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Cyber physical systems

Intra-Vehicle Networking B R S e

CAN - most spread network in the car, some imitations.

o 4 MOST - designed for multimedia using
. opical fiber (up to 150 Mbls)
Ethemet - mainly used for |
diagnostics, high potential for more

FlexRay - high performance (10 Mbps), deterministic, and secure network
(mainly used in X-by-wire, ADAS, and high performance applications)

Source: Renesas

e Hundreds of sensors, actuators and processors all communicating
over a network; millions of lines computer code
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adoptve
Cruge Eonirol

cETsiz0n

e Vast geographical spread, thousands of nodes - hierarchical and
distributed topologies




e Integrated approach to the design of control, communication and

computing components - Cyber Physical Systems (CPS)

=

2/49



adoptve
Cruge Eonirol

cETsiz0n

e Challenges: Constrained resources (energy, communication,
computation), privacy and security . ..




@ Opportunistic state-triggered control
© Differential privacy in CPS
@ Networked transportation systems

@ Summary & future research plans
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@ Opportunistic state-triggered control
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Smart Actuator

Smart Sensor
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Networked control systems

Smart Actuator

Smart Sensor

e When to transmit:
Time-triggered strategies
e The traditional approach to sampling
e Usually the triggering is periodic
e Novelty of the sensor data not important in
the sampling decision
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Smart Actuator

Smart Sensor

e When to transmit:
State-triggered (event-triggered) strategies

e A trigger function implicitly determines
transmission times

e Trigger function encodes the control goal

e Transmissions occur only when necessary

e Better use of resources than time-triggered
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Smart Actuator

Smart Sensor

e When to transmit: o

01

State-triggered (event-triggered) strategies

e A trigger function implicitly determines o
transmission times
Trigger function encodes the control goal “

Transmissions occur only when necessary
Better use of resources than time-triggered

Need to ensure Zeno does not occur
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Event-triggered control under imperfect information

Event Triggered Control
Controller

External
Input

Online trajectory tracking

Dynamic output feedback control
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Quantization and event-triggering co-design

Actuator Layer

Coﬁ.troller/Obsérver Sensor Layer
Layer

Decentralized control

Ph.D. work
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What is the case for event-triggered control?

%k Event-triggered inter-tx times

Lower bound on inter-tx times . . ) )
Also has connotation of MATI % Time-triggered inter-tx times

MATT is a lower bound on inter-transmission times for an
event-triggered implementation
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What is the case for event-triggered control?

/ % Event-triggered inter-tx times

Lower bound on inter-tx times . . ) )
Also has connotation of MATI % Time-triggered inter-tx times

MATT is a lower bound on inter-transmission times for an
event-triggered implementation

e But what about the distribution or the average of the
inter-transmission times?

e More generally, what is the average data rate?

e These are open questions in general

e Can we design controllers with analytically quantifiable data rate?

e Given a bound on the channel data capacity, what should the
transmission policy be?
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Networked control systems - what to transmit

Smart Actuator

Smart Sensor

Information-theory based data rate theorems

e Quite successful in the discrete-time setting

e Tight necessary and sufficient data rates for |z *® it
stabilization
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Networked control systems - what to transmit

Smart Actuator

Smart Sensor

Information-theory based data rate theorems

e Quite successful in the discrete-time setting

e Tight necessary and sufficient data rates for |z *® it
stabilization

What about sufficient rates for specific performance (e.g. convergence rate)?
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System description

Plant dynamics:
x(t) = Ax(t) + Bu(t) +v(t), u(t)=Kz(t), =z(t)eR™ o)<y,
Vit € ﬁo,oo]

9/49



System description

Plant dynamics:

x(t) = Ax(t) + Bu(t) +v(t), u(t)=Kz(t), =z(t)eR™ o)<y,
YVt e ﬁo,oo]

Communication model:

