acount the effect of electron screening. There
is approximate mathod for doing this it is called the tight binding approximation.

4 Tight Binding Approximation

The basic idea is as follows. Consider a periodic array of say hydrogen atoms. If we take
an isolated hydrogen atom then the electron around its nucleus orgainizes as orbitals with
energies ǫk. Now suppose we bring hydrogen atoms together, as long as they are far nothing
changes, as each hydrogen atom has its own electron and they are isolated because electron
of one hydrogen atom sees no potential due to another becacuse the electron in the other
atom screens its charge. Then if we have a array of isolated hydrogen atoms, well separated
then the enrgies and eigenevectors are as for individual ones. But now suppose we bring the
atoms further close so that electron of atom A enters the electron clound of electron B. Then
the electron of atom A will begin to also see some potential due to ion B, as its charge is
not fully screened and this will modify the wavefunction and energies of electron A.

Let us call the potentials of ions VA and VB and the wavefunctions φA and φB each with
energy ǫ0. There is a transition from φA to φB given by

〈φBVBφA〉 = −t.

15
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ε

Figure 9: Fig. shows energy bands for periodic two dimensional lattice.

and similarly by symmetry there is transition from φB to φA given by

〈φAVAφB〉 = −t.

Then in the basis φA and φB, we can write the Hamiltonian as

H =

[
ǫ0 −t
−t ǫ0

]

(38)

The eigenvalues now are ǫ0 ∓ t and eigenvectors 1
2
(φA ± φB). The two electrons will now

accupy the lower energy orbital 1
2
(φA + φB). The new orbitals are linear combination of

atomic orbital (LCAO).
Thus we have seen how atomic orbitals are modified when we bring atoms closer. We
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B

A Bφ φ

A

Figure 10: Fig. shows two potential wells A and B and their corresponding orbitals with
overlap between them.

A B

Figure 11: Fig. shows two atomic orbitals φA and φB and their linear combinations with
energy ǫ0 − t and ǫ0 + t.

form molecular orbitals. Now we extend this to a periodic array say first in one dimension,
also called a 1 d chain.

H =













ǫ0 −t 0 . . . . . . −t
−t ǫ0 −t 0

. . .
...

0 −t ǫ0 −t 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . −t ǫ0 −t
−t 0 . . . . . . −t ǫ0













(39)

where we have introduced a transition between 1 and n to close the chain. H above is a

17
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k1 2

1 2
φ φ

φ φ

Figure 12: Fig. shows atomic orbitals φ1 to φn and their potential wells.

circulant matrix of the form













r0 r1 r2 . . . . . . rn

rn r0 r1 r2
. . .

...

rn−1 rn r0 r1 r2
...

...
. . . . . . . . . . . .

...
r2 . . . . . . rn r0 r1
r1 r2 . . . . . . rn r0













(40)

A circulant marix is always diaganolized by a DFTmatrix whose jth column is 1√
n









1
ωj−1

ω2(j−1)

. . .
ω(n−1)(j−1)









with eigenvalue
∑

k rk(ω
j−1)k−1 where ω in nth root of unity ω = exp(i2π

n
). Then our eigen-

values are

ǫ0 − 2t cos
2πj

n
, 0 < j < n− 1.

which can be written as

ǫ(k) = ǫ0 − 2t cos ka,
π

a
< k <

π

a
, (41)

This is called a dispersion relation. The eigen vectors are of the form

Ψ(x) =
∑

l

exp(ikla)φ(x− la) (42)
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Recall the eigenfunction for the Block electrons in a periodic potential. It has the form
exp(ikx)p(x) where p(x) is periodic with period a. The orbital in 42 is similar, except its
exponential part is sampled at lattice points.

Thus starting from isolated atomic orbitals, with one energy ǫ0, we branch into many
energies as we decrease the spacing between atoms. The energy gets broadened into a band.
This is shown in figure

ε

a

0ε

Figure 13: Fig. shows how atomic orbital energy ǫ0 gets branced into many energies as we
decrease the separation a between orbitals.

ππ− /a /a

ε

k

 

 

Figure 14: Fig. shows a plot of dispersion relation in Eq. (41).

19



Now coming back to 1 d chain of hydrogen like atoms, we found that given N atoms, we
get N wavevectors ranging from −π

a
to π

a
, we have N orbitals with sepration of 2π

N
between

them. These are shown in figure 14. By Pauli exclusion principle, each orbital can carry only
2 electrons with opposite spins. Since we have N electrons, if we fill the energy levels starting
from minimum energy, we get only N

2
filled orbitals as each can hold two electrons. The

remaining N
2
orbitals are empty. When we discussed chain of periodic potentials, we showed

how half filled bands conduct. Same is true now. After we do tight binding approximation,
we still have the same principle, half filled bands conduct. We can form electron wavepackets

1√
n

∑

j

Ψj =
∑

l

(
1√
n
)
∑

j

exp(ikla))φ(x− la) (43)

centered at wavevector k0. Then this will evolve with group velocity ~
−1 dǫ(k)

dk
|k0 .

