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Electrical Power Network

Objectives

» Balance load and generation
> Restore nominal frequency

> guarantee cost efficiency
> satisfy physical constraints

> ensure security & reliability
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Electrical Power Network

~ 15 min
global level [
economic dispatch

Tertiary Control Dispatch ]

~ 1 min Secondary Control Secondary
area level Control

automatic generation

generator level | Control Control Control

~ 0.1 sec [ Primary ] [ Primary ] [ Primary ]
droop control
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Electrical Power Network

~ 15 min
global global level [
constraints economic dispatch

Tertiary Control Dispatch ]

( ~ 1 min [ Secondary Control ][ Secondary ]

area level Control
automatic generation

local <
constraints

generator level | Control Control Control
\  droop control

~ 0.1 sec [ Primary ] [ Primary ] [ Primary ]
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Future Power Grid: vertical to flat

‘Green Tech
How Rooftop Solar Can The Rise of the Personal Power
Stabilize the Grid Plant

Following Germany's lead, California
gives advanced inverters a bigger role in
the grid

21 Jan

Smart and agile power systems will let
every home and business generate, store,
and share electricity

28 May 2014

> Increase in Distributed Energy Resources (DERs)
> wind turbines, solar PV, storages, microgrids etc

» Power generation — decentralized

> Large scale optimization problems




Future Power Grid: vertical to flat

Green Tech

How Rooftop Solar Can
Stabilize the Grid

Following Germany's lead, California
gives advanced inverters a bigger role in
the grid
21 Jan
Distributed solutions

» Robust against failures

» Cater to dynamic demands

» Preserve “privacy”

» Provide plug-and-play

Ch (UCSD)

The Rise of the Personal Power
Plant

Smart and agile power systems will let
every home and business generate, store,

and share electricity
28 May 2014



Outline

Economic dispatch problem

m Problem statement Tertiary Control

m Relaxed problem and centralized algorithm

m Robust distributed algorithm \ J
Analysis of Saddle-point dynamics f )

m Convex-Concave Functions

m General Functions Primary/Secondary

Control

Analysis of Primal-dual dynamics




Problem Statement

st Y Pi=1)P=P
i=1
PM < P; < PM Vi
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Problem Statement

Economic Dispatch (ED) Problem

min  f(P)
st 1]P="P, load condition

P™ < P; < PM Vi box constraints




Problem Statement

Economic Dispatch (ED) Problem

min  f(P)
st 1]P="P, load condition
P™ < P; < PM Vi box constraints

Communication network setup
» strongly connected weight-balanced digraphs
» generator / knows f; and controls P;
» generator i can send information to its in-neighbors

Assumptions: we do not consider
> line losses, transmission constraints
> ramp rates, valve-point effects, prohibited operating zones




Problem Statement

Economic Dispatch (ED) Problem

min  f(P)
st 1]P="P, load condition
P™ < P; < PM Vi box constraints

Objective: design distributed algorithm that
» solves the ED problem from any initial condition
» able to handle time-varying loads
> is robust to intermittent power generation




Overview of Literature

» quadratic cost function — consensus based [Zhang et al., 11; Kar&Hug, 12;
Dominguez-Garcia et al., 12; Loia&Vacarro, 13; Binetti et al., 14b |

> general cost but no capacity bound [Xiao&Boyd, 06; Johansson, 09;
Mudumbai et al., 12 ]

> regularized problem — suboptimal solution [Simonetto et al., 12]

> initialization or frequency feedback dependent [Pantoja et al., 14; Zhang et
al., 14]

» general (nonconvex) problem - no theoretical guarantees

» distributed optimization [Nedich&Ozdaglar, 09; Johansson et al., 09;
Wang&Elia, 10; Zhu&Martinez, 12; Gharesifard& Cortés 14]
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Relazed ED Problem: a motivation

Relazed ED problem » Lagrangian:

L(P,v)=f(P)+v(1]P - P)

min  f(P)
st 1]P="P,

» KKT conditions:
Vf(P.) = —-v1, and IIP* =P

Agreement on gradients a solution!

