Analysis of orbits arising in piecewise-smooth discontinuous maps

Harish K Pillai
work done with
Bhooshan Rajpathak & Santanu Bandyopadhyay

Department of Electrical Engineering,
Indian Institute of Technology Bombay,
Mumbai, India-400076

March 20, 2014
Why piecewise-smooth discontinuous maps?

- Makes an appearance in various applications in electrical engineering and physics
Why piecewise-smooth discontinuous maps?

- Makes an appearance in various applications in electrical engineering and physics

Examples include:

- Controlled buck converter
- Boost converter in discontinuous mode
- Impact oscillators
1D linear piecewise smooth map

\[x_{n+1} = f(x_n, a, b, \mu, \ell) = \begin{cases}
ax_n + \mu & \text{for } x_n \leq 0 \\
bx_n + \mu + \ell & \text{for } x_n > 0
\end{cases} \]

- The jump discontinuity is at \(x = 0 \)
- \(a \) and \(b \) are the slopes of the affine maps on either side of discontinuity
- \(\ell \) is the height of the "jump"
- \(\mu \) is the parameter to be varied
Our interest

- Do (periodic) orbits exist for such systems?
Our interest

- Do (periodic) orbits exist for such systems?
- If yes, then can these orbits be characterized, classified · · ·
The settings

Assumption: Let $0 < a < 1$ and $0 < b < 1$
The settings

Assumption: Let $0 < a < 1$ and $0 < b < 1$

If the “jump” $\ell > 0$, then
The settings

Assumption: Let $0 < a < 1$ and $0 < b < 1$
If the “jump” $\ell > 0$, then

Equilibrium point in the left half $x_L = \frac{\mu}{1-a}$
Equilibrium point in the right half $x_R = \frac{\mu+\ell}{1-b}$
The settings

Assumption: Let $0 < a < 1$ and $0 < b < 1$

If the “jump” $\ell > 0$, then

No chance of a periodic orbit !!
The settings

Assumption: Let $0 < a < 1$ and $0 < b < 1$
If the “jump” $\ell < 0$, then
The settings

Assumption: Let $0 < a < 1$ and $0 < b < 1$

If the “jump” $\ell < 0$, then

Orbits can exist if $0 < \mu < -\ell$

Set $\ell = -1$ and therefore $0 < \mu < 1$
Some definitions

- Let f be a map from \mathbb{R} to \mathbb{R}. p is a periodic point of order k if $f^k(p) = p$, where k is the smallest such positive integer.
Some definitions

- Let f be a map from \mathbb{R} to \mathbb{R}. p is a **periodic point** of order k if $f^k(p) = p$, where k is the smallest such positive integer.

- A sequence of k distinct periodic points of order k, say p_1, \ldots, p_k, where $p_{i+1} = f^i(p_1)$, is called a **periodic orbit** of period k.

Some definitions

- Let f be a map from \mathbb{R} to \mathbb{R}. p is a **periodic point** of order k if $f^k(p) = p$, where k is the smallest such positive integer.

- A sequence of k distinct periodic points of order k, say p_1, \ldots, p_k, where $p_{i+1} = f^i(p_1)$, is called a **periodic orbit** of period k.

- Let $\mathcal{L} := (-\infty, 0]$ (the closed left half plane) and $\mathcal{R} := (0, \infty)$ (the open right half plane)
Some definitions

- Let f be a map from \mathbb{R} to \mathbb{R}. p is a periodic point of order k if $f^k(p) = p$, where k is the smallest such positive integer.

- A sequence of k distinct periodic points of order k, say p_1, \ldots, p_k, where $p_{i+1} = f^i(p_1)$, is called a periodic orbit of period k.

- Let $\mathcal{L} := (-\infty, 0]$ (the closed left half plane) and $\mathcal{R} := (0, \infty)$ (the open right half plane)

- Given a particular sequence of points $\{x_n\}_{n \geq 0}$ through which the system evolves, one can code this sequence into a sequence of \mathcal{L}s and \mathcal{R}s
Some definitions

- Let f be a map from \mathbb{R} to \mathbb{R}. p is a **periodic point** of order k if $f^k(p) = p$, where k is the smallest such positive integer.