Now imagine an atom with many orbitals with energies ǫ1, . . . , ǫN . Then as we bring
these atoms together, these energies will get broadened as shown in fig (15).

+

ε

ε

ε

1

2

3

a

ε

ε

ε1

2

3

ε

 

Figure 15: Fig. shows how many orbitals with energies ǫ1, . . . , ǫN get broadened as we
decrease the separation a between orbitals.

The tight binding approximation has been described using a 1-d chain. In real solids, we
have periodic arrangement of ions in three dimensions. Then we have to solve tight binding
approximation for three dimensions. To do this let recall 1-dimension in a different format.
There we solve a eigenvalue problem of the form

−t(xl−1 + xl+1) = ǫxl (44)
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This is solved by using a wave-ansatz xl = exp(ikla) = ωl with ǫ = −2t cos(ka), with
−π
a

≤ k ≤ π
a
.

How does this problem look in two dimensions with periodic arrangement of ions with
spacing a. We find we have equation,

−t(xl−1,m + xl+1,m + xl,m−1 + xl,m+1) = ǫxlm (45)

This is solved by using a wave-ansatz xlm = exp(ikxla) exp(ikyma) with ǫ = −2t(cos(kxa) +
cos(kyb)) with

−π
a

≤ kx, ky ≤ π
a
. We plot below the function ǫ(kx, ky).

Figure 16: Fig. shows plot of ǫ = −2t(cos(kxa) + cos(kyb)) as function of (kx, ky).

How does this problem look in three dimensions with periodic arrangement of ions with
spacing a. We find we have equation,

−t(xl−1,m,n + xl+1,m,n + xl,m−1,n + xl,m+1,n + xl,m,n−1 + xl,m,n+1) = ǫxl,m,n (46)

This is solved by using a wave-ansatz xlmn = exp(ikxla) exp(ikyma) exp(ikzna) with ǫ =
−2t(cos(kxa) + cos(kya) + cos(kza)) with

−π
a

≤ kx, ky, kz ≤ π
a
.

In the following figure 17, we show how does energies of atomic orbitals in a 3D solid say
(sodium or calcium) get broadened as we bring the atoms closer. For sodium (atomic number
11) we have 1s22s22p63s1 only 1 electrons in 3s and energy level gets broadened we have two
electrons in each orbital giving that the band is half filled as a result Sodium is a conductor.
How about calcium (atomic number 12) it has 1s2, 2s2, 2p6, 3s2 and has 2 electrons in 3s
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energy level gets broadened we have two electrons in each orbital giving that the s band is
fully filled hence we should have calcium as insulator. However s band overlaps with p band
and hence both of then get partially filled and we get a conductor. For Aluminium (atomic
number 13) we have 1s22s22p63s23p1 and we have three electrons. Again we fill both s and
p and the s band may get fully filled but p band is partially filled and we have conductor.
Hence all these are metals, they are good conductors.

Now lets take next element silicon (atomic number 14) we have 1s22s22p63s23p2. Since
silicon will occupy most of the remaining chapter, we spend some time studying its band
structure. Its band structure is very interesting. There are atoms at corner of cube and at
center of all faces of a cube. Such a structure is called fcc structure. Silicon lattice is made of
such a fcc lattice and its dispaced version by an amount a

4
(1, 1, 1) as shown in fig. 18B. There

is 1 3s orbital, and three 3p orbitals, which combine to form four sp3 orbitals. Each silicon
atom say at lattice position a

4
(1, 1, , 1) will form bonds with its four immediate nghs (0, 0, 0),

a(1
2
, 1
2
, 0), a(0, 1

2
, 1
2
) and a(1

2
, 0, 1

2
) with one sp3 orbital each, as shown in fig. 18B. The two

sp3 orbitals of the neighbouring silicon atoms strongly overlapp as shown in fig. 18B. Then
as described in fig. 12, the two sp3 atomic orbitals combine to form two molecular orbitals
at energies ǫ + t and ǫ− t. Now these molecular orbitals also overlap, and hence we have a
picture like following fig. 19, where molecular orbitals are formed from atomic orbitals as in
fig. 19a, which due to overlap between them get further broadened as in fig. 19b with ∆ as
the gap between the lower and higher manifold as shown in 19b.

a

3p

3s
ε

Figure 17: Fig. shows how 3s and 3p orbitals get broadened for an atom like sodium or
calcium.