Ashish Cherukur: (UCSD) Ana of distributed dynamical sy



Laplactian—-gradient dynamics

Laplacian-gradient dynamics

P = —LVf(P)
Relazed ED problem

min  f(P)
st 1)P="P,

Ashish Cherukur: (UCSD) An s of distributed dynamical systems



Laplactian—-gradient dynamics

Laplacian-gradient dynamics

P = —LVf(P)

ieltzed) B0 proiles » distributed implementation:

Pi= = jen ai(VA(P) = VE(P)

min £ (P)
st 1TP=p > load condition conserved:
° n

2(1)P)=-1]LVF(P)=0
» f nonincreasing:

(VF, Py =—VFf(P)TLVF(P) <0
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Laplactian—-gradient dynamics

Laplacian-gradient dynamics

P = —LVf(P)
ieltzed) B0 proiles » distributed implementation:
Pi= = jen ai(VA(P) = VE(P)
> load condition conserved:

2(1)P)=-1]LVF(P)=0

» f nonincreasing:

(VF,P) = —VF(P)TLVF(P) <0

Theorem (Convergence of Laplacian-gradient dynamics)

The feasibility set is positively invariant and trajectories starting from a
feasible point converge to the set of solutions of the relaxed ED problem

Ashish Cherukur: (UCSD) Ana of distributed dynamical systems



Laplacian—gradient dynamics: example

Anytime nature of dynamics
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Laplacian—gradient dynamics: example

Anytime nature of dynamics
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» How to incorporate box constraints? — Exact penalty functions

» How to make it initialization-free? — Dynamic average consensus




Reformulation using Exact Penalty Functions

ED Problem Modified ED Problem
min  £(P) min  f(P) = Z fe(P
st 1]P=P
P™ < P < PM Vi s.t lnTP:P/

fe(Pr) = fi(P;) + ([P — PM]* + [P — P,]*)

where 15

Ashish Cherukur: (UCSD)



Reformulation using Exact Penalty Functions

Modified ED Problem

min  f(P) min  ¢(P)
st 1,P=P st 1)P="P
Pl < P < PV, Vi

25 25 25
20/ 20/ 20/
15| 15| 15|
10| 10| 10|
5| 5| 5|
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
fi +  Penalty function = fe
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Reformulation using Exact Penalty Functions

Modified ED Problem

min f(P) min  ¢(P)
st 1,P="F st 1)P="P
Pl < P < PV, Vi

f(Pr) = fi(P) + £ ([P = PM]* + [P/ — P]*)

Proposition (Equivalence between optimizations)

The solutions of above problems coincide for € € R~ such that

1

e <
2maxpeFip | VF(P)lloo
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Reformulation using Exact Penalty Functions

min

s.t

Modified ED Problem

f(P) min  f°(P)
1)P=p st 11P=P

f(Pi) = fi(P;) + ¢ ([P = PM]* + [P/ — P]*)

{VA(P) - 2} Pi < P,
[VE(P) — ¢ V(P Pi= PP,
of(P) = { {VAi(P)} P < P < PM,
[V&(P), VE(P)+ 3] Pi=PY,
{(VA(P)+ 1} P; > PM.

Ashish Cherukur: (UCSD) Analysis of distributed dynamical systems



Reformulation using Exact Penalty Functions

Modified ED Problem

min  f(P) min  f°(P)
st 1,P=P st 17P=Pp
P" < P; < PM, Vi

fe(Pr) = fi(P;) + ([P — PM]* + [P — P]]*)

~v,1,€0f(P,) and 1]P.,=P

Ashish Cherukur: (UCSD)



Laplactian-nonsmooth—-gradient dynamics

Relazed ED problem
Laplacian-gradient dynamics
min  f(P) P = —LVf(P)
st 1)P="P,

Modified ED Problem

Laplacian-nonsmooth-gradient dynamics
min  f(P) P e —Lof*(P)

st 1,P =P where OF<(P) = OfE(Py) x - - - x OFE(P,)

n
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Laplacian—-nonsmooth-gradient dynamics: analysis

P c —Laf<(P)

Theorem (Convergence of LO dynamics)

The feasibility set {P € R" | 1] P = P; and P < P; < PM Vi} is strongly
positively invariant under the L dynamics. Starting from a feasible point
the trajectories converge to the solutions of the ED problem.

