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•  The control designer designs a control algorithm assuming that a 
control input can be calculated at every time step. 

•  The processor designer assumes that the worst case execution time 
the microprocessor can provide is good enough.  
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Challenging the Assumption 
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microprocessor 

Required by 
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•  Either the processor availability or the computation required by the 
control algorithms is uncertain and time-varying. 

•  The actuator still needs a control input at every time step.  

Controller 

Sensor System Actuator 

The traditional assumption about the processor always being able
to execute the control algorithm during the available computation
slot may break down.
Overdimensioning the processor or increasing the slot is often not
an option, see Airbus European Patent Application “Robust
system control method with short execution deadlines”, 2013.
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Motivating Example:

Communication and Processing in an A380 Aircraft
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The Avionics Full Duplex Switched Ethernet Network serves as a
backbone to low level networks, e.g., based on CAN.
Fly-by-wire requires 500 km of cables and many interconnects.
This adds to weight, cost and possible fire hazards.
Fly-by-wireless is being considered.
Due to dropouts and delays, communication links are not
transparent and need to be taken into account in the design.
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Motivating Example:

Communication and Processing in an A380 Aircraft
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Eight control computers (and a back-up module) need to divide
their attention to various loops, including

I attitude control,
I direction of flight,
I engine controls.

Processing power available for, and required by, each loop is
time-varying.
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Traditional Control Design: hard real-time

Execution time distribution
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t Effective computation time 

WCET 

uimpl(tk)=u(x(sk)) 

sk sk+1 

tk tk+1 

uimpl(tk+1)=u(x(sk)) 

WCET 

Latency 

Main Objective: To reduce the lantency 
By using a deadline larger than the worst-case execution time
(WCET) a deterministic control loop is obtained.
As processing architectures become more complex, execution
time distributions tend to have longer tails. Thus:

I The WCET becomes more difficult to determine.
I Computing and communication resources are idle more often:

Inherent conservatism leads to oversized and heavy components.
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Control with short deadlines (2013 Airbus patent)

Execution time distribution

EP 2 568 346 A1
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Sampling of sensors data 

Computation time 
dedicated to the control 

Implementation of the  
control law in the actuators 
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Tslot 

t Effective computation time 

Tslot 

uimpl(tk)=u(x(sk)) 

sk sk+1 

tk tk+1 

uimpl(tk+1)=u(x(sk)) 

Main Objectives:  Define the optimal Tslot 
  Robustness wrt. input misses 

Computation miss 

Shorter deadlines lead to a stochastic loop which uses processor
and communication resources more efficiently.
At times, processing resources are insufficient for evaluating the
control policy.
Once a maximum number of consecutive deadline misses is
reached, an auxiliary processor is called upon.
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More general situation:

Processing Power Mismatch in Networked and
Embedded Systems

Traditional
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•  The control designer designs a control algorithm assuming that a 
control input can be calculated at every time step. 

•  The processor designer assumes that the worst case execution time 
the microprocessor can provide is good enough.  
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Challenging the Assumption 
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•  Either the processor availability or the computation required by the 
control algorithms is uncertain and time-varying. 

•  The actuator still needs a control input at every time step.  

Controller 

Sensor System Actuator 

The traditional assumption about the processor always being able
to execute the control algorithm during the available computation
slot may break down.
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This talk

1 presents a modeling framework for closed-loop control, when
processing and communication resources are limited,

Controller Plant

Channel

2 describes an intuitive algorithm to synthesise such loops,

controls

delete buffer
take u(k)

from buffer

calculate

3 illustrates how stability can be analysed using random-time
state-dependent drift conditions.

k8

d

|x|

k0 k1 k2k3 k4k5k6k7
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Some previous works of Interest

Stochastic Networked Control
Hespanha, Dahleh, Sinopoli, Teel, Heemels, etc

Event-triggered Estimation and Control
Transmit and compute only when an event occurs:
Åström, Tabuada, Lemmon, Blind, etc.