We develop a simple model to illustrate this process of first forming molecular orbitals
from atomic orbitals and then broadening them. Consider a linear chain of atoms with strong
overlap between atomic orbitals at site aj and bj with transfer integral −t1 and weakoverlap
between atomic orbitals at site aj+1 and bj with transfer integral t2. This is shown below in
fig. 20.
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orbitals

A B

sp3

Figure 18: Fig. A shows two interspaced fcc lattices that make the silicon lattice.

A B
A B

a
b

∆

Figure 19: Fig. shows molecular orbitals are formed from atomic orbitals as in fig. a which
due to overlap between them get further broadened as in fig. b.

a1
a
2

a
3b1

b2
b
3

t− 1 − t1 −t 1t 2 t 2

  

Figure 20: Fig. shows a linear chain of atoms with strong overlap between atomic orbitals
at site aj and bj with transfer integral −t1 and weakoverlap between atomic orbitals at site
aj+1 and bj with transfer integral t2.
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We can form the Hamiltonian

H =













ǫ0 −t1 0 . . . . . . t2

−t1 ǫ0 t2 0
. . .

...

0 t2 ǫ0 −t1 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . t2 ǫ0 −t1
t2 0 . . . . . . −t1 ǫ0













(47)

to find orbitals, we solve the eigenvalue equation Hx = λx, where x = (x1, x2, . . . , xn−1, xn)
Then expressing in terms of coordinates y1 = x1+x2√

2
and y2 = x1−x2√

2
etc, we get in terms of

these new coordinates we get

H̄ =












ǫ0 − t1 0 t2
2

0
...

0 ǫ0 + t1 0 −t2
2

...
−t2
2

0 ǫ0 − t1 0
...

0 t2
2

0 ǫ0 + t1
...

. . . . . . . . . . . .
...












(48)

where coupling between ǫ0−t1 and ǫ0+t1 is truncated giving the above reduced Hamiltonian.
Thus we have two manifolds one with energies ǫ0 − t1 which gets broadened to ǫ0 −

t1 − t2
2
cos(4πk

n
) with 0 ≤ k ≤ n

2
and other gets broadened to ǫ0 + t1 +

t2
2
cos(4πk

n
). The

corresponding eigenvectors are

(1, 0, exp(i
4πk

n
), 0, exp(i

8πk

n
), 0, . . . )

and

(0, 1, 0, exp(i
4πk

n
), 0, exp(i

8πk

n
), . . . ),

which in terms of xi coordinates take the form

(1, 1, exp(i
4πk

n
), exp(i

4πk

n
), exp(i

8πk

n
), exp(i

8πk

n
), . . . ),

and

(1,−1, exp(i
4πk

n
),− exp(i

4πk

n
), exp(i

8πk

n
),− exp(i

8πk

n
), . . . ).

which can be approximated to

(1, exp(i
2πk

n
), exp(i

4πk

n
), exp(i

6πk

n
), exp(i

8πk

n
), exp(i

10πk

n
), . . . ),
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and

(1,− exp(i
2πk

n
), exp(i

4πk

n
),− exp(i

6πk

n
), exp(i

8πk

n
),− exp(i

10πk

n
), . . . ).

Rewriting these we get,

(1, exp(i
2πka

na
), exp(i

4πka

na
), exp(i

6πka

na
), exp(i

8πka

na
), exp(i

10πka

na
), . . . )

and

(1, exp(i(
π

a
+
2πk

na
)a), exp(i2(

π

a
+
2πk

na
)a), exp(i3(

π

a
+
2πk

na
)a), exp(i4(

π

a
+
2πk

na
)a), exp(i5(

π

a
+
2πk

na
)a), . . . )

Thus plotting energy vs the wavevector gives

π/a
π/a π/aπ/a −2

ε

Figure 21: The figure shows indirect bandgap for the linear chain in Fig. 20.

