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I am ...

Born in Ehime, Japan
Graduated from Kyoto University
Working at The University of Kitakyushu as a full professor
Interested in control, signal processing, communications
A blogger of Welcome to My Sparseland (very sparse blogging)
sparseland.blogspot.com

Google Maps

Map data ©2016 Google, SK planet, ZENRIN 500 km 
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The University of Kitakyushu

I am working with The University of Kitakyushu
Faculty of Environmental Engineering
Control theory, signal/image processing, artificial intelligence,
autonomous vehicles (including drones), and so on.
We welcome foreign students for master and PhD degrees.

If you are interested, please email me.
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About this talk

Sparsity is useful (as you know)

Relation between sparsity and discreteness

Sparsity methods for control

Interplay between control and sparse signal processing
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PART I

Sparsity and discreteness1

1
M. Nagahara, Discrete signal reconstruction by sum of absolute values, IEEE Signal Processing Letters, Vol. 22, no. 10,

pp. 1575-1579, Oct. 2015.
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Sparsity in Engineering

Image processing

single-pixel camera, compressed sensing MRI

Statistics

big data analysis
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Sparsity in Engineering

Image processing
single-pixel camera, compressed sensing MRI

Statistics
big data analysis

Discrete signal processing
binary image reconstruction, digital communications

Control
networked control, sparse control, discrete-valued control
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What is sparsity?

A vector x in Rn is sparse if it contains many 0’s, or has small `0 norm

‖x‖0 , the number of the nonzero elements in x.

Examples of sparse vectors

Frequency domain data of natural signals and images almost all of
them are nearly 0 except for low-frequency data.
Pulse signals; they are sparse in the time domain.

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 9 / 44



Sparse signal reconstruction

Suppose that a sparse signal x ∈ Rn is measured by linear
measurements

y = Φx ∈ Rm,

where Φ ∈ Rm×n is a known matrix.

Finding the original x is ill-posed if m < n.

To determine one vector from y, we adopt optimization.
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Sparse optimization

The following optimization will do for sparse signal reconstruction:

min
z∈Rn

‖z‖0 subject to y = Φz.

This gives the exact reconstruction (with assumptions on x and Φ).

However, it is hard to solve if n is very large (e.g. 1 milion).

In many cases, the following `1 optimization solves the problem:

min
z∈Rn

‖z‖1 subject to y = Φz.
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Sparse signals

Probability distribution of sparse vectors

Dirac delta at x = 0 (discrete distribution)
continuous distribution for x 6= 0

p(x)

x

0

z =




z1
z2
...
zn




‖z‖0 : small
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Signals that contain many 1’s

Probability distribution of many-1 vectors

Dirac delta at x = 1 (discrete distribution)
continuous distribution for x 6= 1

p(x)

x

0

z =




z1
z2
...
zn




1

‖z − 1‖0 : small
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Signals that contain many binary values ±1

Probability distribution

Dirac deltas at x = ±1 (discrete distribution)
continuous distribution for x 6= ±1

If P[x = 1] = P[x = −1], then

p(x)

x

0

z =




z1
z2
...
zn




1−1

1

2
‖z − 1‖0 +

1

2
‖z + 1‖0 : small

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 14 / 44



Discrete signals

Discrete signal z on a finite alphabet, {r1, r2, . . . , rL}
Probability distribution is Dirac deltas at x = r1, r2, . . . , rL.

P[x = rj ] = pj , pj > 0, p1 + p2 + · · ·+ pL = 1.

p(x)

r1 r2 r3 r4

x

The weighted sum of `0 norms

p1‖z − r1‖0 + p2‖z − r2‖0 + · · ·+ pL‖z − rL‖0
is small.
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Discrete signal reconstruction

A binary signal x ∈ {1,−1}n whose entries are drawn from

P[x = ±1] = 1/2.

Incomplete linear measurement

y = Φx ∈ Cm, with m� n

Reconstruct x from y (discrete signal reconstruction)
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Sum-of-absolute-values optimization

Observing that
1

2
‖x− 1‖0 +

1

2
‖x+ 1‖0

is small, we can say that the sum of absolute values (SOAV)

1

2
‖x− 1‖1 +

1

2
‖x+ 1‖1

is also small.

Solve the SOAV optimization

min
z∈Rn

1

2
‖z − 1‖1 +

1

2
‖z + 1‖1 subject to y = Φz

In many cases, this will also do!

See [Nagahara, IEEE SPL, Oct. 2015]

M. Nagahara (The University of Kitakyushu) Sparsity, discreteness, and optimal control IIT Bombay Sept 2015 17 / 44



Binary image reconstruction

Original image
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Binary image reconstruction

Original image disturbed by Gaussian noise

Measurement: FFT and downsampling by 2

incomplete linear measurement
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Binary image reconstruction

Reconstruction by SOAV
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Binary image reconstruction

Reconstruction by Basis Pursuit (`1 optimization)
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Discrete signal reconstruction

Binary (or low-bit) image reconstruction

Digital communications

Discrete-valued control

etc

If you are interested, please email me. I can give you my preprints.
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PART II

Sparsity Methods for Control
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Maximum hands-off control

joint work with
Debasish Chatterjee (IITB)

K. S. Mallikarjuna Rao (IITB)
Daniel E. Quevedo (University of Paderborn)

Dragan Nešić (University of Melbourne)
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History of Control

Classical control for stabilization (1960—)
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History of Control

Optimal control for enhancing performance (1970—1980)
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History of Control

Robust control against uncertainties (1990—2000)
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History of Control

Robust control against uncertainties (1990—2000)
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History of Control