A b _ D
Ak. Ak S A(tkapk) - Ra(ktk) = R(fk)
_‘Ak " # of bits transmitted at tx is b = npx

th TR TR tvk_,.l Can choose {t;}, {pr}, {Tx}

9/49



System description

Plant dynamics:

x(t) = Ax(t) + Bu(t) +v(t), u(t)=Kz(t), =z(t)eR™ o)<y,
YVt e ﬁo,oo]

Communication model:

A < Alti,pr) 2 7oy = 76

Ay ~ R(tk)
_‘Ak " # of bits transmitted at tx is b = npx

th TR TR tvk_,.l Can choose {t;}, {pr}, {Tx}

Dynamic controller flow:
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System description

Plant dynamics:

x(t) = Ax(t) + Bu(t) +v(t), u(t)=Kz(t), =z(t)eR™ o)<y,
YVt e ﬁo,oo]

Communication model:

A b _ D
Ak. Ak S A(tlmpk) - Ra(ktk) = R(fk)
_‘Ak " # of bits transmitted at tx is b = npx

th TR TR tvk_,.l Can choose {t;}, {pr}, {Tx}

Dynamic controller flow:
z(t) = Az(t) + Bu(t) = Az(t), t€ [Tk, Tkt1)

Dynamic controller jump: #(7x) = gi(z(ty), 2(t;)) L(tk)‘ """"

. A A
Encoding error: z. = x —
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Objective

Suppose A = A+ BK is Hurwitz <= PA+ ATP =—-Q

Lyapunov function: z +— V(x) = 2T Pz
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Objective

Suppose A = A+ BK is Hurwitz < PA+ ATP = —Q
Lyapunov function: z +— V(x) = 2T Pz

Desired performance function: Vy(t) = (Va(te) — Vo)e Pt 4 Vj

Performance objective: ensure hyg(t) £ V‘S:(f))) <1, for all t >ty

Design objective:

e Design event-triggered communication policy that is applicable to
channels with time-varying rates and data capacity

e Recursively determine {t}, {px} and {74}

e Ensure a uniform positive lower bound for {t; — ty—1}rez-,
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Necessary data rate (non-state-triggered transmissions)

) (t)

Set S(t) must lie within the set
Vi(t) £ {E e R V(€) < Vy(t)} at all times.
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Necessary data rate (non-state-triggered transmissions)

) (t)

Set S(t) must lie within the set
Vi(t) 2 {E e R": V(€) < Vy(t)} at all times.

Number of bits necessary to be transmitted between tg and ¢ to meet
the control goal:

B(t.t0) > (tr(4) + ") lomy(e)(t — t0) + log (W)

R 2 Jim B0 > (1n(4) + ) gy (0

Assuming all eigenvalues of A have real parts greater than —f.

11 /49



Quantization

Can design consistent algorithms for the encoder and decoder to
implement quantizer g so that:
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Quantization

Can design consistent algorithms for the encoder and decoder to
implement quantizer g so that:

e If the decoder knows d.(tg) s.t. |[zc(to)||co < de(to)

e Both encoder and decoder compute recursively:

de(t) 2 (||| WOy, t € [Fr, Frr1), k € Ziso g

1 .
041 = wde(tk—%l)'

e Then, [[z(t)]|co < de(t), for all t > ¢
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Control under bounded rate and capacity

If
e p is max. packet size

o R(t)> £, Wt
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Control under bounded rate and capacity

Theorem
If
e p is max. packet size
P
« R(t) > £, Vi
Then

o Can design event-triggered {tx}, {pr}, {7x}

o inter-transmission times have uniform positive lower bound
o V(x(t)) < Vy(t) fort >t

(origin is exponentially practically stable if there is disturbance)

v
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Upper bound on the sufficient data rate

Corollary (With disturbance)

Let 0 = || Ao + g For any k € Z~,

0Ty

e k—t0) 75
2 < logs (pT<B<TM,b<t;>,e<t;>>—a(TM)) o (H’“ ey <(t0) i i a(T))

v

Corollary (No disturbance)