- A sequence of k distinct periodic points of order k, say p_1, \ldots, p_k, where $p_{i+1} = f^i(p_1)$, is called a **periodic orbit** of period k.

- Let $\mathcal{L} := (-\infty, 0]$ (the closed left half plane) and $\mathcal{R} := (0, \infty)$ (the open right half plane)

- Given a particular sequence of points $\{x_n\}_{n\geq 0}$ through which the system evolves, one can code this sequence into a sequence of \mathcal{L}s and \mathcal{R}s

- A periodic orbit has a string of \mathcal{L}s and \mathcal{R}s that keeps repeating. This repeating string is a **pattern** and denoted by σ
Some more definitions

- Length of the string σ is denoted by $|\sigma|$ and gives the period of the orbit
Some more definitions

- Length of the string σ is denoted by $|\sigma|$ and gives the period of the orbit

- P_σ denotes the interval of parameter μ for which an orbit with pattern σ exists
Some more definitions

- Length of the string σ is denoted by $|\sigma|$ and gives the period of the orbit

- P_σ denotes the interval of parameter μ for which an orbit with pattern σ exists

- A pattern consisting of a string of \mathcal{L}s followed by a string of \mathcal{R}s is called a prime pattern
Some more definitions

- Length of the string σ is denoted by $|\sigma|$ and gives the period of the orbit

- P_σ denotes the interval of parameter μ for which an orbit with pattern σ exists

- A pattern consisting of a string of L's followed by a string of R's is called a prime pattern

- $LLLRRR$, L^nR, LR^n are prime patterns
Some more definitions

- Length of the string σ is denoted by $|\sigma|$ and gives the period of the orbit.

- P_σ denotes the interval of parameter μ for which an orbit with pattern σ exists.

- A pattern consisting of a string of L's followed by a string of R's is called a prime pattern.

- $L^n R$ is a L-prime pattern.

- $L R^n$ is a R-prime pattern.
Some more definitions

- Length of the string σ is denoted by $|\sigma|$ and gives the period of the orbit

- P_σ denotes the interval of parameter μ for which an orbit with pattern σ exists

- A pattern consisting of a string of Ls followed by a string of Rs is called a **prime pattern**

- L^nR is a L-prime pattern

- $L R^n$ is a R-prime pattern

- A pattern made up of two or more prime patterns is a **composite pattern**
Prime patterns

Theorem

For $a, b \in (0, 1)$, L-prime and R-prime patterns of any length are admissible.
Prime patterns

Theorem

For $a, b \in (0, 1)$, L-prime and R-prime patterns of any length are admissible

Consider the pattern $L^n R$. The length of this pattern is $n + 1$. From the map, one gets the following inequalities:

\[
\begin{align*}
x_0 & \leq 0, \\
x_1 &= ax_0 + \mu \leq 0, \\
x_2 &= ax_1 + \mu \leq 0, \\
&= a^2 x_0 + (a + 1)\mu \leq 0, \\
&\vdots \\
x_{n-1} &= a^{n-1} x_0 + \mu S_{n-2}^a \leq 0, \\
x_n &= a^n x_0 + \mu S_{n-1}^a > 0, \\
x_{n+1} &= x_0 = a^n bx_0 + (b S_{n-1}^a + 1)\mu - 1 \leq 0.
\end{align*}
\]
Prime patterns

Theorem

For $a, b \in (0, 1)$, L-prime and R-prime patterns of any length are admissible

Therefore, $x_0 = \frac{(bS_n^a-1+1)\mu-1}{1-anb}$
Prime patterns

Theorem

For $a, b \in (0, 1)$, \mathcal{L}-prime and \mathcal{R}-prime patterns of any length are admissible

Therefore, $x_0 = \frac{(bS_{n-1}^a+1)\mu-1}{1-a^n b}$

Substituting this x_0 into the inequalities give us inequalities that μ should satisfy
Prime patterns

Theorem

For \(a, b \in (0, 1) \), \(\mathcal{L} \)-prime and \(\mathcal{R} \)-prime patterns of any length are admissible.