Control with limited Processing Resources
Computation-performance tradeoffs for MPC: McGovern, Cervin
Allow for deadline misses: Seuret
“Anytime Control” (control is refined on-line, calculations can be
terminated at any time): Bhattacharya, Greco, Bicchi
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Outline

1 Event-triggered Control with Dropouts
System Model
Baseline Algorithm
Numerical Example

2 Anytime Control Algorithm
Method Description
Numerical Example - revisited

3 Stability Analysis
Assumptions
The Baseline Algorithm
The Anytime Algorithm
Comparison of Bounds

4 Conclusions
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Event-triggered Control with Dropouts System Model

System Model

availability
Controller

Plant

x(k + 1) = f (x(k), u(k))

u(k) x(k)

Erasure Channel

|x(k)| < d ?
β(k)

processor

The quantity d is a design parameter which trades communication
channel utilization for control performance.
Transmission between sensor and controller node is through a
delay-free link with dropouts:

β(k) =


0 if x(k) is received with errors (a dropout occurs),
1 if x(k) is received error-free,
2 if the sensor did not transmit at time k (i.e., |x(k)| < d).
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Event-triggered Control with Dropouts Baseline Algorithm

We are interested in a situation, where a “good” state-feedback
controller κ : Rn → Rp has been pre-designed.
Processing resources for control may, at times, be insufficient to
evaluate κ within the pre-allocated time-slot of length τ .
A direct implementation of the control policy κ, yields the

Baseline Algorithm

u(k) =


κ(x(k)), if β(k) = 1 and κ(x(k)) was evaluated

between times kT and kT + τ ,
0p, otherwise,

where u(k) with k ∈ N0 denotes the plant input which is
applied during the interval [kT + τ, (k + 1)T + τ).
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Event-triggered Control with Dropouts Numerical Example

Numerical Example
Plant model and controller

Plant model with i.i.d. disturbance distributed as N (0,1):
x(k + 1) = −x(k) + 0.1 sin(x(k)) + u(k) + w(k), x(0) = 20.

Control policy is taken as:
κ(x) = x − 0.1 sin(x) + ρ|x |, ρ = 0.9.

Resources
Pr{β(k) = 1 | |x(k)| ≥ d} = 0.5
Pr{processor is available |β(k) = 1} = 0.8

The closed loop is characterised by:

x(k + 1) =


ρ|x(k)|+ w(k), if processor is available

and β(k) = 1,
−x(k) + 0.1 sin(x(k)) + w(k), otherwise.
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Event-triggered Control with Dropouts Numerical Example

Empirical Cost
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Larger thresholds give a worse control performance!
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Event-triggered Control with Dropouts Numerical Example

Channel Utilisation (%)

Total number of time steps at which β(k) 6= 2
Total number of time steps
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Larger thresholds lead to less communication uses!
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Event-triggered Control with Dropouts Numerical Example

Whilst the baseline algorithm is simple, it is by no
means clear that it cannot be outperformed by more
elaborate control formulations.

We will next present an intuitive control algorithm.
The purpose is to make efficient use of the
communication and processing resources available.
The algorithm calculates sequences of tentative future
inputs.
These are stored in a local buffer.
Buffered values may be used when, at some future
time steps, the processor availability precludes any
control calculations, or a dropout occurs (β(k) = 0).
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Anytime Control Algorithm Method Description

Outline

1 Event-triggered Control with Dropouts
System Model
Baseline Algorithm
Numerical Example

2 Anytime Control Algorithm
Method Description
Numerical Example - revisited

3 Stability Analysis
Assumptions
The Baseline Algorithm
The Anytime Algorithm
Comparison of Bounds

4 Conclusions
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Anytime Control Algorithm Method Description

Event-triggered Anytime Control Algorithm

β(k) = 0

calculate controls (if possible)

and write them into buffer

set u(k)← 0p ;

delete buffer

β(k) = 2

β(k) = 1

the buffer

take u(k) from

If β(k) = 1, then x(k) is used to calculate N(k) ∈ {0,1, . . . ,Λ}
tentative control values using κ:

u0(k) = κ(x(k))

u1(k) = κ
(
f (x(k),u0(k))

)
, etc.

This sequence is stored in a local buffer of size Λ. Its contents may
be used when the processor is unavailable or when β(k + `) = 0.
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Anytime Control Algorithm Method Description

Comments
The algorithm does not require prior knowledge of processor
availability. Therefore, the control task can be preempted.
The buffer state b(k) provides the current plant input,
u(k) = b1(k).

If N(k) > 1, then b(k) also contains suggested future inputs.
If the buffer runs out of tentative plant inputs, then u(k) = 0p.

We introduce the
effective buffer length

λ(k) =


N(k) if N(k) ≥ 1,
max{0, λ(k − 1)− 1} if N(k) = 0 and β(k) ∈ {0,1},
0 if β(k) = 2.
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Anytime Control Algorithm Method Description

Example
Suppose that Λ = 4 and that {N(0),N(1),N(2),N(3)} = {4,0,1,2}.