Let 0 = || Ao + g For any k € Z~y,
k—1 0T n
n(pe+ T p) <0 {log? (pT(B(T‘M,b(Z-),e(t,:))) 1+ Ology(€) (i —fo) + logZ(E(tO))] '

v

e In the general case, only an implicit characterization

e Effect of non-instant communication (through 7/) has only a
“transient” effect on sufficient data rate

e In the scalar case, if no disturbance then necessary and sufficient
asymptotic data rates are same



Shared communication resource

Smart Actuator Smart Actuator

Smart Sensor Smart Sensor

e Time-varying communication rates

Channel may not be available during some intervals (blackouts)

Time-triggered strategies would be very conservative

Event-triggered controllers typically assume on-demand
availability of channel
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Shared communication resource

Smart Actuator Smart Actuator

Smart Sensor Smart Sensor

e Time-varying communication rates
e Channel may not be available during some intervals (blackouts)
e Time-triggered strategies would be very conservative

o Event-triggered controllers typically assume on-demand
availability of channel

Key to online state based transmission policy: data capacity
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Time-slotted channel model

3500

.

N A O ©® O

3000
Q’: 2500

2000

=)

Pk
—= > R(t
A(ty,pe) — (t)

p(t) =7, Vte (0;,0j41], max packet size: p, < p(ty)

R(t) = Rj, Vte (0j,0j41], min comm. rate:

e j™ time-slot is of length T; =011 —0;
e Channel is not available when p = 0 (channel blackout)
e Channel evolution is known a priori
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.

N A O ©® O

3000
Q’: 2500

2000

=)

R(t) = Rj, Vte (0j,0j41], min comm. rate: Pk R(tx)

A(tg, pr) —
p(t) =7, Vte (0;,0j41], max packet size: p, < p(ty)

e j™ time-slot is of length T; =011 —0;
e Channel is not available when p = 0 (channel blackout)
e Channel evolution is known a priori

Main idea of solution: make sure the encoding error is sufficiently
small at the beginning of a channel blackout
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Time-slotted channel model

10 3500

8 3000

6

4 2 2500

00 2 4 6 8 10 0 2 4 6 8 10
t t

R(t) = Rj, Vte (0j,0j41], min comm. rate: S R(ty)

A(ty, pr)

p(t) =7, Vte (0;,0j41], max packet size: p, < p(ty)

4™ time-slot is of length T; =011 —0;
Channel is not available when p = 0 (channel blackout)
Channel evolution is known a priori

Main idea of solution: make sure the encoding error is sufficiently
small at the beginning of a channel blackout

Need to quantify data capacity
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Data capacity

max # of bits that can be communicated during the time interval
[T1, T2], overall all possible {tx} and {px}

Fory | 3 T rs
I - .. I
D(1,72) = max n E Pk T1t3 tr s

{tk}v{pk}
k=k —
s.t. ... —T1 k — 37 k7_2 = 7

2y
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Data capacity

max # of bits that can be communicated during the time interval
[T1, T2], overall all possible {tx} and {px}

Fory | 3 rToo,rs
D(11,72) 2 max n E Dk 1 t3 R T
{tk}v{pk} k=k .
st L k., =3k, =7

Equivalent to optimal allocation of discrete # bits to be transmitted in
each time slot
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Data capacity as allocation problem

Max # bits that may be transmitted in slot j
né; < nR;T; + n7j, %ffrj>0
0, ifm; =0

Available time in slot j is affected by prior transmissions

no; < nRT(qS )+ n7j, 1fT(¢ )>0
0 otherwise

Count only the bits also received "

B S
! otherwise. A

-

¢j<{Tj<¢j~§>+9jf—6j+1, i T(¢)) >0 =
0,

Jr—1
D(0j,,05,) = max n E b;
€Z>0 :
st. ... J=jo
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A suboptimal solution for “slowly varying channels”

Proposition

ﬁ-. o
Assume EJ <Tj41,Vj € ./\fjof (any bits transmitted in slot j are
J

received before the end of slot j + 1).
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A suboptimal solution for “slowly varying channels”

Proposition

= .
Assume EJ <Tj41,Vj € ./\fjof (any bits transmitted in slot j are
g

Jr—1
received before the end of slot j+1). Let ¢" = argmax Z ¢j (LP).
¢JER>O J=Jo
Let
Jr—1

¢V £ ("] & (165 )- s 8f,-1))s Ds(Bior85) £ Y .