Observe the maximum of lower energy manifold (called valence band) and minimum of
the higher energy manifold (called conduction band) happens at different k. Hence this is
a indirect band gap. This is basically what happens in a silicon crystal. The sp3 orbital
has two lobes a big positive lobe and a small negative lobe as shown in fig. 22A. Positive
lobes from site 1 and 2 overlap to give a strong coupling like t1 in fig. 20. The molecular
orbital between sites 1 and 2 is then scattered by site 3 involving overlap of negative lobe of
1 and positive lobe of 3 as shown in fig. 22B. This gives a weak coupling like t2 in fig. 20 of
opposite sign to t1. Hence the band structure of silicon also has a lower energy and higher
energy manifold and it is indirect bandgap as in fig. 21, where now we have k values in three
dimensions as opposed to one dimension as in fig. 21. In fig. 20 if we have one electron per
atomic orbital then all the lower energy manifold will be filled with two electrons per orbital
and we will end up in a insulator. However if the band gap is not too high (band gap in silicon
is around 1.1 eV) some of the electrons from the valence band will be excited to conduction
band at high temperatures. This will make the material a conductor. Such a material which
is insulator at low temperatures and conductor at high is called a semiconductor. Silicon is
a prime example.
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Figure 22: The figure A shows two lobes of a sp3 orbital. Fig. B shows how these sp3 orbitals
overlap in a crystal.

We now look at another semiconductor, Gallium Arsenide (GaAs). Its structure is same
as silicon as shown in fig. 18A, except now all a sites are Ga and b sites As. Outer electronic
configuration of Ga is 4s24p1 and As is 4s24p3. Like silicon they also form sp3 orbitals
except now sp3 orbitals of As are more electronegative and have lower energy compared to
Ga. Then again we can write a simplified model as a linear chain in 20 where a sites have
energy ǫ1 = ǫ0 +∆ǫ and b sites have energy ǫ2 = ǫ0 −∆ǫ. Then

H =













∆ǫ −t1 0 . . . . . . t2

−t1 −∆ǫ t2 0
. . .

...

0 t2 ∆ǫ −t1 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . t2 ∆ǫ −t1
t2 0 . . . . . . −t1













(49)

to find orbitals, we solve the eigenvalue equation Hx = λx, where x = (x1, x2, . . . , xn−1, xn)

Then using d = t1
∆

≪ 1 and expressing in terms of coordinates

[
y1
y2

]

=

[
1 d
−d 1

] [
x1
x2

]

etc, we get in terms of these new coordinates we get for ∆ǫ′ =
√

(∆ǫ)2 + t21 and t′2 = d t2
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H̄ =












∆ǫ′ 0 t′2 0
...

0 −∆ǫ′ 0 −t′2
...

−t′2 0 ∆ǫ′ 0
...

0 t′2 0 −∆ǫ′
...

. . . . . . . . . . . .
...












(50)

Thus the energies are again in two bands the gallium band ∆ǫ′−2t′2 cos(ka) and the Arsenic
band −∆ǫ′ + 2t′2 cos(ka), where k = 4πm

na
with m = 0, . . . , n

2
. The minima of gallium band

and maxima of arsenic band occur at same k as shown below in fig. 23. Therefore GaAs is
a direct band gap material.

π/a
π/a

−

ε

0 2  

Figure 23: The figure shows direct bandgap for the linear chain in Fig. 20 modelling GaAs.

As remarked before in a semiconductor at low temperatures valence band is full and
conduction band is empty, as we raise the temperature electrons from top of valence band
are excited to conduction band. These excited electrons may fall back and the difference of
energy of the bands may be emitted as light, given be relation ~ω = ∆E . The wavenumber
of this light k = ω

c
. For ∆E in couple of eV , we have ω as 1014 and corresponds to k = 106.

Compared to wavenumber π
a
, this is negligible. Hence conservation of momentum says that

wavenumebr of electron in conduction and valence band should be same, which is true in
direct band-gap materials. hence direct bandgap materials can emit light. For instance
GaAs emits red light. If we take GaP (Gallium Phosphide) then the bandgap is even bigger,
as phoshide is more electronegative than As and hence ∆E is bigger. Giving light of higher
frequence i.e. green light. It is even more in GaN (Gallium Nitride), giving blue light. With
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these three colors, we can make white light which is how our LED bulb works. We will say
more about this when we discuss Light emitting diodes (LED).

We are now ready to discuss some devices where we will see quantum control.

4.1 Doping

Lets consider silicon again, and now suppose we replace some of them with phosphorus
atoms. Silicon outer shell is 3s23p2, while in phosphorus we have 3s23p3. Thus phosphorus
will give one more electron. We may just say that in silicon valence band is all filled, so the
extra electrons given by phosphorus atom will just go into conduction band making silicon
a conductor. We say silicon is n-doped. We may worry that sp3 orbital of phosphorus will
be more electronegative than silicon and therefore if we again model all this as a 1d chain,
we have a situtation where we have a 1d chain where some sites (randomly distributed) have
slightly less energy.

H =













ǫ0 −t 0 . . . . . . −t
−t ǫ0 −∆ −t 0

. . .
...

0 −t ǫ0 −t 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . −t ǫ0 −t
−t 0 . . . . . . −t ǫ0













(51)

We can treat ∆E energy increments as certain sites as perturbations. Then Hamiltonian
can be written as a pure Hamiltonian H0 without the energy increments, and a perturbation
H1 with increments .