The Anytime algorithm provides

{b(0),b(1),b(2),b(3)} =




u0(0)
u1(0)
u2(0)
u3(0)

,


u1(0)
u2(0)
u3(0)

0p

,


u0(2)
0p
0p
0p

,


u0(3)
u1(3)

0p
0p




{λ(0), λ(1), λ(2), λ(3)} = {4,3,1,2}, and plant inputs

{u(0), . . . ,u(3)} = {κ(x(0)), κ
(
f (x(0), κ(x(0)))

)
, κ(x(2)), κ(x(3))}.

If the baseline-algorithm is used, then

{u(0),u(1),u(2),u(3)} = {κ(x(0)),0p, κ(x(2)), κ(x(3))}.
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Anytime Control Algorithm Numerical Example - revisited

Outline

1 Event-triggered Control with Dropouts
System Model
Baseline Algorithm
Numerical Example

2 Anytime Control Algorithm
Method Description
Numerical Example - revisited

3 Stability Analysis
Assumptions
The Baseline Algorithm
The Anytime Algorithm
Comparison of Bounds

4 Conclusions
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Anytime Control Algorithm Numerical Example - revisited

Numerical Example

Resources
Suppose that Λ = 4 and that

Pr{β(k) = 1 | |x(k)| ≥ d} = 0.5
Pr{N(k) = j |β(k) = 1} = 0.2, j ∈ {0,1,2,3,4}

200 300 400 500 600 7001.8

2

2.2

2.4

2.6

2.8

3

3.2

k

x

 

 

Anytime Algorithm
Baseline Algorithm

State trajectory
with d = 2.
The anytime
control algorithm
outperforms the
baseline controller.
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Anytime Control Algorithm Numerical Example - revisited

Empirical Cost
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Anytime Control Algorithm Numerical Example - revisited

Channel Utilisation (%)
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Anytime Control Algorithm Numerical Example - revisited

Empirical Cost versus Channel Utilisation
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Performance Gains
For a given transmission rate, the proposed anytime control algorithm
reduces the empirical cost by approximately 40-50%.
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Stability Analysis Assumptions

Outline

1 Event-triggered Control with Dropouts
System Model
Baseline Algorithm
Numerical Example

2 Anytime Control Algorithm
Method Description
Numerical Example - revisited

3 Stability Analysis
Assumptions
The Baseline Algorithm
The Anytime Algorithm
Comparison of Bounds

4 Conclusions
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Stability Analysis Assumptions

Standing Assumptions
Globally Stabilising Nominal Controller
There exist functions V : Rn → R≥0, ϕ1, ϕ2 ∈ K∞,a a constant
ρ ∈ [0,1), and a control policy κ : Rn → Rp, such that

ϕ1(|x |) ≤ V (x) ≤ ϕ2(|x |),
V (f (x , κ(x))) ≤ ρV (x), ∀x ∈ Rn.

aA function ϕ : R≥0 → R≥0 is of class-K∞ (ϕ ∈ K∞), if it is continuous,
zero at zero, strictly increasing, and unbounded.

Open-loop bound
With V as above, there exists α ∈ R≥0 such thata

V (f (x ,0p)) ≤ αV (x), ∀x ∈ Rn.

aFor the numerical example described before, we have α = 1.1.
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Stability Analysis Assumptions

Processor availability is i.i.d.
The process {N}N0 has conditional probability distribution

Pr{N(k) = j |β(k) = 1} = pj , j ∈ {0,1,2, . . . ,Λ},

where pj ∈ [0,1) are given.
For other realizations of β(k), no plant inputs are calculated:

Pr{N(k) = 0 |β(k) ∈ {0,2}} = 1.

Packet dropouts are i.i.d.
The transmissions are Bernoulli with packet transmission
success probability

Pr{β(k) = 1 | |x(k)| ≥ d} = q.
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Stability Analysis The Baseline Algorithm
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Stability Analysis The Baseline Algorithm

The Baseline Algorithm
The closed loop is characterised by:

x(k + 1) =

{
f (x(k), κ(x(k))), if N(k) ≥ 1,
f (x(k),0p), if N(k) = 0.

We denote via p0 the probability that the controller is unable to
calculate any control input, despite x(k) being available.

Stochastic Stability with the Baseline Algorithm
Suppose that E

{
ϕ2(|x(0)|)

}
<∞ and that

Γ , (1− q)α + q
(
p0α + (1− p0)ρ

)
< 1.

Then there exist finite γ and µ such that
E
{
ϕ1(|x(k)|)

}
≤ γΓk + µ, ∀k ∈ N0.

