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Where is Kitakyushu?!

North part of Kyushu island, Japan. (”Kita”=”North”)

Far east from India.

Very different culture from India:
Bushido (Samurai Spirit1), Buddhism (from India), Chop Sticks (from
China), Animation (”Anime” in short), TV Games (Nintendo, Sega,
Capcom, etc), . . .

Google Maps

Map data ©2016 Google, SK planet, ZENRIN 500 km 

1A samurai (soldier) who fights for family, friends, society, etc is much stronger than
one who fights for himself.
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The University of Kitakyushu

I am working with The University of Kitakyushu
Faculty of Environmental Engineering
Control theory, signal/image processing, artificial intelligence,
autonomous vehicles (including drones), and so on.
We welcome foreign students for master and PhD degrees.

Short term visit is also OK (There are some funding schemes).
If you are interested, please visit my office (1st floor, faculty staff
room), or send me email (nagahara@ieee.org).
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Sparsity in Engineering

Image processing

single-pixel camera, compressed sensing MRI

Statistics

big data analysis
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Sparsity in Engineering

Image processing
single-pixel camera, compressed sensing MRI

Statistics
big data analysis

Discrete signal processing
binary image reconstruction, digital communications

Control 2

networked control, sparse control, discrete-valued control
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2This will be presented in my second seminar on 01/Mar/2017.
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What is sparsity?

A vector x in Rn is sparse if it contains many 0’s, or has small `0 norm

‖x‖0 , the number of the nonzero elements in x.

Examples of sparse vectors
Frequency domain data of natural signals and images; almost all of
them are nearly 0 except for low-frequency data.
Pulse signals; they are sparse in the time domain.
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Sparse signal reconstruction

Suppose that a sparse signal x ∈ Rn is measured by linear
measurements

y = Φx ∈ Rm,

where Φ ∈ Rm×n is a known matrix (we assume Φ has full row rank).

Finding the original x is ill-posed if m < n.

To determine one vector from y, we adopt optimization.
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Sparse optimization

The following optimization will do for sparse signal reconstruction:

min
z∈Rn

‖z‖0 subject to y = Φz.

This gives the exact reconstruction (with assumptions on z and Φ).

However, it is hard to solve if n is very large (e.g. 1 milion).

In many cases, the following `1 optimization solves the problem:

min
z∈Rn

‖z‖1 subject to y = Φz.
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How to solve this?

`1 Optimization

min
z∈Rn

‖z‖1 subject to y = Φz.
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Answer

`1 Optimization

min
z∈Rn

‖z‖1 subject to y = Φz.

Use MATLAB CVX3

cvx_begin

variable z(n)

minimize( norm(z, 1) )

subject to

y == Phi * z

cvx_end

This is nice for small or middle scale problems.

3M. Grant & S. Boyd, http://cvxr.com/cvx, 2013.
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Fast Algorithms for `1 optimization

`1 Optimization

min
z∈Rn

‖z‖1 subject to y = Φz.

General purpose toolbox (MATLAB CVX, Python CVXPY, etc) is
very useful but relatively slow.

For large-scale problems that need real-time computation, you may
need a custom-made algorithm.

Fast algorithms for `1 optimization
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Preliminaries

effective domain

The effective domain of a function f : Rn → R ∪ {+∞} is defined by

dom(f) ,
{
z ∈ Rn : f(z) <∞

}

epigraph

The epigraph of a function f : Rn → R ∪ {+∞} is defined by

epi(f) ,
{

(z, t) ∈ Rn × R : f(z) ≤ t
}

x

f(x)

epi(f)
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Preliminaries

Proper, closed and convex function

Let us consider a function f : Rn → R ∪ {+∞}.
1 f is convex iff epi(f) is convex.

2 f is closed iff epi(f) is closed.