Therefore, \(x_0 = \frac{(bS_n^{a-1}+1)\mu - 1}{1-a^n b} \)

Substituting this \(x_0 \) into the inequalities give us inequalities that \(\mu \) should satisfy.

Every \(\mathcal{L} \) in the pattern gives an upper bound for \(\mu \)

Every \(\mathcal{R} \) in the pattern gives a lower bound for \(\mu \)
Prime patterns

Theorem

For $a, b \in (0, 1)$, \mathcal{L}-prime and \mathcal{R}-prime patterns of any length are admissible

Therefore, $x_0 = \frac{(bS_{n-1}^a + 1)\mu - 1}{1 - anb}$

Substituting this x_0 into the inequalities give us inequalities that μ should satisfy

Every \mathcal{L} in the pattern gives an upper bound for μ

Every \mathcal{R} in the pattern gives a lower bound for μ

$$P_{\mathcal{L}^n \mathcal{R}} = \begin{pmatrix} \frac{a^n}{S_n^a} & \frac{a^{n-1}}{a^{n-1}b + S_{n-1}^a} \end{pmatrix}$$
Prime patterns

Theorem

For $a, b \in (0, 1)$, \mathcal{L}-prime and \mathcal{R}-prime patterns of any length are admissible.

Therefore, $x_0 = \frac{(bS_{n-1}^a + 1)\mu - 1}{1 - a^n b}$

Substituting this x_0 into the inequalities give us inequalities that μ should satisfy.

Every \mathcal{L} in the pattern gives an upper bound for μ.

Every \mathcal{R} in the pattern gives a lower bound for μ.

$$P_{\mathcal{L}^n \mathcal{R}} = \left[\frac{a^n}{S_n^a}, \frac{a^{n-1}}{a^{n-1}b + S_{n-1}^a} \right]$$

Showing that $P_{\mathcal{L}^n \mathcal{R}} \neq \emptyset$ does the job.
Some more questions

- Are L-prime patterns and R-prime patterns the only prime patterns that are admissible?
Some more questions

- Are L-prime patterns and R-prime patterns the only prime patterns that are admissible?
- Are prime patterns the only kind of patterns? For example, can there be a pattern like $LLLRRLLRLLLR$?
Some more questions

- Are L-prime patterns and R-prime patterns the only prime patterns that are admissible?
- Are prime patterns the only kind of patterns? For example, can there be a pattern like $LLLRRRLRRLLLR$?
- Can we characterize all the possible types of admissible patterns?
Some more questions

- Are L-prime patterns and R-prime patterns the only prime patterns that are admissible?
- Are prime patterns the only kind of patterns? For example, can there be a pattern like $LLLRRRLRLRLRs$?
- Can we characterize all the possible types of admissible patterns?
- For a given n, how many distinct patterns exist with period n?
Some more questions

- Are L-prime patterns and R-prime patterns the only prime patterns that are admissible?
- Are prime patterns the only kind of patterns? For example, can there be a pattern like $LLLRRRLRRLLRR$?
- Can we characterize all the possible types of admissible patterns?
- For a given n, how many distinct patterns exist with period n?
- Is there an algorithm that generates only the possible admissible patterns of period n?
Composite patterns

Theorem

For \(a, b \in (0, 1) \), no admissible pattern can contain consecutive \(\mathcal{L} \)s and consecutive \(\mathcal{R} \)s simultaneously.
Composite patterns

Theorem

For \(a, b \in (0, 1) \), no admissible pattern can contain consecutive \(\mathcal{L} \)s and consecutive \(\mathcal{R} \)s simultaneously.

- For \(\mu < \frac{1}{b+1} \), every \(\mathcal{R} \) is immediately followed by \(\mathcal{L} \)
Composite patterns

Theorem

For $a, b \in (0, 1)$, no admissible pattern can contain consecutive Ls and consecutive Rs simultaneously.