H =













ǫ0 −t 0 . . . . . . −t
−t ǫ0 −t 0

. . .
...

0 −t ǫ0 −t 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . −t ǫ0 −t
−t 0 . . . . . . −t ǫ0













︸ ︷︷ ︸

H0

+













0 0 0 . . . . . . 0

0 −∆ 0 0
. . .

...

0 0 0 0 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . 0 0 −t
0 0 . . . . . . 0 0













︸ ︷︷ ︸

H1

(52)

SinceH0 is diagonalized with a DFT matrix U , the effect of the perturbation can be evaluated
by looking at diagonal entries of U †H1U , which are just −∆n1

n
, where n1 are number of sites

at which we have phosphorus. Thus all energies are uniformly shifted down, because we
have a more electronegative sample. For n1 ≪ n, the perturbation is small, and first order
correction is good.
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We talked about n doped silicon. We can replace silicon with Aluminium Al, whose outer
shell is 3s23p1. Not all valence band will be filled now and we will again get a conductor.
The energy shifts now are positive. This is called a p doped silicon.

Most of modern electronics is playing with n and p doped silicon and making useful
devices out of them. Next few sections are devoted to description of these devices. We start
with most basic of these called a p-n junction.

5 p-n junction

Fig. 24a shows a pn junction with p-doped silicon on right and n doped silicon on the left.
When we apply a positive voltage to p junction compared to n junction (forward bias), the
following happens. The valence electron in the p region moves toward positve terminal,
creating a positive p region, which pulls the conduction electrons of the n region into the
p region and current flows, see fig 24b. Some of these electrons arriving from n region will
recombine with holes in the valence band. Nonetheless, there is current flow in the forward
bias.

a p

n

n

p

β ∆ ∆
EC

EV

Figure 24: The figure shows a pn junction.

Now apply a negative voltage to the p junction compared to n junction (reverse bias),
the following happens. The valence electrons in p region begin to move towards n junction,
however all valence states in n region are filled and they donot move under an electric field,
see fig 24b. Thus current cannot flow in p region in opposite direction, and we donot have
current flow in reverse bias.

In practice, when we we bring a p and n junction in contact there is transfer of charge
between them. The electrons in n region are in conduction band and at higher energy
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compared to electrons in the p region which are in valence band. Hence there is flow of
electrons fron n region to p region. This leaves n region positively charged and p region
negatively charged and an electric field develops at the interface as shown in fig. 25A, which
prevents further flow of charges. Under this condition, if we make p terminal positive current
won’t flow. See the n region conduction electrons end up in gap region. This is shown in fig.
25B. To make the current flow we have to apply enough positive voltage (.7 V for silicon)
on the p terminal so that it cancels the interface field. Then we have a condition like fig.
25C (forward bias) and current can flow. If we apply negative voltage to p terminal, we are
in situtation 25D (reverse bias) and the electrons from p region end up in gap so no flow.
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C D

pn

Figure 25: The fig A shows an electric field at the interface. Fig. B shows band energy
diagram where fermi levels get alligned due to interface field. Fig. C shows band energy
diagram under forward bias. Fig. D shows band energy diagram under reverse bias.

We saw p-n junction conducts when it is forward biased and doesnot conduct in the
opposite direction. Therefore a p-n junction is used as an rectifier and is called a diode. It
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is shown in fig. 26B with arrow pointing towards n region. When diode is forward biased,
there is .7 V drop across the diode and remaining voltage drop is across resistance. When
diode is reverse biased, all drop across the diode and no voltage drop is across resistance.
Volatge V (t) across resistance is a rectified version of volatge U(t) across source as in 26A.
Rectifiers find use in all sorts of circuits including communication circuits.

t t

V(t)
U(t)

A

B

U(t)
V(t)

Figure 26: The fig A shows how an voltage is rectified. fig. B shows the circuit to do
rectification.

We saw how to build a rectifier using semiconductor junctions. Its called a diode. Lets
now see how to build an amplifier using semiconductor junctions.

6 Transistor

Transistor has two junctions as shown in 27A. A p region called base sandwitched between
two n regions (called emitter and collector) as shown in fig 27A. One pn junction is forward
biased (emitter and base) and other reverse biased (base and collector). Forward biased
pn junctions suck valence elctrons from p region and hurls electrons from the n region in
the p-region as shown in 27B. These electron are immediately sucked by the reverse biased
junction and on their fraction of them α recombine and contribute to the p junction current
the remaining 1 − α fraction just fly by to other n region as shown in 27B. If I is the base
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Figure 27: The fig A shows schematic ofa transistor. Fig. B shows a cartoon of how electrons
and bands are in various regions without taking into account interface electric fields. Fig C
shows the energy level diagram of a transistor.

current 1−α
α
I = βI is the collector current and (1 + β)I the emitter current. α is small so β

is large and is called the current gain of the transistor. Fig. 27C shows energy level diagram
for the transistor.