J=Jjo
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A suboptimal solution for “slowly varying channels”

Proposition

Assume % <Tj41,Vj € ./\fjof (any bits transmitted in slot j are
g
Jr—1
received before the end of slot j+1). Let ¢" = argmax Z ¢j (LP).
¢JER>O J=Jo
Let
Jr—1
SN E ) E ()55 195, -1))s Ds(0se,05,) 2 Y 6.
J=Jo
Then
o ¢V is a sub-optimal solution
® ,D(ejoﬂ9 ) (63079 )Sn(jf_l_jo)'
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Real time computation of data capacity

Proposition

Let ¢* (or ¢V ) be any optimizing solution to D(0;,, 0;,) (or
Ds(05o,03;))-
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Real time computation of data capacity

Proposition

Let ¢* (or &™) be any optimizing solution to D(;,, 9, ) (or
Ds (0o, 05,)). For any t € [0j,,0,4+1) (any t in jo slot)

Jr—1

f)(t,ejf) = [ L¢]0 ]0( 0j0)J]++n Z ;

Jj=jo+1

ﬁs(taejf) = [n LQS% - Rjo(t - 0j0)H+ +n Z ¢§V’
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Real time computation of data capacity

Proposition

Let ¢* (or &™) be any optimizing solution to D(;,, 9, ) (or
Ds (0o, 05,)). For any t € [0j,,0,4+1) (any t in jo slot)

Jr—1

f)(t,ejf) = [ L¢]0 ]0( 0j0)J]++n Z ;

Jj=jo+1

ﬁs(taejf) = [n LQS% - Rjo(t - 0j0)H+ +n Z ¢§V’

Then, 0 < D(t,0;,) — D(t,0;,) < n and 0 < Dy(t,0;,) — Ds(t,0;,) < n.
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Real time computation of data capacity

Let ¢* (or @Y ) be any optimizing solution to D(0},, 0, +) (or
Ds (0o, 05,)). For any t € [0j,,0,4+1) (any t in jo slot)

Jr—1
f)(t,ejf) = [ L¢]0 ]0( 0j0)J]++n Z ;

Jj=jo+1

ﬁs(taejf) = [n LQS% - Rjo(t - 0j0)H+ +n Z ¢§V’

Then, 0 < D(t,0;,) — D(t,0;,) < n and 0 < Dy(t,0;,) — Ds(t,0;,) < n

Significance: Sufficient to solve the data capacity problem for intervals
[0, 0j,] of interest.
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Elements of the event-trigger

Recall performance objective: ensure hpf(t) £ V‘S:((f))) <1, forallt >ty
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Channel trigger function: h,(t) = #}26)), e(t) 2 %
e/ Va

21 /49



Elements of the event-trigger

Recall performance objective: ensure hpg(t)

Channel trigger function: h,(t) = pT(E

®)

hpe(t))

If hpe(t) <1 and hen(t) <1

2 V(z@)
Va(t)

e(t) 2

<1, forall t > tg

de(t)

e/ Va(t)
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Elements of the event-trigger

Recall performance objective: ensure hpf(t) £ V‘Sj((f))) <1, forallt >ty

Channel trigger function: h,(t) = %, e(t) & —delt)
P

o
5
=
o~
=

If hye(t) < 1 and ha(t) < 1 then hy(s) <1, Vs € [t,t 4+ T].