» f€ is monotonically nonincreasing — Anytime nature!

[A. Cherukuri & S. Martinez & J. Cortés, ACC 2014]
[A. Cherukuri & J. Cortés, TCNS 2015]
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How to handle initialization?
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> How to make it initialization-free? — Dynamic average consensus

> Laplacian-nonsmooth-gradient + dac dynamics




Centralized Global (Asymptotic) Solution

Laplactian-nonsmooth-gradient + lm dynamics

Pe fLafe(P)+1(P/ -1, P11,
n

» Mismatch between load and total generation decreases exponentially

d

5 (Pr= 1,P)=—(P—1,P)

» On load satisfaction, it reduces to Laplacian-nonsmooth-gradient

Theorem (Convergence of LO+1m dynamics)

Trajectory of LO+1m dynamics starting from any point in R" converge to
the solutions of the ED problem

Ashish Cherukur: (UCSD) is of distributed dynamica



Technical Analysis of LO+1m dynamics

Using refined LaSalle invariance principle for differential inclusions

Theorem (refined LaSalle , Arsie & Ebenbauer (2010))
For f : R" — R" locally Lipschitz, S C R" closed embedded submanifold of R”",
let t — o(t) be bounded solution of x = f(x) with omega-limit set Q(p). If
> Qp)C S
» W : O — R continuously differentiable on open neighborhood O of S such
that LeW <0on S
> E={xeS|0=LW(x)} belongs to a level set of W

then Q(p) C &

Two LaSalle functions for LO+1m dynamics
> Vi(P)= (P —1,P)?
> Va(P) = F(P)

Ashish Cherukur: (UCSD) Analysis of distributed dynamaical systems



How to make LO+1m distributed?

Laplacian—-nonsmooth-gradient dynamics » Each unit / has estimator
. zieR tracking average
Pie »  a;(0f(P;) — 0f(Pi)) + 11z ! T
,eZN signal t — (P, — 1] P(t))
Generation Load mismatch Interconnected systems
levels estimate
Pi,...,P, 21,22, .., 2n » bottom component

dynamic average consensus (dac) es't'mates eYO|V|ng load .

mismatch given generation

zi:_azl+52 Zj — Zj _V/+V2(Plen_Pi)
JEN;

aB > (zi - z)

JEN;

» top component adjusts
generation levels based on
optimization of objective &
estimate of load mismatch

Vi




Load Mismatch along LO+dac dynamics

Let x; = 1) P — P, be the mismatch, x; = X

Because of dynamic average consensus we get

=L )

Second-order exponentially stable linear system — hence /SS

Ashish Cherukur: (UCSD)



Correctness Guarantees

Theorem (Convergence of LO+dac dynamics)
For a, 8,11, > 0 with

V1 1/22)\,,13)((LT L)

<XA(L+LT)

Broda(L+LT) 20

trajectories of LO+dac dynamics starting with 17 v = 0 converge to
{(P,z,v) | P solution of ED problem,z = 0,v = v»(Pje, — P)}

[A. Cherukuri & J. Cortés, Allerton 2014]

[A. Cherukuri & J. Cortés, Automatica, submitted 2014]




Technical and Robustness Analysis

Proof via refined LaSalle Invariance Principle for differential inclusions
Vi(P,z,v) = vuna(Pi — 1, PP +14(1, 2)°

1
Vo(P,z,v) = f(P) + 5 (1/11/2Hz||2 +|lv+az —va(Pre — P)||2)

Ashish Cherukur: (UCSD)



