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Nonlinear Stability and Control Design

Aleksandyr
Mikhailovich
Lyapunov

I Lyapunov-like techniques are usually the basis of
most nonlinear stability analysis

I Controllers are synthesized to suit “chosen”
Lyapunov functions

I Lyapunov’s Direct Method paired with LaSalle
invariance, Barbalat’s lemma establish foundations
for optimal, robust, and adaptive control

I Finding the right Lyapunov function is more art
than science

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 3/27



Nonlinear Stability and Control Design

Aleksandyr
Mikhailovich
Lyapunov

I Lyapunov-like techniques are usually the basis of
most nonlinear stability analysis

I Controllers are synthesized to suit “chosen”
Lyapunov functions

I Lyapunov’s Direct Method paired with LaSalle
invariance, Barbalat’s lemma establish foundations
for optimal, robust, and adaptive control

I Finding the right Lyapunov function is more art
than science

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 3/27



Nonlinear Stability and Control Design

Aleksandyr
Mikhailovich
Lyapunov

I Lyapunov-like techniques are usually the basis of
most nonlinear stability analysis

I Controllers are synthesized to suit “chosen”
Lyapunov functions

I Lyapunov’s Direct Method paired with LaSalle
invariance, Barbalat’s lemma establish foundations
for optimal, robust, and adaptive control

I Finding the right Lyapunov function is more art
than science

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 3/27



Nonlinear Stability and Control Design

Aleksandyr
Mikhailovich
Lyapunov

I Lyapunov-like techniques are usually the basis of
most nonlinear stability analysis

I Controllers are synthesized to suit “chosen”
Lyapunov functions

I Lyapunov’s Direct Method paired with LaSalle
invariance, Barbalat’s lemma establish foundations
for optimal, robust, and adaptive control

I Finding the right Lyapunov function is more art
than science

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 3/27



Lyapunov’s Direct Method & Beyond..

Consider a really simple stabilization problem

ẋ1 = x2
ẋ2 = W (x)✓⇤ + u

⇢
u = �kpx1 � kv x2 �W (x)✓⇤

kp > 0, kv > 0

The closed-loop system is UES. This can be established via

Am
.
=


0 1

�kp �kv

�
, AT

mP + PAm = �Q, V1 = x

TPx ! V̇1 = �x

TQx < 0

Alternately, we could consider “energy-like” function

V2 = (kpx
2
1 + x22 )/2 ! V̇2 = �kv x

2
2  0

Thus, V2(x) is “non-strict” (aka defective) but the story still has a happy ending,
thanks to LaSalle Invariance, Barbalat’s Lemma...

Questions: How do we construct strict Lyapunov functions? Why bother about them?
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Constructing Strict Lyapunov Functions

I If UGAS is already known, converse theory guarantees existence

I Explicit availability of a strict Lyapunov function aids robustness analysis
(external disturbances, adaptive control, time-delays, . . .)

I Construction is a challenging problem, significant ongoing research
(Mazenc, Maliso↵, Teel, Nesic, etc.)

Antipot
Batheba Grossman

I Higher-order Lie derivatives of non-strict Lyapunov
functions

I Use of continuous-time Matrosov theorem

I Feedback with small gains

I Su�cient conditions, usually non-quadratic

functions
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Strictification via State-Dependent Switching

Angular Velocity Observer Application:
I Salcudian 1991, Open Problem (till Chunodkar, Akella, JGCD 2014)

I Switching provides strictification while ensuring C0 continuity of states

I Finite number of switches - no zeno-type behavior

I Smooth analog for this result available through a spiral design approach
(Thakur, Mazenc, Akella, JGCD 2015)
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Strictification via Filter Embedment

Introduce stable linear low-pass filters (i.e., ↵ > 0)

ẋ1f = �↵x1f + x1, ẋ2f = �↵x2f + x2

u̇f = �↵uf + u, Ẇf = �↵Wf +W (x)