Idea for triggering:
o Make sure hpe(t) < 1, Vt € [ty, 7]
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Role of data capacity in control
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Role of data capacity in control

)

oIY 2 4 6 8 10

! ese nt) hpe <1, hey <1

eh(T (t)*t)e(t)

L3(t) £ nlog, (T) — 01Dy (t, 7u(t)) J
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Role of data capacity in control
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Transmission policy should be in tune with the optimal allocation
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Role of data capacity in control
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Transmission policy should be in tune with the optimal allocation
D7 (t) = HPJ — Rj(t — 0j)J]+, t e (ej, 0j+1] (optim. alloc. in (t,9j+1])
Artificial bound on packet size: ¥ (t) £ min{p(t), ®™(¢)}

If L3(t) < 0 and pp <97 (tg) then L3(ry) <O Byt 47 (¢) can be 0
If data capacity was “sufficient” at t; and px when p(t) > 0
respects artificial bound then data capacity is (artificial blackouts)
“sufficient” at ry,
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Control policy in the presence of blackouts

tht1 :min{t > 7 ) > 1A
(max{ﬁl( ), L1(t7), La(t), La(t)) > 1
vmax{£a(t), L5(t%)} 2 0) },
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Control policy in the presence of blackouts

tht1 :min{t > 7 ) > 1A
(max{Z:(5), £1(t7), £o(t), £2(47)} = 1
vmax{ Ly (), £(17)} = 0) |,

Pk € ZoN[pk, Y™ ()]
pr = min{p € Zxo : hen (Tar(p), hpt (tr), €(ty), p) < 1}
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Control policy in the presence of blackouts

tht1 :min{t > 7 ) > 1A
(max{Z:(5), £1(t7), £o(t), £2(47)} = 1
vmax{ Ly (), £(17)} = 0) |,

Pk € ZoN[pk, Y™ ()]
pr = min{p € Zxo : hen (Tar(p), hpt (tr), €(ty), p) < 1}

T =min{t > r, : " (t) > 1 Vv p(t) = 0}.
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Control policy in the presence of blackouts

Theorem

If
o« R(t) > 2 wpe {1,...pMe}, vt

T (p)’
° El(to) <1, Eg(to) <1 and £~3(t0) < 0 (initial feasibility)

e Conditions on blackout lengths
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Control policy in the presence of blackouts

Theorem

If
o R(t) > ,_(ﬁ;jé)) Vp e {1,...,pMe}, vt
° ﬁl(to) <1, Zg(to) <1 and £~3(t0) <0 (initial feasibility)
o Conditions on blackout lengths

Then

o {te}, {pr}, {7} well defined
o inter-transmission times have uniform positive lower bound

o V(z(t)) < Va(to)e Pt for t >ty (origin is exponentially stable)
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cETsi202

e Malicious attacks can have catastrophic physical consequences
industrial plants, cars and traffic, medical devices

e Large scale collection of user data in many domains - many
benefits but loss of individuals’ privacy

e Encryption not sufficient - need a multi-layered approach
[m] [ - =




Differential privacy

Definition (Differential privacy)

Given 4, € € RY, the mechanism M is e-differentially private if, for any
two d-adjacent data X(1) and X(® and any observation set @, one has

P{M(X?) € 0} < ¢PIM(XD) € 0}
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Differentially private average consensus

Agents’ dynamics: 0(k + 1) = 0(k) — hLx(k) + Sn(k),
Messages: z(k) = 0(k) + n(k)
h is step size, S is a diagonal matrix with diagonal (s1, .

n;(k) € R is the noise added by agent i on time step k

0 c R"

v 5n)
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Differentially private average consensus

Agents’ dynamics: 0(k + 1) = 0(k) — hLxz(k) + Sn(k), 6 € R"
Messages: z(k) = 0(k) + n(k)
h is step size, S is a diagonal matrix with diagonal (s1,...,sy,)

n;(k) € R is the noise added by agent i on time step k

Objective:
e Design the distribution of the noise sequences 7

e Want asymptotic average consensus and e-differential privacy of
the initial condition,

e ¢ as small as possible, and maximize algorithms accuracy
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An impossibility result

For any 6,e > 0, agents cannot simultaneously converge to the average
of their initial states in distribution and preserve e-differential privacy
of their initial states.