Technical and Robustness Analysis

Proof via refined LaSalle Invariance Principle for differential inclusions
Vi(P,z,v) = vuna(Pi — 1, PP +14(1, 2)°

1
Vo(P,z,v) = f(P) + 5 (1/11/2Hz||2 +|lv+az —va(Pre — P)||2)

Performance guarantees (LO+dac dynamics)
» global convergence
» load mismatch dynamics is ISS
» dynamic loads tracked with ultimate bound

> robust to intermittent generation

Ashish Cherukur: (UCSD)



Lllustration of Algorithm Performance

IEEE 118 bus example with 54 generators
Quadratic cost: fi(P;) = a; + biP; + ¢;P?
a; € [6.88,74.33], b; € [8.3391,37.6968], and ¢; € [0.0024,0.0697]
Communication topology is ring digraph with few additional edges

5 4800 x10*
—total generation]

400 — total load 75
300

4400 7]
200
100 4200 65

UU 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Power allocation Load mismatch Total cost

Ashish Cherukur: (UCSD)




Lllustration of Algorithm Performance

IEEE 118 bus example with 54 generators
Quadratic cost: fi(P;) = a; + biP; + ¢;P?
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Lllustration of Algorithm Performance

IEEE 118 bus example with 54 generators
Quadratic cost: f;(P;) = a; + biP; + ¢;P?
a; € [6.88,74.33], b; € [8.3391,37.6968], and ¢; € [0.0024,0.0697]
Communication topology is ring digraph with few additional edges

"
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Summary

Conclusions
» distributed algorithm for global constraint problem
> exact penalty functions, dac, refined LaSalle
» switching communication topologies possible
>

robustness to intermittent generation

Future work
» Stochastic dispatch

> load, costs, min-(max-)capacities are random variables
> robust or stochastic optimization

> Learning in electricity markets

> generators are strategic
> selfish learning by repeated play




Outline

Analysis of Saddle-point dynamics
m Convex-Concave Functions
m General Functions

ributed dyna



Basic question

Let f : R" — R be C! & convex Let 7 : R” — R be C! & concave
x = —=VIf(x) x = Vf(x)

bdd trajectories converge to minimizers | bdd trajectories converge to maximizers

kuri (UCSD)



Basic question

Let f : R" — R be C! & convex Let 7 : R” — R be C! & concave
x = —=VIf(x) x = Vf(x)

bdd trajectories converge to minimizers | bdd trajectories converge to maximizers

Gradient descent + Gradient ascent

Let F:R" x R™ — R be C! & convex-concave

(for any (x,2), x — F(x,Z) is convex & z — F(X, z) concave)
% = —=V,F(x,2)
z=V,F(x,z)

Do bdd trajectories converge to (min-max) saddle points?

Saddle point: F(x.,z) < F(xs,2:) < F(x,z.) forall x € R" and z € R”




A picture is worth a thousand words

1
21
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Motivation

Distributed convex optimization > aggregate cost: f(x) = Z'_’ L filxi)
: i

> local constraints: g; only depends on

minimize f(x)

x; and {x;}jen(i)
subject to g(x) =0

» Lagrangian: L(x,\) = f(x) + AT g(x), convex-concave in (x, \)
» Primal-dual optimizers < saddle points of L

> ‘“gradient descent 4 gradient ascent” on L is distributed!

Convergence to saddle points of L?

of distributed dynami



Problem statement

Let F:R" x R™ — R be C!, write saddle-point dynamics X;p,

% =—V,F(x,2z)
z=V,F(x,2)

When do trajectories of X, converge to Saddle(F) C R" x R™?