Simple algebra results in the following, modulo exponentially decaying terms,

ẋ1f = x2f
ẋ2f = Wf ✓⇤ + uf

⇢
uf = �kpx1 � kv x2f �Wf ✓⇤

kp > 0, kv > 0

Now, consider the Lyapunov function candidate V3(x) = (x21 + x22f )/2,

V̇3 = �kpx
2
1 � kv x

2
2f + (↵� kp � kv )x1x2f

Selecting the filter gain ↵ = (kp + kv ) results in V̇3 = �kpx21 � kv x22f

Mr. Lyapunov is both QUADRATIC and STRICT again!

The control signal can be recovered by

u = u̇f + ↵uf =) u = �↵kpx1 � (kp + kv )x2 �W (x)✓⇤

Thus, for this academic example, filters are for analysis ONLY and they aren’t needed
for implementation!
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ẋ2f = Wf ✓⇤ + uf

⇢
uf = �kpx1 � kv x2f �Wf ✓⇤

kp > 0, kv > 0

Now, consider the Lyapunov function candidate V3(x) = (x21 + x22f )/2,

V̇3 = �kpx
2
1 � kv x

2
2f + (↵� kp � kv )x1x2f

Selecting the filter gain ↵ = (kp + kv ) results in V̇3 = �kpx21 � kv x22f

Mr. Lyapunov is both QUADRATIC and STRICT again!

The control signal can be recovered by

u = u̇f + ↵uf =) u = �↵kpx1 � (kp + kv )x2 �W (x)✓⇤

Thus, for this academic example, filters are for analysis ONLY and they aren’t needed
for implementation!

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 7/27



Strictification via Filter Embedment

Introduce stable linear low-pass filters (i.e., ↵ > 0)
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Strictification - Why Bother?

Suppose ✓⇤ is unknown, constant and we consider adaptation

u = �kpx1 � kv x2 �W (x)✓̂(t)

The update law for the parameter estimate ✓̂(t) can be established through

V =
kp

2
x21 +

1

2
x22 +

1

2�
✓̃T ✓̃, ✓̃

.
= ✓̂ � ✓⇤, � > 0

V̇ = �kv x
2
2 +

1

�
✓̃T

h
˙̂✓ � �x2W (x)

i

Specifying ˙̂✓ = �x2W (x) results in V̇ = �kv x22  0

Big Trouble! We are staring at the Uniform Detectability Obstacle

Fix: Either introduce non-intuitive cross-terms to “strictify” the Lyapunov function or,
possibly adopt the filter embedment approach

And.. this is only the tip of the iceberg..

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 8/27



Strictification - Why Bother?

Suppose ✓⇤ is unknown, constant and we consider adaptation

u = �kpx1 � kv x2 �W (x)✓̂(t)

The update law for the parameter estimate ✓̂(t) can be established through

V =
kp

2
x21 +

1

2
x22 +

1

2�
✓̃T ✓̃, ✓̃

.
= ✓̂ � ✓⇤, � > 0

V̇ = �kv x
2
2 +

1

�
✓̃T

h
˙̂✓ � �x2W (x)

i

Specifying ˙̂✓ = �x2W (x) results in V̇ = �kv x22  0

Big Trouble! We are staring at the Uniform Detectability Obstacle

Fix: Either introduce non-intuitive cross-terms to “strictify” the Lyapunov function or,
possibly adopt the filter embedment approach

And.. this is only the tip of the iceberg..

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 8/27



Strictification - Why Bother?

Suppose ✓⇤ is unknown, constant and we consider adaptation

u = �kpx1 � kv x2 �W (x)✓̂(t)

The update law for the parameter estimate ✓̂(t) can be established through

V =
kp

2
x21 +

1

2
x22 +

1

2�
✓̃T ✓̃, ✓̃

.
= ✓̂ � ✓⇤, � > 0

V̇ = �kv x
2
2 +

1

�
✓̃T

h
˙̂✓ � �x2W (x)

i

Specifying ˙̂✓ = �x2W (x) results in V̇ = �kv x22  0

Big Trouble! We are staring at the Uniform Detectability Obstacle

Fix: Either introduce non-intuitive cross-terms to “strictify” the Lyapunov function or,
possibly adopt the filter embedment approach

And.. this is only the tip of the iceberg..