- For $\mu < \frac{1}{b+1}$, every R is immediately followed by L
- For $\mu > \frac{a}{a+1}$, every L is immediately followed by R
Composite patterns

Theorem

For $a, b \in (0, 1)$, no admissible pattern can contain consecutive \mathcal{L}s and consecutive \mathcal{R}s simultaneously.

- For $\mu < \frac{1}{b+1}$, every \mathcal{R} is immediately followed by \mathcal{L}
- For $\mu > \frac{a}{a+1}$, every \mathcal{L} is immediately followed by \mathcal{R}
- For $a, b \in (0, 1)$, $\frac{a}{a+1} < \frac{1}{b+1}$

QED
Composite patterns

Theorem

For $a, b \in (0, 1)$, no admissible pattern can contain consecutive L's and consecutive R's simultaneously.

- For $\mu < \frac{1}{b+1}$, every R is immediately followed by L
- For $\mu > \frac{a}{a+1}$, every L is immediately followed by R
- For $a, b \in (0, 1)$, $\frac{a}{a+1} < \frac{1}{b+1}$

QED

Similar limits can be found for runs of n symbols
Composite patterns

Lemma

For \(a, b \in (0, 1)\), all the admissible composite patterns are made up of either \(L\)-prime patterns or \(R\)-prime patterns but not both. Every composite pattern is a combination of exactly two prime patterns of successive lengths.
Lemma

For $a, b \in (0, 1)$, all the admissible composite patterns are made up of either \mathcal{L}-prime patterns or \mathcal{R}-prime patterns but not both. Every composite pattern is a combination of exactly two prime patterns of successive lengths.
Composite patterns

Theorem

For $a, b \in (0, 1)$, and any n, there exists $\phi(n)$ distinct admissible patterns of cardinality n, where ϕ is the Euler’s totient function.
Composite patterns

Theorem

For $a, b \in (0, 1)$, and any n, there exists $\phi(n)$ distinct admissible patterns of cardinality n, where ϕ is the Euler’s totient function.

- $\phi(18) = 6 - 1, 5, 7, 11, 13, 17$
Composite patterns

Theorem

For $a, b \in (0, 1)$, and any n, there exists $\phi(n)$ distinct admissible patterns of cardinality n, where ϕ is the Euler’s totient function.

- $\phi(18) = 6 - 1, 5, 7, 11, 13, 17$
- Thus there are patterns of length 18 with $1, 5, 7, 11, 13, 17$ \mathcal{L}s in them
Calculation of P_σ

Given a pattern σ which is admissible, how to calculate the interval $P_{\sigma \text{ma}}$
Calculation of P_σ

Given a pattern σ which is admissible, how to calculate the interval P_{σ}

Consider the pattern

$$RLRLRLRLRLRLRLRLRLRLRLRLRLRL$$
Calculation of P_σ

Given a pattern σ which is admissible, how to calculate the interval P_{σ}

Consider the pattern

\[RLRLRLRLLRLLRLRLLRLRLLRLRLLRLL \]

Substitute 0 for L and 1 for R
Calculation of P_σ

Given a pattern σ which is admissible, how to calculate the interval P_{σ}

Consider the pattern
$$RLRLRLRLL
Calculation of P_σ

Given a pattern σ which is admissible, how to calculate the interval P_{σ}

Consider the pattern

$RLRLRLLRLLRLRLLRLLRLLRLLRLLRLLRLLRLLRLL$

Substitute 0 for L and 1 for R

\[
\begin{align*}
RLRLRRLRLRRRLLRLRRLRLRRLRLRRLRL\quad &\mu_2 \\
101001010010010100100100100100\quad &\mu_2 \\
\end{align*}
\]

\[
\begin{align*}
LRLRLRLRLRLRLRLRLRLRLLL\quad &\mu_1 \\
0010010100100101001010010100101\quad &\mu_1 \\
\end{align*}
\]
Other cases

Assumption: Let $1 < a < \infty$ and $1 < b < \infty$
Other cases

Assumption: Let $1 < a < \infty$ and $1 < b < \infty$
If the “jump” $\ell > 0$, then
Other cases

Assumption: Let $1 < a < \infty$ and $1 < b < \infty$.