If d = 0, then µ = 0.
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Stability Analysis The Baseline Algorithm

Special case: event-triggering with an erasure channel

κ(·)
Plant

x(k + 1) = f (x(k), u(k))

u(k) x(k)

Erasure Channel

|x(k)| < d ?
β(k)

If the processor is always available (p0 = 0), then the sufficient
condition for stochastic stability reduces to:

Γ , (1− q)α + qρ < 1,

where:
I q is the transmission success probability,
I α is the open-loop bound on the plant dynamics, and
I ρ is the closed-loop contraction factor ensured by the control law κ.
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Stability Analysis The Baseline Algorithm

Sketch of proof
The process {x(k)}, k ∈ N0 is Markovian.
Using the assumptions and writing x for x(0), we have:

E
{

V (x(1))
∣∣ x} =

2∑
j=0

E
{

V (x(1))
∣∣ x , β(0) = j

}
Pr{β(0) = j | x}

< ΓV (x) + (α− Γ)ϕ2(d), ∀x .

Thus, using the Markov property, we obtain

E
{
ϕ1(|x(k)|) | x

}
≤ ΓkV (x) +

(α− Γ)ϕ2(d)

1− Γ
<∞, ∀k ∈ N0.

Taking expectation with respect to the distribution of the initial
state x(0) establishes the result.
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Stability Analysis The Anytime Algorithm

Preliminaries

x(k)

calculate controls (if possible)

and write them into buffer

set u(k)← 0p ;

delete buffer

β(k) = 1

the buffer

take u(k) from

β(k) = 0

β(k) = 2

|x(k)| ≥ d|x(k)| < d

(
x(k),b(k)

)

Due to buffering, {x(k)}, k ∈ N0 is not a Markov process.
This complicates the analysis significantly.

Daniel Quevedo (dquevedo@ieee.org) Control with limited resources March 2016 33 / 47



Stability Analysis The Anytime Algorithm

Preliminaries
To study stability of the event-based anytime algorithm, we will
develop a state-dependent random-time drift condition of the form:

E{V (x(ki+1)) | x(ki) = χ} ≤ D + ΩV (χ), Ω < 1,

where {k0, k1, k2, . . . } are special random time instants.
If {x(ki) : i ∈ N0} is Markovian, then the above would ensure
exponential boundedness at the instants ki :

E
{

V (x(ki)) | x(k0) = χ
}
≤ ΩiV (χ) +

D
1− Ω

, ∀i ∈ N0.

Depending on
1 system behaviour in-between instants ki
2 the distribution of {ki+1 − ki}

boundedness at all instants k ∈ N0 may follow.
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The Randomly Sampled Process
We begin our analysis, by denoting the random time steps where
the buffer is empty via

K = {ki}, i ∈ N0,

where

ki+1 = inf
{

k ∈ N : k > ki , λ(k) = 0
}
, k0 = 0.

We also describe the amount of time steps between consecutive
elements of K via

∆i , ki+1 − ki , i ∈ N0

The following property of the randomly sampled process x is key:

Lemma
The plant state sequence at the time steps ki ∈ K, namely
{x(ki) : ki ∈ K}, is Markovian.
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System Behaviour

∆7

k0 k1 k2 k3 k4 k5 k6 k7 k8

∆3 ∆4 ∆6∆5

d

|x |

∆0 ∆1 ∆2

In the present disturbance-free case, the plant inputs are simply
given by

u(ki) = 0p, ∀ki ∈ K
u(ki + `) = κ(x(ki + `)), ∀` ∈ {1, . . . ,∆i − 1}.
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Stability Analysis The Anytime Algorithm

Evolution of V (x(ki))

∆7

k0 k1 k2 k3 k4 k5 k6 k7 k8

∆3 ∆4 ∆6∆5

d

|x |

∆0 ∆1 ∆2

It is then easy to see that

E{V (x(ki+1)) | x(ki) = χ,∆i = δ} ≤ αρδ−1V (χ), ∀χ ∈ Rn.

Unfortunately, due to the event-triggering mechanism, the
distribution of {∆i}i∈N0 depends on x(ki) and is difficult to
characterise.
Hence establishing a suitable drift condition is not so easy!
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Stability Analysis The Anytime Algorithm

Conditioning Events

∆6

k0 k1 k2 k3 k4 k5 k6 k7 k8

∆7∆2∆1∆0

d

|x |

∆3 ∆4 ∆5

It turns out to be convenient to distinguish between the two cases:
1 the buffer is emptied due to lack of resources (β(ki+1) ∈ {0,1}), and
2 it is emptied triggered by the plant state being in the desired region.