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 8/27



Strictification - Why Bother?

Suppose ✓⇤ is unknown, constant and we consider adaptation

u = �kpx1 � kv x2 �W (x)✓̂(t)

The update law for the parameter estimate ✓̂(t) can be established through

V =
kp

2
x21 +

1

2
x22 +

1

2�
✓̃T ✓̃, ✓̃

.
= ✓̂ � ✓⇤, � > 0

V̇ = �kv x
2
2 +

1

�
✓̃T

h
˙̂✓ � �x2W (x)

i

Specifying ˙̂✓ = �x2W (x) results in V̇ = �kv x22  0

Big Trouble! We are staring at the Uniform Detectability Obstacle

Fix: Either introduce non-intuitive cross-terms to “strictify” the Lyapunov function or,
possibly adopt the filter embedment approach

And.. this is only the tip of the iceberg..

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 8/27



Strictification - Why Bother?

Suppose ✓⇤ is unknown, constant and we consider adaptation

u = �kpx1 � kv x2 �W (x)✓̂(t)

The update law for the parameter estimate ✓̂(t) can be established through

V =
kp

2
x21 +

1

2
x22 +

1

2�
✓̃T ✓̃, ✓̃

.
= ✓̂ � ✓⇤, � > 0

V̇ = �kv x
2
2 +

1

�
✓̃T

h
˙̂✓ � �x2W (x)

i

Specifying ˙̂✓ = �x2W (x) results in V̇ = �kv x22  0

Big Trouble! We are staring at the Uniform Detectability Obstacle

Fix: Either introduce non-intuitive cross-terms to “strictify” the Lyapunov function or,
possibly adopt the filter embedment approach

And.. this is only the tip of the iceberg..

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 8/27



Nonlinear Adaptive Control Design

I Mature subject area

I Several variants exist

I Direct/Indirect
I Backstepping
I Immersion & Invariance
I L1 Adaptive Control

Procustes’ Mythical Bed

I Fact 1: Even a linear plant under the action of an adaptive controller becomes
nonlinear in the closed-loop due to the adaptation mechanism

I Fact 2: Plant parameters a�ne in the governing dynamic model

I Fact 3: Parameter estimates converge to their true values only under suitable
persistence excitation (PE) conditions

I Fact 4: Most existing designs based on the Certainty Equivalence (CE) Principle
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Certainty Equivalence Principle

I Consider a prototypical adaptive stabilization problem

I Suppose all plant parameters ✓⇤ are known and

u = k(t)h(x)+W (x)✓⇤

is the controller that achieves the desired control objective

I Then, in the case ✓⇤ is unknown, design controller

u = k(t)h(x)+W (x)✓̂(t)

together with a suitable update law of ✓̂(t) (parameter estimator) so that

the closed-loop is stable and the control objective is again achieved.
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Deviating from the CE Formalism

I Add tuning function �(x) to the adaptation (Astolfi & Ortega, IEEE TAC, 2003) :

u = k(t)h(x)+W (x)
h
✓̂(t) + �(x)

i

I The state-dependent tuning function �(x) should satisfy an integrability
condition:


@�(x)

@x

�T
W (x) +WT (x)

@�(x)

@x

= Q(x) � 0 uniformly in x

I Su�cient condition ONLY (... think ATP + PA = �Q)
I Q(x) is a design function
I � is not uniquely defined
I A�ne uncertainty representation not necessary

I Nonlinear single-input systems in cascade form and linear multi-input systems
always satisfy the manifold attractivity condition (Akella, Subbarao, SCL 2005)

I Stability analysis:

V =
1

2
x

T
x +

�

2
z

T
z , z

.
= ✓̂ � ✓⇤ + �, � > 0,

V̇ = �x

T
x � x

TW (x)z � �kW (x)zk2  0

I Generalizations to multi-input case typically through filter embedment (Seo & Akella,

JGCD 2008; Karagiannis, AUTOMATICA 2009)
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Deviating from the CE Formalism
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Comparing the Two Designs

I CE based designs typically result in

ẋ = �x �W (x)✓̃; {✓̃ = ✓̂ � ✓⇤

˙̂✓ = �ceW
T (x)x

I Performance ultimately dictated by parameter estimator
) W (x)✓̃ like disturbance

I Parameter estimates driven by the regulating/tracking error
I Unable to mimic ẋ = �x

I The attracting manifold design, on the other hand, results in

ẋ = �x �W (x)z
ż = ��WT (x)W (x)z

⇢
limt!1 W (x)z = 0; z = ✓̂ + � � ✓⇤

ż = 0 for all t > t⇤ if z(t⇤) = 0

I Permits non-strict Lyapunov Functions (bypass detectability obstacle)
I Of course requires satisfaction of the integrability condition
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ż = 0 for all t > t⇤ if z(t⇤) = 0

I Permits non-strict Lyapunov Functions (bypass detectability obstacle)
I Of course requires satisfaction of the integrability condition

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 12/27



Comparing the Two Designs

I CE based designs typically result in
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ż = 0 for all t > t⇤ if z(t⇤) = 0

I Permits non-strict Lyapunov Functions (bypass detectability obstacle)
I Of course requires satisfaction of the integrability condition

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 12/27



Speed-Boosted Adaptation

I Wash all states and the regressor through stable linear low-pass filters

I The regressor filter assures circumvention of the integrability obstacle.
Specifically, � = WT

f xf satisfies the integrability condition

I The closed-loop system becomes

ẋf = �xf �Wf (t)z

ż = ��WT
f Wf z

I Very high-dimensional closed-loop system (xf 2 Rn; Wf 2 Rn⇥p)

I Speed boosting: k(t) = k⇢(t)r2(t) k > 0, inft�0 ⇢(t) = ⇢⇤ > 0

I Scalar extension: (non-filter, ⇢(t) = 1); k 2 L2 \ L1 (Yang, Akella, SES 2015)
I Second-order dynamic extension (Filter)

⇢̇ = �(⇢� 1/r2 � "), ⇢(0) = 1/r2(0) + ", 0 < " ⌧ 1
I k(0) = k[1 + "r2(0)] ! k(1) = k[1 + "r2(1)]

I Generalizations shown to hold for Euler-Lagrange class of systems
(Yang, Akella, Mazenc, ACC 2016)

M(q)q̈ + C(q, q̇)q̇ + F q̇ + G(q) = u
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Adaptive Attitude Tracking Application

I System parameters and reference rate profile
(Seo, Akella, JGCD 2008)

J =

2

4
20 1.2 0.9
1.2 17 1.4
0.9 1.4 15

3

5

!r (t) = 0.3(1� e�0.01t2 ) cos t + te�0.01t2 (0.08⇡ + 0.006 sin t)

I Tracking errors and dynamic gain k(t) = ⌘1(t)

(Yang, Akella, AIAA/AAS SFM, 2016)
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Simulation Results

I Control and estimation error norms

I Large initial rate error: k�!(0)k =
p
3

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 15/27



Coordinated Sensing and Decentralized Control

Distributed Heterogeneous Networks:

I Mission and task
decomposition

I Minimal communication,
persistence

I Coordination, optimality
and constraint
satisfaction

The University of Texas at Austin Department of Aerospace Engineering
In Collaboration with the Space and Naval Warfare Systems Center in San Diego

Algorithms for Mobile Heterogeneous Sensor Networks with Algorithms for Mobile Heterogeneous Sensor Networks with 
Applications to IED Detection and Surveillance Applications to IED Detection and Surveillance 