D

[

Ave(®,") Ave(6,%)

% W
60

Ave(0,")  Ave(0,%) )
1

Contradiction: py,p» ~ 1,q ~ 0,p; < e‘qa
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Differentially private average consensus

Theorem

if

e 1i(k) ~ Lap(bi(k)) (Laplace distribution)
bi(k) = CiQfa ¢i € Rso, gi € (]si — 1],1), s; € (0,2)
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Differentially private average consensus

If
o ni(k) ~ Lap( i(k)) (Laplace distribution)
bz(k) - clqza ¢ €Rso, gi € (’31 1’ 1) i € (0, 2)
Then

e Forallie{l,...,n}, 6; ( ) = 0o almost surely, where
oo = Ave(6(0 )) +Zz 17 Z;oom(])

o E{O} = Ave(6(0)), war{f} = 7 o ﬁ

o ¢;-differential privacy of agent i’s initial condztwn, with

pp— qi
&= 5Ci(Qi+8i—1)'

31 /49



Differentially private average consensus

If
o ni(k) ~ Lap( i(k)) (Laplace distribution)
bi(k) = ciqf, ci € Rso, ¢; € (|si —1],1), s; € (0,2)
Then

e Forallie{l,...,n}, 6; ( ) = 0o almost surely, where
oo = Ave(6(0 )) +Zz 17 Zjoom(])

o E{fo} = Ave(6(0)), var{fc}=3>1, ﬁ

o ¢;-differential privacy of agent i’s initial condztwn, with

pp— qi
&= 5Ci(Qi+8i—1)'

Optimal selection of noise parameters by minimizing var {0 }
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Networked transportation systems

TERRESTRIAL
BROADCAST

MOBILE

cETsiz0n

e Collision avoidance, cruise control, trip planning, traffic
coordination ...

coordination, on-demand public transport, multi-modal




Intersection traffic coordination

Source: CAR 2 CAR communication consortium

e Vehicle-to-vehicle and vehicle-to-infrastructure communication can
be used to coordinate traffic - no traffic lights

e Individual vehicles can use fore-knowledge of the schedule to
optimize their travel much before they reach the intersection

e Potential to significantly improve safety, travel ease, travel times,
energy consumption
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Problem statement

e Assumptions: (i) Single lane in each direction, (ii) all vehicles are
identical with length L, (iii) no turning at the intersection, (iv) no
sources or sinks for vehicles along the branches.
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Problem statement

e Assumptions: (i) Single lane in each direction, (ii) all vehicles are
identical with length L, (iii) no turning at the intersection, (iv) no
sources or sinks for vehicles along the branches.

e Vehicle dynamics:

#9(t) = v¥(t),  Bounded control: uj(t) € [um, unm]
07 (t) = uj(t),  Speed limit: vf(t) must be in [0, vM]

e Cost function: C' £ Ej f

¢ gawn (WT + ’u‘;}Ddt

Texit
s
J

35 /49



Problem statement

Assumptions: (i) Single lane in each direction, (ii) all vehicles are
identical with length L, (iii) no turning at the intersection, (iv) no
sources or sinks for vehicles along the branches.

Vehicle dynamics:

#9(t) = v¥(t),  Bounded control: uj(t) € [um, unm]
07 (t) = uj(t),  Speed limit: vf(t) must be in [0, vM]
A Tgxit
Cost function: C'= 37, [Ldawn (Wr + [uf])dt
J

Objective: Design a traffic coordination mechanism for networked
and automated vehicles that seeks to minimize the cost function

Challenges: Problem is combinatorial. Solving it at the level of
individual cars is computationally expensive and not scalable.
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A scalable solution

< [06 000~

1 eleiee >

i—T;

w onel ® > >

Black dots are individual vehicles

Vehicles are clustered into bubbles
represented by the grey boxes

Vehicles of a bubble platoon (rigid
cohesive group) when crossing the
intersection

x; is the position of the lead
vehicle in the bubble

A is the length of the intersection
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A scalable solution

< [06 000~

1 eleiee >

i—T;

w onel ® > >

Black dots are individual vehicles
Vehicles are clustered into bubbles
represented by the grey boxes

