Control of Spin Systems




The Nuclear Spin Sensor

* Many Atomic Nuclei have intrinsic angular momentum
called spin.

e The spin gives the nucleus a magnetic moment (like a
small bar magnet).

« Magnetic moments precess in a magnetic fieldata
precession frequency that depends on the magnetic field
strength.

 The spins are therefore beautiful, very localized
(angstrom resolution) probes of local magnetic fields.

 The chemical environment of a nucleus in a molecule
effects the local magnetic field on the nucleus.

* Probing spins with radio frequency magnetic fields and
observing them gives information about chemical
environment of the nuclei in a non-invasive way.
Therefore field of nuclear magnetic resonance is the
single most important analytical tool in science.




« The magnetic moment of a single
nuclear spin is too weak to
detect.

e The spins are generally detected
In the Bulk by making them
precess coherently.

e The precession of nuclear spins Is
detected or observed by a
Magnetic resonance technique.
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One dimensional spectrum




2D NMR
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Example: I’N-HSQC of p63
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15N labeling:
+ all N atoms replaced by PN (ca. 95 % PN),

» characteristic fingerprint spectrum

p63: 233 a.a. /27 kDa

* measured at 750 MHz /303 K
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Transfer of Polarization

____________________

Interactions

Spin Hamiltonian: H, + Hys (t)




Random collisions with solvent molecules
causes stochastic tumbling of the protein molecules
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Optimal Control in Presence of Relaxation
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The control problem




Relaxation Optimized Pulse Elements (ROPE)
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Comparison

Gain (ROPE/INEPT)
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Relaxation-
optimized
pulse
elements

Khaneja, Reiss, Luy, Glaser, J. Magn. Reson.162, 311 (2003)



ROPE Pulse Sequence
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Finite Horizon Problem
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Experimental Results

Amplitude [a.u.]
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Khaneja, Reiss, Luy, Glaser JMR(2003)



Cross-Correlated Relaxation




Optimal control of spin dynamics in the presence of

Cross-correlated Relaxation
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Optimal trajectory preserves ratio 1_2 =1 andangley
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Khaneja, Luy, Glaser PNAS(2003)



Transfer Efficiency
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Experimental Transfer Functions
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TROPIC: Transverse relaxation optimized polarization
transfer induced by cross-correlated relaxation.

Groel Protein: 800KDa

Room Temperature

J=93 Hz
Proton Freq = 750Mhz
Ka =446 Hz

Kc =326 Hz
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Control of Bloch Equations
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Presentation Notes
Analogous to the simplest linear system that we just mentioned, the corresponding ensemble control problem will be as follows. Instead of one system, we have k systems whose natural dynamics Ai are different. To motivate more understanding about the ensemble control, we consider the following example. Consider an ensemble of harmonic oscillators modeled by this equation whose natural frequencies w are uniformly distributed in the range [-B, B]. The question is can we steer all this ensemble from (x, y)=(1, 0) to (0, 0) simultaneously by using the same controls u and v.



Broadband Excitation
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Inhomogeneous Ensemble of Bloch Equations
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Robust Control Design
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Robust Control Design by Area Generation
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Lie Algebras, Areas and Robust Control
Design

Using  &C2
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Fourier Synthesis Methods for Robust Control Design
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Fourier Synthesis Methods for Compensation
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Time Optimal Control of Quantum Systems
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Control Systems on Coset Spaces
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G/K Is a Riemannian Symmetric Space
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Cartan Decompositions , Two-Spin Systems and Canonical
Decomposition of SU(4)
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Indirect SWAP Operation

[15N]-Acetamide

-

Spin 1 Spin 3
1 SWAP(1,3)
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Reiss, Khaneja, Glaser
J. Mag. Reson. 165 (2003)

Efficiency n of indirect SWAP sequences
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Khaneja, et. al PRA(2007)
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