Now: Green control

uses less fuel and electric power
reduces CO2, noise, and vibration

Maximum hands-off control gives a smart solution!
maximizes the time duration on which the control value is 0

L0 optimal: non-convex

can be obtained via L1 optimal control (convex)
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Outline

1 An example
Maximum hands-off control
L1-optimal control (minimum fuel control)

2 Motivation of maximum hands-off control: Green control

3 Maximum hands-off control and L1 optimality

4 L1/L2-optimal control for continuous control

5 Example

6 Conclusion
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An example

Plant: G(s) = 1/s2

dx(t)

dt
=

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), x(0) =

[
1
1

]

Maximum hands-off control problem

Fix T > 0. Find an admissible control u(t), t ∈ [0, T ] that drives the state
from x(0) to x(T ) = 0, that satisfies

|u(t)| ≤ 1, ∀ t ∈ [0, T ],

and that minimizes

J0(u) = µ(supp(u)) =

∫ T

0
|u(t)|0dt,

the length of the support of u (L0 norm).
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An example

J0(u) = µ(supp(u)) =

∫ T

0
|u(t)|0dt,

u
0

1

1−1

|u|0

|u|1

J1(u) =

∫ T

0
|u(t)|dt,
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An example

Plant: G(s) = 1/s2

dx(t)

dt
=

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), x(0) =

[
1
1

]

L1-optimal control

Fix T > 0. Find an admissible control u(t), t ∈ [0, T ] that drives the state
from x(0) to x(T ) = 0, that satisfies

|u(t)| ≤ 1, ∀ t ∈ [0, T ],

and that minimizes the L1 norm

J1(u) =

∫ T

0
|u(t)|dt.
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An example

L1-optimal control u∗(t) and trajectory x∗(t) [Athans and Falb, 1966]
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Optimal Control
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t=0

t=T

u∗(t) ≡ 0 over [3−
√

10/2, 3 +
√

10/2] ≈ [1.4, 4.6]

u∗(t) is sparse (‖u∗‖0 = | supp(u∗)| ≈ 1.84 < 5 = T )

In fact, it is the sparsest (i.e., maximum hands-off control).
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Why hands-off control is green?
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Reduced fuel and electric power consumption

Reduced CO2, noise, and vibration

Data compression

Sparse signals can be effectively compressed;
see e.g. [Nagahara, Quevedo, Østergaard, IEEE Trans. AC 2014]
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Maximum hands-off control and L1 optimality

Plant

dx(t)

dt
= f(x(t)) + g(x(t))u(t), t ≥ 0, x(0) = x0

x(t) ∈ Rn, u(t) ∈ R

Theorem

Assume that the L1-optimal control problem is normal a (or non singular)
and has at least one solution. Then

{L0 optimal controls} = {L1 optimal controls}
aWhen the optimal control is uniquely determined almost everywhere from

the minimum principle, the control problem is called normal.

A maximum hands-off control problem (non convex optimization) can be
solved via a related L1 optimal control problem (convex)!
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Sufficient condition for normality

Lemma [Athans & Falb, 1966]

Assume the plant is given by

dx(t)

dt
= Ax(t) +Bu(t), t ≥ 0.

If the plant is controllable and A is non singular, then for any initial state
x(0) ∈ Rn, the L1-optimal control problem is normal.
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L1/L2-optimal control for continuous control
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Maximum-hands off control is discontinuous
the ”bang-off-bang” property

Smoothing by adding L2 norm:

J12 = ‖u‖1 +
1

2
r‖u‖22

L1/L2-optimal control is continuous in t.
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L1/L2-optimal control for continuous control

L1/L2-optimal control

Plant: dx
dt = f(x) + g(x)u

Assumption: f , g, df
dx , dg

dx are continuous in x.

Constraints: x(0) = x0; x(T ) = 0; |u(t)| ≤ 1 ∀t ∈ [0, T ]

Cost function: J12 = ‖u‖1 + 1
2r‖u‖22

Proposition

The L1/L2-optimal control u∗12(t) is continuous in t over [0, T ].

Proposition

Assume the L1-optimal control problem is normal and its solution exists.
Then

u∗12(t)→ u∗1(t) = u∗0(t), a.a. t ∈ [0, T ],

as r → 0.
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Example: control problem

Plant: P (s) = 1
s2(s2+1)

dx(t)

dt
=




0 −1 0 0
1 0 0 0
0 1 0 0
0 0 1 0


x(t) +




2
0
0
0


u(t).

Final time: T = 10.

State Constraints: x(0) = [1, 1, 1, 1]> and x(10) = 0

Control constraint: |u(t)| ≤ 1, ∀t ∈ [0, 10]
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Examples: optimal controls
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Examples: states with maximum hands-off control
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Examples: L1/L2-optimal control
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Conclusion

Maximum hands-off control is green control.

uses less fuel and electric power
reduces CO2, noise, and vibration
gives effective data compression for networked control systems

L0 optimality = L1 optimality

under the assumption of normality.

Continuous control by L1/L2-optimal control

Characterization of maximum hands-off control (i.e. L0 optimal
control) is given in the following paper:

D. Chatterjee, M. Nagahara, D. E. Quevedo, and K. S. M. Rao,
“Characterization of maximum hands-off control,” Systems and
Control Letters, 2016, to be published.
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Today’s talk was on...

Relation between sparsity and discreteness

Sparsity methods for control (maximum hands-off control) for green
technology

Interplay between control and sparse signal processing

Collaborative work by researchers and engineers on control, signal
processing, communications, etc is highly important.

Let’s get started!
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