
Control of Spin Systems 



The Nuclear Spin Sensor 
• Many Atomic Nuclei have intrinsic angular momentum 

called spin. 
• The spin gives the nucleus a magnetic moment (like a 

small bar magnet). 
• Magnetic moments precess in a magnetic  field at a 

precession frequency that depends on the magnetic field 
strength. 

• The spins are therefore beautiful, very localized 
(angstrom resolution) probes of local magnetic fields. 

• The chemical environment of a nucleus in a molecule 
effects the local magnetic field on the nucleus. 
 

• Probing spins with radio frequency magnetic fields and 
observing them gives information about chemical 
environment of the nuclei in a non-invasive way. 
Therefore field of nuclear magnetic resonance is the 
single most important analytical tool in science. 



 
• The magnetic moment of a single 

nuclear spin is too weak to 
detect. 

• The spins are generally detected 
in the Bulk by making them 
precess coherently.  

• The precession of nuclear spins is 
detected or observed by a 
Magnetic resonance technique. 
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One dimensional spectrum 
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Relaxation Optimized Coherent Spectroscopy 
Singular Optimal Control Problems 



Transfer of Polarization 
Interactions
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Random collisions with solvent molecules  
causes stochastic tumbling of the protein molecules   
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Optimal Control in Presence of Relaxation 
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The control problem 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 



Relaxation Optimized Pulse Elements (ROPE) 
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Finite Horizon Problem 



Experimental Results 

Khaneja, Reiss, Luy, Glaser  JMR(2003) 
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Cross-Correlated Relaxation 
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Optimal control of spin dynamics in the presence of  
Cross-correlated Relaxation 
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Khaneja, Luy, Glaser  PNAS(2003) 



TROPIC: Transverse relaxation optimized polarization 
transfer induced by cross-correlated relaxation. 

Groel Protein: 800KDa 

Room Temperature 

J = 93 Hz 

Proton Freq = 750Mhz 

Ka = 446 Hz 

Kc = 326 Hz Frueh et. al  Journal of Biomolecular NMR (2005)  
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Control of Bloch Equations 
 

0

0

0 ( )
0 ( )

( ) ( ) 0

x u t x
d y v t y
dt

z u t v t z

ω
ω

− −    
    = −    
    
    

0B

M 

x 

y 



d


M 
dt

= γ


M ×

B 

( )rfB t M 

0B
ω0 = γ B0

≪ 

Presenter
Presentation Notes
Analogous to the simplest linear system that we just mentioned, the corresponding ensemble control problem will be as follows. Instead of one system, we have k systems whose natural dynamics Ai are different. To motivate more understanding about the ensemble control, we consider the following example. Consider an ensemble of harmonic oscillators modeled by this equation whose natural frequencies w are uniformly distributed in the range [-B, B]. The question is can we steer all this ensemble from (x, y)=(1, 0) to (0, 0) simultaneously by using the same controls u and v.
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Inhomogeneous Ensemble of Bloch Equations 
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Robust Control Design 
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Robust Control Design by Area Generation 
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Lie Algebras, Areas and Robust Control 
Design  
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Fourier Synthesis Methods for Robust Control Design 
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Fourier Synthesis Methods for Compensation 



Time Optimal Control of Quantum Systems 
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Example 

𝑈̇ = -i 
λ1

⋱
λ𝑛

+∑ 𝑢𝑖𝐵𝑖𝑖  U 

𝐵𝑖 ∈ 𝑠𝑠 𝑛 ,𝑈 ∈ SU(n) 



Control Systems on Coset Spaces 
This image cannot currently be displayed.

G/K is a Riemannian Symmetric Space 

The velocities of the shortest paths 
in G/K always commute! 



Cartan Decompositions , Two-Spin Systems and Canonical 
Decomposition of SU(4) 
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G = SU(4); K = SU(2) ⊗ SU (2)

Iα = σα ⊗ I ;
Sα = I ⊗ σα ;
IαSβ = σα ⊗ σβ ;
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Geometry, Control and NMR 



Reiss, Khaneja, Glaser 
J. Mag. Reson. 165 (2003) 
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