What is already there

> Arrow & Hurwitz & Uzawa (1959): F convex-concave & strict in either
» Wang & Elia (2011): Lagrangian strictly convex in primal

> Fiejer & Paganini (2010): Projection in z-dynamics

» Ratliff & Burden & Sastry (2013): (Pos., Neg.) definite Hessian at NE

Ashish Cherukur: (UCSD) Analysis of distributed dynamica



Problem statement

Let F:R" x R™ — R be C!, write saddle-point dynamics X;p,

% =—V,F(x,2z)
z=V,F(x,2)

When do trajectories of X, converge to Saddle(F) C R" x R™?
Our focus

1. beyond strict convexity-concavity

2. beyond convexity-concavity

3. local vs global convergence

4. continuum of saddle points + convergence to a point

5. complementary conditions

kuri (UCSD)



Convexity-concavity-based convergence

Proposition (Local asymptotic stability via strict convezity-concavity)

If F is locally strictly convex-concave on Saddle(F) then, Saddle(F) is locally
asymptotically stable under X, and convergence is to a point.

Proof sketch:

» LaSalle function: V(x,z) = 3(|[x — x.|? + ||z — z.|]?)

» Lie derivative:

Lx, Vix,z) =—(x— X*)TVXF(X, )+ (z— Z*)TVZF(X, z)
<0

» Stable equilibrium = convergence to a point

Ashish Cherukuri




Convexity-concavity-based convergence

Proposition (Local asymptotic stability via strict convezity-concavity)

If F is locally strictly convex-concave on Saddle(F) then, Saddle(F) is locally
asymptotically stable under X, and convergence is to a point.

Proposition (Local asymptotic stability via convexity-linearity)

If F is locally convex-concave on Saddle(F), linear in z, and
> for each (xy,z.) € Saddle(F), there exists a neighborhood Uy, C R" of x,
where, if F(x,z.) = F(x., z.) with x € Uy, then (x,z.) € Saddle(F),

then Saddle(F) is locally asymptotically stable under X, and convergence is to
a point.

Ashish Cherukur: (UCSD)



Convezity-linearity: example

Constrained optimization on R3
minimize (X1 4 X2 4 X3)?
subject to  x3 = xp
» Optimizers: X* = {x € R3 | 2x; + x3 = 0,x2 = x1}
» Lagrangian: L(x,z) = (x1 +x2 + x3)? + z(x1 — x2)

x3

> Saddle(L) = X* x {0}

X1




Convezity-linearity: example

Constrained optimization on R3

minimize  (x; 4 X2 4 X3)?

subject to  x3 = xp

» Optimizers: X* = {x €R3 | 2x; +x3 =0,x = x1}

v

Lagrangian: L(x,z) = (x1 +x2 + x3)> + z(x1 — x2)

v

Saddle(L) = X* x {0}
» Augmented Lagrangian: L(x,z) = L(x,z) + (x; — x2)?

L globally convex-concave, linear in z, and meets the third criteria

v

v

Lis nOT strictly convex-concave

Ashish Cherukur: (UCSD)



Convezity-linearity: example

Constrained optimization on R3

minimize (X1 4 X2 4 X3)?

subject to  x3 = xp

> X, for Augmented Lagrangian Z(x7 z) = L(x,2) + (x1 — x2)?

10,

—x1 —x2—x3—z

8|

ributed dynam



Linearization-based convergence

Proposition (Local asymptotic stability via linearization)

For F being C3, let Saddle(F) be a p-dimensional manifold. Assume that DXy,
at each point in Saddle(F) has no eigenvalues in the imaginary axis other than
0, which is semisimple with multiplicity p. Then, Saddle(F) is locally
asymptotically stable under X, and convergence is to a point.

Ashish Cherukur: (UCSD)



Linearization-based convergence

Proposition (Local asymptotic stability via linearization)

For F being C3, let Saddle(F) be a p-dimensional manifold. Assume that DXy,
at each point in Saddle(F) has no eigenvalues in the imaginary axis other than
0, which is semisimple with multiplicity p. Then, Saddle(F) is locally
asymptotically stable under X, and convergence is to a point.