If the “jump” $\ell > 0$, then

No chance of a periodic orbit!!
Other cases

Assumption: Let $1 < a < \infty$ and $1 < b < \infty$

If the “jump” $\ell < 0$, then

- $\mu < 0$
- $-\ell > \mu \geq 0$
- $\mu \geq -\ell$
Other cases

Assumption: Let $1 < a < \infty$ and $1 < b < \infty$

If the “jump” $\ell < 0$, then

Orbits can exist if $0 < \mu < -\ell$

Set $\ell = -1$ and therefore $0 < \mu < 1$
Other cases – results

Assumption: $a, b > 1$

- Orbits are unstable
Other cases – results

Assumption: $a, b > 1$

- Orbits are unstable
- \mathcal{L}-prime patterns and \mathcal{R}-prime patterns always present
Other cases – results

Assumption: $a, b > 1$

- Orbits are unstable
- L-prime patterns and R-prime patterns always present
- The pattern $LLRRR$ always present
Other cases – results

Assumption: $a, b > 1$

- Orbits are unstable
- \mathcal{L}-prime patterns and \mathcal{R}-prime patterns always present
- The pattern $\mathcal{L} \mathcal{L} \mathcal{R} \mathcal{R}$ always present
- If pattern $\mathcal{L}^p \mathcal{R}^q$ is present, then $\mathcal{L}^{p_1} \mathcal{R}^{q_1}$ is also present where $p_1 < p$ and $q_1 < q$
Other cases – results

Assumption: $a, b > 1$

- Orbits are unstable
- L-prime patterns and R-prime patterns always present
- The pattern $LLRR$ always present
- If pattern L^pR^q is present, then $L^{p_1}R^{q_1}$ is also present where $p_1 < p$ and $q_1 < q$
- Co-existence of patterns, multiple orbits exist
Other cases – results

Assumption: \(a, b > 1 \)

- Orbits are unstable
- \(L \)-prime patterns and \(R \)-prime patterns always present
- The pattern \(LLRR \) always present
- If pattern \(L^p R^q \) is present, then \(L^{p_1} R^{q_1} \) is also present where \(p_1 < p \) and \(q_1 < q \)
- Co-existence of patterns, multiple orbits exist
- Chaotic orbits exist !!
Chaotic orbits

Assumption: $a, b > 1$

Why?
Chaotic orbits

Assumption: \(a, b > 1 \)
Capture range for \(\mu \) is \(\left(\frac{a-1}{a}, \frac{1}{b} \right) \)

Only for values of \(a, b \) in blue – chaotic orbits
\(1 < b < \frac{a}{a-1} \) and \(1 < a < \frac{b}{b-1} \)
Chaotic orbits

Assumption: \(a, b > 1 \)
Some pictures
For \(a = 1.01, b = 1.01 \)
Chaotic orbits

Assumption: $a, b > 1$

Some pictures

For $a = 1.1, b = 1.1$
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$

For $\ell < 0$
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$

For $\ell < 0$

No orbits!!
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$
For $\ell > 0$
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$

For $\ell > 0$

Orbits possible...
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$

Some pictures

For $a = 0.1$ and $b = 1.1$
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$

Some pictures

For $a = 0.5$ and $b = 1.1$
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$

Some pictures

For $a = 0.9$ and $b = 1.1$
Other cases – results

Assumption: $0 < a < 1$ and $b > 1$

Some pictures

For $a = 0.5$ and $b = 8$
Boundary cases

By pictures

For $a = 1$ and $b = 1.1$
Boundary cases

Some pictures
For $a = 0.5$ and $b = 1$
Boundary cases

Some pictures

For $a = 1$ and $b = 1$
Thank you very much