6.1 Current Source and amplifier

Transistor acts a current source. Fig. 28A shows by use of a forward bias and resistance R1,
we establish a current in emitter, simply given by Ie =

V1−.7
R1

. This gives a collector current
β

β+1
Ie ∼ Ie and the potential drop across resistance R2 as IeR2 =

R2(V1−.7)
R1

. Thus the voltage

V1 is amplified to R2

R1
V1, where

R2

R1
is the amplifier gain. V1 can have oscillating parts as shown

in figure 28B, which get amplified, the DC part of V1 is used to bias the base emitter circuit
as shown in figure 28B.

A good amplifier should have large input impedence as all voltage from a source appears
across it then. Similarly a good amplifier should have low output impedence as all amplified
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Figure 28: The fig A shows schematic of a transistor. Fig. B shows a cartoon of how electrons
and bands are in various regions without taking into account interface electric fields. Fig C
shows the energy level diagram of a transistor.

voltage appears across the amplifier. Lets compute the input and output impedence of the
amplifier in 28B. Changing input voltage by ∆V gives ∆Ie =

∆V
R1

and ∆Ib =
∆V
βR1

, then input

impedence is ∆V
∆Ib

= βR1. Similarly, if we measure the voltage across R2 with a voltmeter

with impdence R′ then R2 gets modified to R2R
′

R2+R′
and hence the voltage is R′

R2+R′

R2

R1
V1, hence

the voltage is reduced by a factor R′

R2+R′
, this means output impdence is just R2.

Until now we only amplified input voltage V . In many applications we want to amplify
difference of voltage. Such an aplifier is called a differential amplifier or an opamp. It has
two inputs V1 and V2 and output V0 which is a G(V1 − V2), where G is the amplification
factor. The differential amplifier circuit is shown in 29A. The current through the emitter
of transistor 1 is V1−V2

R1
and hence voltage across output resistor R0 is (V1−V2)R0

R1
. The input

impedence at lead 1 is simply βR1 while at lead 2 we change the input by ∆V2, then current in
emitter 2 changes by ( 1

R1
+ 1

R2
)∆V2 and hence the input impedence is βR′ where 1

R′
= 1

R1
+ 1

R2
,

i.e. R1, R2 in parallel. The opamp is shown as a schematic in 29B, with two input leads and
a output lead.

Now we show using opamp, how to build circuits with tunable gain. We do this by using
concept of negative feedback. We assume that our transistors have very high gain β, so
that input impedences are very high so that there is negligible current going in the leads.
Further the gain is so high and any difference of the input voltages will lead to large current
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in the output transistor throwing it onto saturation. So we assume two leads have the same
voltage. Now consider circuit 29C. The + and −1 lead have same voltage 0 and current V

R1

goes directly to output instead of in the input lead and hence output voltage is −V R2

R1
. We

choose R2 ≫ R1 to have good gain, this is called inverting amplifier. The gain can be tuned
by changing R1, R2. There is alternate arrangement. See circuit 29D. Here V = V0

R1

R1+R2
or

V0 = (1 + R2

R1
)V , this is called noninverting amplifier. The gain can be tuned by changing

R1, R2.

7 Field effect transistor

What we have studied is a Bipolar junction transistor. One of its main application is its use
as an amplifier. Now we study another kind of transistor called Field effect transistor (FET).
Its main application is it acts like a switch. FET is as shown in fig. 32A. There is p doped
channel sandwiched between two n doped regions, called source and drain respectively. If
we apply a voltage between source and drain no current will flow as shown in fig. 32B as p
region has only carriers in valence band which cannot move to n regions as valence band is
full. For conduction we need carriers in the p region in the conduction band. We arrange
this by building a capacitor, a metal plate and a oxide dielectric and then we put positive
voltage on the metal. The effect is to attract excess charges in the p region to the oxide-p
interface. These excess charges will go to conduction band and we will be able to conduct,
this is shown in 32C. We say we have formed an inversion layer at oxide-channel interface.
We say we have turned on our switch, by applying a positive voltage to the metal plate also
called gate. In 32D is shown a cartoon of a communication system that transmits when
switch is on (transmit 1), and doesnot transmit when switch is off (transmit 0).