Only the first case influences stability conditions.
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Finding an Upper-bound on the Drift

∆6

k0 k1 k2 k3 k4 k5 k6 k7 k8

∆7∆2∆1∆0

d

|x |

∆3 ∆4 ∆5

Accordingly, one can condition on β(ki+1) and use the law of total
expectation to show that

E{V (x(ki+1)) | x(ki)} ≤ ϕ2(d) + E{V (x(ki+1)) | x(ki), β(ki+1) 6= 2}.

Now, we can condition on ∆i to
1 establish exponential boundedness at the instants ki ∈ K, and
2 upper-bound E

{∑ki+1−1
k=ki

V (x(k))
∣∣ x(ki ), β(ki+1) 6= 2

}
.

This leads to...
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Main Result
Stochastic Stability with the proposed Algorithm
Suppose that E

{
ϕ2(|x(0)|)

}
<∞ and that

Ω ,
∑
δ∈N

αρδ−1Pr{∆i = δ |β(ki+1) 6= 2} < 1.

Then there exist finite γ, µ such that
max

k∈{ki ,ki +1,...,ki+1−1}
E
{
ϕ1(|x(k)|)

}
≤ γΩi + µ, ∀i ∈ N.

If d = 0, then µ = 0.

The conditional distribution

Pr{∆i = δ |β(ki+1) 6= 2} = Pr
{

∆i = δ
∣∣ |x(ki+1)| ≥ d

}
.

depends only on pj and q and can be easily characterised using
finite Markov Chain methods (“first return times to λ = 0”).
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Stability Analysis The Anytime Algorithm

Comments
Our result establishes a condition on

I plant,
I control law,
I channel, and
I processor availability

which ensures stochastic stability of the event-based anytime
control loop.
The analysis can be extended to situations where processor and
communication resources are not i.i.d., but correlated.
Under continuity assumptions, related stability conditions can be
derived for plant models with disturbances.
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Resources
Suppose that the buffer size is set to Λ = 4 and that

Pr{β(k) = 1 | |x(k)| ≥ d} = 0.5
Pr{N(k) = j |β(k) = 1} = 0.2, j ∈ {0,1,2,3,4}

 

 

1 1.1 1.2 1.3 1.4 1.5 1.60

0.2

0.4

0.6

0.8

1
Baseline Algorithm
Anytime Algorithm

The stability regions in the α-ρ plane established for the anytime
control algorithm are larger than those for the baseline controller.
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Conclusions

Conclusions
We have presented a framework for the study of control when
processor availability and communication resources are random.

I The sensor node is event-triggered
and transmits data using a
communication link prone to dropouts.

Controller Plant

Channel

I The control algorithm is executed with a processor that can provide
only time-varying and a priori unknown resources.

To better utilise the processor, the plant
inputs are calculated by an algorithm
that provides sequences.

controls

delete buffer
take u(k)

from buffer

calculate

For general non-linear systems, we
used stochastic Lyapunov methods to
obtain sufficient conditions for stability. k8

d

|x|

k0 k1 k2k3 k4k5k6k7
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Conclusions

Future Work
Many research problems remain open, e.g.,

characterising closed loop performance,
studying event-based transmission strategies with memory, and
developing processor scheduling and cooperation strategies.

Further Reading
1 D. E. Quevedo, V. Gupta, W.-J. Ma and S. Yüksel, “Stochastic

Stability of Event-Triggered Anytime Control,” IEEE Trans.
Automat. Contr., December 2014

2 D. E. Quevedo, W.-J. Ma and V. Gupta, “Anytime Control using
Input Sequences with Markovian Processor Availability,” IEEE
Trans. Automat. Contr., February 2015

3 B. Demirel, V. Gupta, D. E. Quevedo and M. Johansson,“On the
trade-off between control performance and communication cost in
event-triggered control,” IEEE Trans. Autom. Contr., under review.
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Processing Power Mismatch
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An Inherent Assumption 
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microprocessor 

Required by 
control algorithm 

•  The control designer designs a control algorithm assuming that a 
control input can be calculated at every time step. 

•  The processor designer assumes that the worst case execution time 
the microprocessor can provide is good enough.  

Controller 

Sensor System Actuator 
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Challenging the Assumption 
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Time 

Provided by 
microprocessor 

Required by 
control algorithm 

•  Either the processor availability or the computation required by the 
control algorithms is uncertain and time-varying. 

•  The actuator still needs a control input at every time step.  

Controller 

Sensor System Actuator 

The traditional assumption about the processor always being able
to execute the control algorithm during the available computation
slot may break down.
Overdimensioning the processor or increasing the slot is often not
an option, see Airbus European Patent Application “Robust
system control method with short execution deadlines”, 2013.
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