Travis Mercker     Jorge Alvarez     James Doyle     Dr. Maruthi Akella

XBow Mica 
Z Mote

Fixed Node/Mobile 
Sensor Network

Wireless 
Communication

Command Station

Event

Lab Network

“Cot Bot”

In order to investigate the operational capabilities of a mobile wireless sensor network 
(WSN), a small scale network is being created at UT-Austin.  The network will consist 
of approximately 40-50 stationary nodes and 10 mobile nodes.  The nodes are the 
Mica Z mote produced by Crossbow.  The mobile nodes are R/C cars fitted with a 
mote, which are being developed specifically for this application.

A real world application of a WSN requires collaboration between several different 
autonomous devices.  In addition to the sensor nodes, mobile robots and unmanned air 
vehicles can be included in the network to obtain more detailed data.  All of the devices 
must communicate in an efficient manner to receive vital information quickly.

The limited range of the fixed sensors only allows for sensors to communicate locally.  If 
information needs to be passed to a command station, moving the message one node at 
a time would prove to be extremely inefficient.  Since the cost of giving every node more 
resources is too high, a more efficient structure needs to be investigated.  Currently, 
clustering is being looked at for node communication.

Research Focus:

I Self organization – clustering

I GPS-denied navigation, path-planning

I Consensus establishment

I Time-delay in communication
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Swarms and Information Architectures

I
Undirected/Symmetric

I
Rigid, but not minimally so

I
Directed/Asymmetric

I
Minimally persistent

I
LFF, LRF, Co-Leader
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Clustering for Self Organization

Hierarchial Self-Organization of the Network

I Determination of clusterheads and clients

I Optimization a very di�cult problem (NP hard)

I Best approximations s O(log n) for 1-D; O(
p
n) for 2-D

I Mobile nodes not involved

(Mercker, Akella, Alvarez, JIRS 2010)
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Time-Delays & Imperfect Communication

Dynamics with Unstable Drift:

I Graph containing spanning tree necessary for consensus

I Necessary and su�cient stability conditions for cyclic graphs in terms of control
gains ↵ (position-feedback) and � (rate-feedback)

I Directed graphs are less robust w.r.t. time-delay uncertainty when compared to
corresponding underlying undirected graphs
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Stability Conditions - No Self-Delay Protocol

I No self-delay, weighted adjacency matrix Ā

I Critical delay ⌧⇤  ⌧
max

(Yang, Mazenc, Akella, JGCD 2015)
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Stability Conditions - with Same Self-Delay

I Same self-delay, weighted adjacency matrix Ā

I Critical delay ⌧⇤  ⌧
max
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Autonomous Guidance for Satellite Swarms

Swarm about Dwarf Planet Ceres

(Hernandez, Thakur, Akella, JGCD 2015)

Swarm about Dwarf Planet Ceres
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Navigation without Localization/GPS Infrastructure

GPS Denied Robot Navigation:

I Reach “purple” from “blue”

I Arbitrary heading

I Imperfect communication boundaries
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Vision-Enabled Autonomy: Pose and Tumble Estimation

Vision-Based Discrete Adaptive Rate Estimation

(Almeida, Akella, Mortari, AIAA/AAS SFM 2016)

Vision-Based Discrete Adaptive Rate Estimation
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What if Landmarks aren’t Mapped?

Simultaneous Localization and Mapping (15 fps)

(OrbSLAM; Mur-Artal et al. Universidad Zaragoza 2016)

Simultaneous Localization and Mapping (15 fps)

August 17, 2016 M.R. Akella Speed-boosted Adaptation & Applications 25/27



Challenges, Opportunities, Future Work..

I Distributed, ubiquitous

I “Internet of Things” – at
massive scales

I Human-robot interface,
perception, cognition

I Layered-autonomy, dependability

I Uncertainty, quantification and its impact
on sensor/resource allocation
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