Proof sketch:

“VoF —VF
DXSP — |: XX X. :|
Vaf l 2

vZ)( F zz F

> Saddle point property = DX, + DX, < 0
> Re(\(DXsp)) < Amax(3(DXep + DXJ1)) <0

» Now apply center manifold theory

Ashish Cherukur: (UCSD)



Linearization: example

Constrained optimization on R3

minimize (||x| — 1)?

subject to x3 =0.5

» Optimizers: X* = {x € R} | x3 = 0.5,x% + x3 = 0.75}

v

Lagrangian: L(x,z) = (||x|| — 1)® + z(x3 — 0.5)

v

Saddle(L) = X* x {0}

v

The Jacobian of X, satisfies the hypotheses

Ashish Cherukur: (UCSD)



Linearization: example

Constrained optimization on R3

minimize  (||x| — 1)?

subject to x3 =0.5

» Xsp for Lagrangian L(x, z) = (||x]| — 1)? + z(xs — 0.5)

1
—x1 —x2—x3—z 00




Yet more to explore . ..

Consider F : R2 x R — R,

F(x,2) = (Ixll = 1)* = 22|

» Saddle(F) = {(x,z) | ||x|| =1, z =0} I-d manifold
> Jacobian of X, has 0 eigenvalue with multiplicty 2
z

X2

X1

Saddle(F)

Ashish Cherukur: (UCSD)



Yet more to explore . ..

Consider F:R?> xR —» R,

Fx,2) = (Ixll = 1)* = 22|

» Saddle(F) = {(x,2) | ||x|| =1, z= 0} I-d manifold

> Jacobian of X, has 0 eigenvalue with multiplicty 2

—x1 —x2—z 0




Prozimal calculus

V' might not be decreasing but ds is!
ds(x,z) = min__[[(x,;2) = (., 2]l
(xx,24)ES
projs(x, z) = {(x, z.) € S| |(x,2) = (%, z.) || = ds(x, 2)}

S

(e, 24)

(x,2)

projs(x, z)

Ashish Cherukur: (UCSD) Analysis of distributed dynamica



Prozimal calculus

V' might not be decreasing but ds is!
d ) = [ ) - * 9 £k
s(.2) = min_[1(x.2) = (.2
projs(x, z) = {(x, z.) € S| |(x,2) = (%, z.) || = ds(x, 2)}

T

(e, 24)

(x,2)

projs(x, z) )

ds is locally Lipschitz and regular

adg(x, z) = co{2(x — x; 2 — z,) | (X«, 2x) € Projg(x,z)}

Does convexity-concavity along proximal normal to Saddle(F) help?

Ashish Cherukur: (UCSD)



Prozimal normal-based convergence

‘ozimal normals)

For F being C?, assume that for every (x.,z.) and every proximal normal
n = (Nx,nz) at (X, z«) with ||n|| =1, it holds that A — F(xx + A\nx, z.) is
convex and A — F(x., z. + A\n;) is concave with

Fx + M, 22) = F(xe, 22) 2 k| An]|*

F (%, 2+ Anz) = F(x0, 20) < ko e[|

Ashish Cherukur: (UCSD) Analy of distributed dynamical systems



Prozimal normal-based convergence

Proposition (Asymptotic stability via prozimal normals)

For F being C?, assume that for every (x.,z.) and every proximal normal
n = (Nx,nz) at (X, z«) with ||n|| =1, it holds that A — F(xx + A\nx, z.) is
convex and A — F(x., z. + A\n;) is concave with

F(X* + )\nx,z*) - F(X*,Z*) > leAnX”al
F(x, 20 + X02) = Fxe, 22) < —hl|Xng |

and, for all t € [0, 1],

||VXZF(X* + t)\nX,Z* 4= )\772) — VXZF(X* T )\/’7)(72* “F t)\nz)”
< LellAn|*2 + Lz || Ang |72

Ashish Cherukur: (UCSD) Ana  distributed dynam



Prozimal normal-based convergence

Proposition (Asymptotic stability via prozimal normals)

For F being C?, assume that for every (x.,z.) and every proximal normal
n = (Nx,nz) at (X, z«) with ||n|| =1, it holds that A — F(xx + A\nx, z.) is
convex and A — F(x., z. + A\n;) is concave with