7.1 MESFET, GaAs, and High Mobility Transistors (HEMT)

We saw how we form an inversion layer by applying a positive voltage on the gate, pulling
electrons. When we remove the voltage, we relax back and inversion layer disappers. How
fast can be switch inversion layer on and off depends on how fast can we accelerate electrons,
with electric field, which is inversely propotional to their effective mass or directly propotional
to their mobility. In high speed communication, we need faster switching and hence we need
to have high mobility electrons. Therefore instead of silicon, we use GaAs which has higher
mobility. Recall in GaAs, the conduction band is the gallium band which have a transfer
integral t that is a measure of how molecular orbitals scatter through As site. Since As is
more electronegative than Si, we see larget t and larger mobility.

Therefore we use GaAs, which has larger mobility in the conduction band. The device is
simply a n GaAs channel between n based source and drain. Instead of using oxide we simply
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Figure 29: The fig A shows schematic of a differential amplifier. fig B shows symbolic
representation of a differential amplifier. fig. C shows an inverting amplifier. fig. D shows a
noninverting amplifier.

use a metal gate. If no voltage is applied to gate then channel conducts and on application
of negative voltage will push electrons away from interface creating a depletion region and
we stop conducting. Due to higher mobility it is faster to push/pull GaAs as compared to
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Figure 30: Fig. A shows the schematic of a MOSFET. Fig. B shows the bands for the
source, channel and drain. Fig. C shows the formation of the inversion layer. Fig. D shows
how FET can be used as a switch in a communication transmit circuit.

Si so it can be used for faster switching. We donot use oxide as in MOSFET because that
will make n channel electrons go to oxide leading to depletion and it will already become
non-conducting without a gate voltage. Why then we use oxide in MOSFET beacuse else
electrons may flow directly from metal to channel and give conduction electrons without
even applying any voltage. It all depends on what you want to do. InAs has even higher
mobility beacuse Indium is more delocalized than Galium and has larger transfer integral.

The mobility is GaAs is still limited beacuse it is n doped (Si replaces Ga). We can think
of Si as Ga with extra charge at doping sites which act as scattering impurities and limits
mobility. To get better mobility we should use undoped GaAs. But now how will it work
as there is no channel to begin with. We can get a channels, if we instead of oxide use n
doped Al1−xGax As. This material has even larger bandgap than GaAs as Al is more polar.
Then electrons will flow from Al1−xGax to GaAs creating a inversion layer called 2DEG (2
dimensional electron gas). This makes GaAs channel conducting. By putting a negative
voltage on the gate, we repell these electrons and channel disappers. This arrangement has
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very high mobility and this FET is called High Mobility Transistors (HEMT). It is used for
high speed communication applications.

8 Optoelectronics

8.1 Light emitting diodes and Semiconductor lasers

We have already discussed the basic idea of a light emitting diode. We have a direct band
gap material like GaAs. We make a pn junction out of it. Then we put positive voltage
on p junction and pull the valence electrons creating positively charged region which hurls
conduction electrons from the n side. These conduction electrons then recombine with holes
in the valence band emitting light. Depending on the band-gap ∆E we emit red light in
GaAs, green light in GaP and blue light in GaN.

∆∆ EE

PN

Figure 31: Fig. shows the schematic of a LED. A positive voltage on p junction pulls the
valence electrons creating positively charged region which hurls conduction electrons from the
n side. These conduction electrons then recombine with holes in the valence band emitting
light.

The emission from LED is not coherent. As electrons fall from conduction to valence band
they emit light of same frequency but the phase of light is not same i.e. it is incoherent.
However if we build a cavity which can store this light by reflecting it from its ends. Then
the emitted light will induce more emissions. This is called simulated emissions, very much
like a two level system driven by electric field. if λ is the spontaneous emission rate and µ
is the rate of simulated emission due to a single photon. Then as soon as a single photon is
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emitted it induces another emission and does it before another spontaneous emission takes
place. Then we have two coherent photons which emit more and so on. If µ ≫ λ we will
emit many many photons before another spontaneous emission and they all will be coherent.
Thus we have emitted coherent light, this is a laser as in your laser pointer.

8.2 solar cells

We talked about how in an LED when electrons are hurled in the p region they recombine
with the holes and emit light. The opposite of this is that we shine light of right wavelength
and promote electrons from valence to conduction band. Then we can collect these negative
and positive carriers and make a battery out of them. For instance in the depletion region
of a pn junction there is a inbuilt electric filed. The carriers that are generated in the region
will travel to opposite side due to this field and form a battery. This is a solar cell. Its just
a pn junction with light creating electron-hole pairs in the depletion region. Its schemaic is
shown in figure

E

Figure 32: Fig. shows the schematic of a solar cell. Light creates electron hole pair. The
electric field E in depletion region sorts them.