3 f is proper iff epi(f) is non-empty

x

f(x)

epi(f)
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Preliminaries

Proximal operator

Let f : Rn → R ∪ {+∞} be a proper, closed, and convex function. The
proximal operator proxγf with parameter γ > 0 is defined by

proxγf (v) , arg min
z∈dom(f)

{
f(z) +

1

2γ
‖z − v‖22

}
.

OK. But, what is it?!
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Proximal operator

Proximal operator

proxγf (v) , arg min
z∈dom(f)

{
f(z) +

1

2γ
‖z − v‖22

}
.

γ =∞: Minimizer of f(z):

proxγf (v) = arg min
z∈dom(f)

f(z)

γ = 0: Projection onto dom(f):

proxγf (v) = arg min
z∈dom(f)

1

2γ
‖z − v‖22

γ ∈ (0,∞): the mix of those.
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Proximal operator

Proximal operator

proxγf (v) , arg min
z∈dom(f)

{
f(z) +

1

2γ
‖z − v‖22

}
.

v

dom(f)

projection

minimum

prox
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Proximal operator

The ”crossing the street” problem.
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Proximal operator

The ”crossing the street” problem.

चाय

professional

beginnerprox

dom(f)
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Indicator function and its prox

Indicator function

For a subset C in Rn, the indicator function is defined by

IC(z) =

{
0, z ∈ C
+∞, z 6∈ C

If C is a non-empty, closed, and convex set, then IC : Rn → R ∪ {+∞} is
a proper, closed, and convex function.

Let C ⊂ Rn be a non-empty, closed, and convex set. Then

proxγIC (v) = arg min
z∈dom(IC)

IC(z) +
1

2γ
‖z − v‖22

= arg min
z∈C

1

2γ
‖z − v‖22

= PC(v) : the projection operator onto C
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`1 norm and its prox

proxγ‖·‖1(v) = arg min
z

{
‖z‖1 +

1

2γ
‖z − v‖22

}

This can be solved in a closed form:
[
proxγ‖·‖1(v)

]
i

= Sγ(vi),

where Sγ : R→ R is the soft-thresholding operator defined by

Sγ(v) =





v − γ, v ≥ γ,
0, −γ < v < γ,

v + γ, v ≤ −γ.

0 γ

−γ v

Sγ(v)
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Fixed-point of algorithm

Theorem

Let f : Rn → R ∪ {+∞} be a proper, closed, and convex function. Fix
γ > 0 arbitrarily. Then

z∗ = arg min
z

f(z) iff z∗ = proxγf (z∗)

This leads to the fixed-point algorithm:

z[k + 1] = proxγkf (z[k]), k = 0, 1, 2, . . .

Now, let us go back to our `1 optimization problem!
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`1 optimization problem

`1 optimization

min
z∈Rn

‖z‖1 subject to y = Φz.

The indicator function for C , {z ∈ Rn : y = Φz}:

IC(z) =

{
0, if y = Φz,

+∞, otherwise

Equivalent unconstrained problem:

min
z∈Rn

f(z), f(z) , ‖z‖1 + IC(z).

f : Rn → R ∪ {+∞} is a proper, closed, and convex function.
Proximal operator proxγf :

proxγf (v) = arg min
z

{
‖z‖1 + IC(z) +

1

2γ
‖z − v‖22

}

But, nothing is solved?!
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The secret of proximal algorithm

Why the proximal method so useful??

The proximal method is useful and leads to fast algorithms
only when the prox can be obtained in a closed form.

Unfortunately, there is no closed form for the prox of ‖z‖1 + IC(z).

But, don’t mind. Try splitting.
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Douglas-Rachford splitting algorithm

Douglas-Rachford splitting algorithm

For minz{f(z) + g(z)}, we have

z[k] = proxγkf (y[k])

y[k + 1] = y[k] + proxγkg(2z[k]− y[k])− z[k]

For appropriately chosen γk, z[k] converges (one of) the optimal
solution(s).