F(X* + )\nx,z*) - F(X*,Z*) > leAnX”al
F(x, 20 + X02) = Fxe, 22) < —hl|Xng |

and, for all t € [0, 1],

||VXZF(X* + t)\nX,Z* 4= )\772) — VXZF(X* T )\/’7)(72* “F t)\nz)”
< LellAn|*2 + Lz || Ang |72

Then, Saddle(F) is locally asymptotically stable under Xy, if

(either Ly =0 or oy < ap + 1) AND (either L, =0 or 51 < 52 + 1).
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Prozimal normal: example

F(x,2) = (lIx - 1)* = 2%||x1?
> Saddle(F) = {(x,z) | ||x|| =1, z=0}
> (Xx, z:) = (cosf,sin6,0), where 0 € [0,27)
> 7= (nx,nz) = ((a1cos,arsinf),a), a3+a3=1

z

X2

X1
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Prozimal normal: example

F(x,2) = (lIx - 1)* = 2%||x1?
> Saddle(F) = {(x,z) | ||x|| =1, z=0}
> (Xx, z:) = (cosf,sin6,0), where 0 € [0,27)
> 7= (nx,nz) = ((a1cos,arsinf),a), a3+a3=1

z

X2

> A= F(x + A\, z) = (Mar)* is

convex with a; = 4

> A= F(Xe, 2o + M) = —(Aa2)? is

X1

concave with #; =2

» L,=0,L,#0and 5 =1

Ashish Cherukur: (UCSD) Analysis of distributed dynamica



Summary

The story doesn’t end here but the time does!
[Cherukuri & Gharesifard & Cortés, SICON, submitted 2015]

Conclusions
» convexity-concavity [ V(x,z) = %(”X - X*||2 + ||z - Z*||2)]

convexity-linearity

>
» linearization
» proximal normal [dé(xa z)= min(x*,z*)ES(”X - X*||2 + 1z — Z*||2)]

ributed dynar



Summary

Conclusions

>

>
>
>

The story doesn’t end here but the time does!
[Cherukuri & Gharesifard & Cortés, SICON, submitted 2015]

convexity-concavity [ V(x,z) = %(HX — X*||2 + ||z - Z*||2)]
convexity-linearity

linearization

proximal normal [dé(xa z)= min(x*,z*)GS(”X - X*||2 + 1z — Z*||2)]

Future work
> other asymptotic behaviors  [Holding & Lestas, CDC 2014]

vV v vy

matrix flows [Helmke & Moore, “Opt. & Dyn. Systems"]
robustness analysis

finite-length trajectories

gradient conjecture of René Thom for saddle-point dynamics

distributed dyna



Primal-dual dynamics

For inequalities, dual optima are nonnegative:
x = —=ViF(x,2) [a]+— a ifa>0orb>0
z=[V.F(x,2)|f 0 otherwise

Existing results on convergence:

> Arrow & Hurwitz & Uzawa (1959): Direct method with Taylor
approximation — /imits further analysis

> Fiejer & Paganini (2010): Indirect method using hybrid automata theory —
continuity not satisfied

Ashish Cherukur: (UCSD)




Primal-dual dynamics

For inequalities, dual optima are nonnegative:

x = —=ViF(x,2) [a]+— a ifa>0orb>0
7= [V.F(x,2)|f o otherwise
Existing results on convergence:
> Arrow & Hurwitz & Uzawa (1959): Direct method with Taylor
approximation — /imits further analysis

> Fiejer & Paganini (2010): Indirect method using hybrid automata theory —
continuity not satisfied

Our contribution is a novel proof methodology:
» consider solutions in Caratheodory sense
» model as a projected dynamical system
» use LaSalle Invariance Principle for Caratheodory systems

[A. Cherukuri & E. Mallada & J. Cortés, SIAM CT 2015]
[A. Cherukuri & E. Mallada & J. Cortés, SCL, 2015]

distributed dynam



Thank you. Comments or questions?

Jorge Cortés Bahman Gharesifard Enrique Mallada

Ashish Cherukur: (UCSD)
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