9 Fermi-Dirac Distribution

Consider a half filled band. Lower half is all filled and upper half empty. This is only true
at 0 temperature. At finite temperatures we have a probability distribution that even upper
orbitals have finite probability of occupation. This is given by Fermi-Dirac distribution. The
probability of orbital with energy ǫ being occupied is given by

f(ǫ) =
1

1 + exp( ǫ−µ

kT
)
,

where µ is a parameter called chemical potential. At T = 0, µ = ǫF the fermi energy,
else it is slightly above it. Then you can see at T = 0 nothing above ǫF is filled. Going by
this formula even high unfilled bands have finite occupancy. If we consider a semiconductor
like silicon, where valence band is full and conduction band is empty, at finite temperatures
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we find finite occupancy in conduction band which increases at high temperatures so that at
temp like 1000 K, silicon is a conductor because conduction band has sizeable carriers and
at low temperatures it is an insulator. This is shown in fig. 33. We can calculate

µ  

Figure 33: Fig. shows electrons and holes in conduction and valence band respectively at
finite temperatures.

the concentration of carriers in conduction band n. if we take bottom of conduction band
to be at 0 energy then this is simply

∫ ∞

0

N(ǫ)f(ǫ) (53)

where N(ǫ) is density of states at ǫ. Recall ǫ = ~
2k2

2m
, then ∆ǫ

ǫ
= 2∆k

k
. number of states in

band of width ∆k is 4πk2∆k V
(2π)3

= V (2m)
3
2

~3(2π)2

√
ǫ∆ǫ

Then

n =
(2m)

3
2

~3(2π)2

∫ ∞

Ec

√
ǫ exp(−(ǫ− µ)

kT
) =

√
2
m

3
2

~3π2
exp(−Ec − µ

kT
)

∫ ∞

0

x2 exp(− x2

kT
) = NC exp(−Ec − µ

kT
)

(54)
Nc is around 1019/cm3 for Si at 300 K.

Similarly we can derive a formula for hole concentration p and is given by

p = NV exp(
Ev − µ

kT
) (55)

Then the product usig n = p = ni

n2
i = np = NCNV exp(−Eg

kT
) (56)
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ni is called intrinsic carrier concentration and depends on bandgap Eg. using Nc = NV ∼
1019/cm3, and Eg = 1.1eV , ni = 1010 at room temperature.

if we dope say with donor concentration ND, then µ→ µ′ and we can show we still have
np = n2

i . With n = ND, we can find p. Furthermore

Ec − µ′ = kT ln(ND/NC). (57)

If instead we dope with acceptors with concentration NA.

µ′ − Ev = kT ln(NA/NV ). (58)

10 Problems

1. Using Eq. (19) and (21), sketch the curves in Fig. 4 , with a = 3 A◦ and V0 = 100V .

2. In above now sketch band 2 and 3 and calculate the gap.

3. A metallic bar of cross sction 1 mm2 carries a current of 1 ampere. If free electron
density is 1030/m3, find the drift velocity of electrons.

4. In above suppose we subject electrons to an electric field of 1V/m for a femtosecond
duration. What is the curent.

5. Consider metal calcium or magnesium with two electrons it the outer shell. This says
that the conduction band will be full. Why is it a metal then.

6. In class we considered a molecular bond between two atomic orbitals each with energy
ǫ and transfer element −t. This was a covalent bond. Generalize this to case when
atomic orbitals have energy ǫA and ǫB respectively. what are the energies of two
moelcular orbitals bonding and antibonding. This is called an ionic bond. Like table
salt, NaCl.

7. A silicon ingot is doped with 1016 arsenic atoms/cm3. Find the carrier concentrations
and the Fermi level at room temperature (300 K).

8. Calculate the inbuilt potential for a silicon pn junction with NA = 1018/cm3 and
ND = 1015/cm3 at 300K.

9. Consider a 2D lattice of atoms where atomic orbital at site (k, l) overlaps with (k−1, l),
(k+1, l), (k, l−1) and (k, l+1) with strength (transfer integral) −t. The onsite energy
is ǫ0. Using tight-binding approximation, find the dispersion relation relating energy ǫ
to wavevector.
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10. Consider a 3D lattice of atoms where atomic orbital at site (k, l,m) overlaps with
(k − 1, l,m), (k + 1, l,m), (k, l − 1,m) and (k, l + 1,m), (k, l,m− 1) amd (k, l,m+ 1)
with strength (transfer integral) −t. The onsite energy is ǫ0. Using tight-binding
approximation, find the dispersion relation relating energy ǫ to wavevector.
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