Now, f(z) = ‖z‖1 and g(z) = IC(z).

proxγ‖·‖1(v) is given by the soft-thresholding operator Sγ(v).

proxγIC(z)(v) is the projection operator onto {z : y = Φz}:

PC(v) = Φ>(ΦΦ>)−1Φv + Φ>(ΦΦ>)−1y
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An algorithm for `1 optimization

`1 optimization

min
z∈Rn

‖z‖1 subject to y = Φz.

Algorithm

For k = 0, 1, 2, . . .

z[k] = Sγk(y[k])

y[k + 1] = y[k] +M(2z[k]− y[k]) + w − z[k]

where
M , Φ>(ΦΦ>)−1Φ, w , Φ>(ΦΦ>)−1y

Note that this algorithm only requires the element-wise thresholding in Sγk
and matrix-vector multiplications at each step.
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Sparse signals

Probability distribution of sparse vectors

Dirac delta at x = 0 (discrete distribution)
continuous distribution for x 6= 0

p(x)

x

0

z =




z1
z2
...
zn




‖z‖0 : small
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Signals that contain many 1’s

Probability distribution of many-1 vectors

Dirac delta at x = 1 (discrete distribution)
continuous distribution for x 6= 1

p(x)

x

0

z =




z1
z2
...
zn




1

‖z − 1‖0 : small

z − 1: subtracts scalar 1 from each element zi of vector z
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Signals that contain many binary values ±1

Probability distribution

Dirac deltas at x = ±1 (discrete distribution)
continuous distribution for x 6= ±1

If P[x = 1] = P[x = −1], then

p(x)

x

0

z =




z1
z2
...
zn




1−1

1

2
‖z − 1‖0 +

1

2
‖z + 1‖0 : small
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Discrete signals

Discrete signal z on a finite alphabet, {r1, r2, . . . , rL}
Probability distribution is Dirac deltas at x = r1, r2, . . . , rL.

P[x = rj ] = pj , pj > 0, p1 + p2 + · · ·+ pL = 1.

p(x)

r1 r2 r3 r4

x

The weighted sum of `0 norms

p1‖z − r1‖0 + p2‖z − r2‖0 + · · ·+ pL‖z − rL‖0
is small.
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Discrete-valued signal reconstruction

A binary signal x ∈ {1,−1}n whose entries are drawn from

P[x = ±1] = 1/2.

Incomplete linear measurement

y = Φx ∈ Cm, with m� n

Reconstruct x from y (discrete signal reconstruction)
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Sum-of-absolute-values optimization

Observing that
1

2
‖x− 1‖0 +

1

2
‖x+ 1‖0

is small, we can say that the sum of absolute values (SOAV)

1

2
‖x− 1‖1 +

1

2
‖x+ 1‖1

is also small.

Solve the SOAV optimization

min
z∈Rn

1

2
‖z − 1‖1 +

1

2
‖z + 1‖1 subject to y = Φz

In many cases, this will also do!

See [Nagahara, IEEE SPL, Oct. 2015]
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Binary image reconstruction

Original image
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Binary image reconstruction

Original image disturbed by Gaussian noise

Measurement: FFT and downsampling by 2

incomplete linear measurement
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Binary image reconstruction

Reconstruction by SOAV
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Binary image reconstruction

Reconstruction by Basis Pursuit (`1 optimization)
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Discrete signal reconstruction

Binary (or low-bit) image reconstruction [Nagahara IEEE SPL 2015]

Digital communications [Sasahara, Hayashi, Nagahara, IEEE SPL 2016]

Discrete-valued control [Ikeda, Nagahara, Ono, IEEE TAC 2017] (to appear)
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Conclusion

Sparsity plays an important role in signal/image processing.

Sparse optimization can be efficiently solved via `1 optimization.

Connection between sparsity and discreteness.

Applications to control (the topic of the next seminar).

�ान देने के िलए आपका ध*वाद
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