Vehicles of a bubble platoon (rigid
cohesive group) when crossing the
intersection

x; is the position of the lead
vehicle in the bubble

A is the length of the intersection

e e S e

Mid zone

Exit zone  |Inter-
section

L. A~
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Overview of hierarchical solution

Clustering new vehicles State of bubble i:
into bubbles . . =occ T 4
List pf pubbles+ * Previous schedule (1;“ v“ m“ Ti ’IZ) € R X {1’ 2’ 3’ 4}7
(periodically) (periodically) x;: position of the lead vehicle
Scheduling of bubbles | v;: velocity of the lead vehicle
Current schedule ETA & LTA *
(periodically) + T‘Pe”mﬁ‘ca"y' m;: number of vehicles in the bubble
Local vehicular control —occ.
‘ ‘ 79 guaranteed upper-bound on 7
* ETA: Earliest time of arrival Z;: branch label that the bubble is on

LTA: Latest time of arrival

7;: scheduled time of approach at the beginning of the intersection
for the lead vehicle in bubble ¢

79 occupancy time - time for which bubble ¢ occupies the
intersection
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Scheduling of bubbles

Constraints:
7i € [max{7™™ 7¢}, 7], interval determined by initial conditions
7; > 1+ 7, if bubbles i and j on same branch and j follows 4

TiZTj—{—T’;CC ORTjZTi—FT’ZpCC, ifzi?ézja
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Scheduling of bubbles

Constraints:

7i € [max{r™" 7¢}, 7]

,Ti },T;], interval determined by initial conditions

7; > 1+ 7, if bubbles i and j on same branch and j follows 4
TiZTj-i—T';-)CC ORTjZTi—i—ﬁ)CC, ifIi;ﬁIj,

Simplified cost function for scheduling:

CL—Zmz (Wrp(mi —ts) + Fi(v;)) Zml( Fi(v ))
€L el

U;: average velocity of the lead vehicle in bubble ¢ for t € [ts,ts + i
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Scheduling of bubbles

Constraints:

7i € [max{r™" 7¢}, 7]

1, 7], interval determined by initial conditions

7; > 1+ 7, if bubbles i and j on same branch and j follows 4
TiZTj-i—T';-)CC ORTjZTi—i—ﬁ)CC, ifIi#Ij,

Simplified cost function for scheduling:

CL—Zmz (Wrp(mi —ts) + Fi(v;)) Zml( Fi(v ))
€L el

U;: average velocity of the lead vehicle in bubble ¢ for t € [ts,ts + i

Assumption: Fy : [0,vM] — R.q is a monotonically decreasing
0

Schedule optimization using branch 1 2 03 o4

and bound.
21 2,2 2,3 2.4

Tree of possible bubble passage orders.
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Safe-following distance

Definition (Safe-following distance)

We say a quantity D(vj_,(t),v](t)) is a safe-following distance at
time ¢ for the pair of vehicles j — 1 and j if

o w1 (t) = 2j(t) = D(vj_1(2), v} (1))

e both the vehicles were to perform the maximum braking maneuver

then the two vehicles would be safely separated, 3:}’_1 —L> x;’ until
they come to a complete stop.
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Safe-following distance

Definition (Safe-following distance)

We say a quantity D(vj_,(t),v](t)) is a safe-following distance at
time ¢ for the pair of vehicles j — 1 and j if

o w1 (t) = 2j(t) = D(vj_1(2), v} (1))

e both the vehicles were to perform the maximum braking maneuver

then the two vehicles would be safely separated, x;-’_l —L> x;’ until
they come to a complete stop.

Dy_y (1), v (8)) = L +max {0, 5= ((@3(1)? = (vi_1(1))?) } is a

7 2Um J
safe-following distance for a vehicle j following j — 1.

o Tt =)

Safety ratio: o;(t)
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Distributed vehicular control

Consists of two parts
e an uncoupled optimal feedback controller for reaching the
intersection at a nominal deadline with a nominal speed: gy,
e a controller for safe following: gsr 2 min{guc, Jus},

3 v __
1 1fvj—0,

’LL
( L (1+crj )—1) (jgjm), if o? > 0.

L

gUS(Cja U§_1)
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Distributed vehicular control

Consists of two parts
e an uncoupled optimal feedback controller for reaching the
intersection at a nominal deadline with a nominal speed: gy,
e a controller for safe following: gsr 2 min{guc, Jus},

3 v o
N 1fvj—0,

Gus (5, uj_q) = ( = (1_1_% uj >_1)( Jm), if v > 0.

J

Gue, if ¢; ¢ Cs, v;-) < oM,

0 if (; ¢C v — M

Control law: U}J(t) = [QUC]um’ 1 < # Co * UM’
Jsfs if (; € Cs, v;’ < v,

[95710,,, i €Cs, vV =v

Coupling set: Cys = {(v1,v2,0) : v2 > vy and o € [1,00]}
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Provably safe traffic coordination

If

M2 nom\2
e Exit zone length L, > — ™) 4 (")
2um 2UM

o New wehicles arrive at a safe following distance
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Provably safe traffic coordination

Theorem
If
M2 nom\2
e Exit zone length L, > — ™) 4 (")
2um 2UM
e New vehicles arrive at a safe following distance

Then

e Fach vehicle belongs to some bubble
FEach bubble scheduled at least once

Feasible schedule always exists

Inter-vehicle safety is ensured for all vehicles at all times

Distributed vehicular control respects the prescribed occupancy
schedule

11 /49



Videos
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Simulations
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@ Summary & future research plans
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Opportunistic state-triggered control

Fusion of event-triggered control and information-theoretic control

Control under bounded and specified channel capacity

Stabilization with prescribed convergence rate

Analysis of average data rate

Control under time-varying channels (including blackouts)
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Opportunistic state-triggered control

Fusion of event-triggered control and information-theoretic control

Control under bounded and specified channel capacity

Stabilization with prescribed convergence rate

Analysis of average data rate

Control under time-varying channels (including blackouts)

Future plans:

e Fusion of event-triggered control and information-theoretic control
for nonlinear systems and distributed control

e Stochastic channel models

e More realistic scheduling constraints

e Open problem: analytical quantification of the average data rate
for an arbitrary event based controller

45/ 49



Differential privacy in CPS

Differentially private average consensus

Fundamental trade-off between accuracy and privacy
Convergence in the mean to the average of the initial states
Optimal selection of noise parameters
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Fundamental trade-off between accuracy and privacy

Convergence in the mean to the average of the initial states

Optimal selection of noise parameters

Differentially private distributed convex optimization via
functional perturbation
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Differential privacy in CPS

Differentially private average consensus

Fundamental trade-off between accuracy and privacy

Convergence in the mean to the average of the initial states

Optimal selection of noise parameters

Differentially private distributed convex optimization via
functional perturbation

Future plans:

e Fundamental data rate theorems under privacy requirements

e State-triggered control works by encoding the control goal in the
event-trigger and the aperiodic transmission instants carry
information - what are the implications for privacy?
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Networked transportation systems

e A scalable hierarchical-distributed solution to coordination of
intersection traffic applicable to a wide range of traffic densities

e A provably safe online coordination of traffic

e Framework has the potential to significantly improve safety, travel
ease, travel time and energy consumption
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Networked transportation systems

e A scalable hierarchical-distributed solution to coordination of
intersection traffic applicable to a wide range of traffic densities

e A provably safe online coordination of traffic

e Framework has the potential to significantly improve safety, travel
ease, travel time and energy consumption

Future plans:

Incorporate statistical and real-time data of incoming traffic
Extend to a network of intersections

Multiple temporal and spatial refinements of data and control

Privacy, security and resilience

On-demand routing and scheduling of bus services

e Experiments and implementation in lab

A7 /49



Teaching plans

o UG courses: Control systems, signal processing, linear systems,
linear algebra, circuit theory and dynamics

e PG courses: Linear systems theory, random processes, nonlinear
systems, hybrid systems, distributed control, networked control
systems

e Course on CPS & CPS applications - possibly collaborate with
other departments, encourage students to do multi-disciplinary,
multi-domain projects
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