Feedback Tracking Control Schemes For A Class of Underactuated Vehicles in SE(3)

Rakesh Warier¹, Amit Sanyal², Srikant Sukumar¹, & Sasi Prabhakaran²

> IIT Bombay¹ Syracuse University²

Systems and Control Seminar, IITB, India July 26, 2017

Autonomous Vehicles

- Autonomous UAV : <u>Underactauted:</u>
- Six degrees of freedom
- Four degrees of actuation
 - Torque can be applied about any body-fixed coordinate axes
 - Thrust fixed along a single body-fixed axis
 - Only the magnitude of thrust is controlled

Figure: Example: Quadcopter / quadrotor

Coordinate frame definition

- B is the body fixed frame, fixed to the CoM of the vehicle
- *I* is fixed in space and takes the role of an inertial coordinate frame

Thus the pose of the vehicle in SE(3) given by,

$$g = \begin{bmatrix} R & b \\ 0 & 1 \end{bmatrix} \in SE(3)$$
(1)

- $R \in SO(3)$ is rotation matrix from frame \mathcal{B} to frame \mathcal{I}
- ▶ $b \in \mathbb{R}^3$ is the position vector of the origin of frame \mathcal{B} with respect to frame \mathcal{I} represented in frame \mathcal{I}

Kinematic Equations

Pose kinematics of the vehicle is given by

 $\dot{R} = R(\Omega)^{\times},$ $\dot{b} = v.$

Here,

- $\Omega(t) \in \mathbb{R}^3$ is the angular velocity measured in the body frame
- ▶ $v(t) \in \mathbb{R}^3$ is the translational velocity measured in the inertial frame

▶ $(.)^{\times} : \mathbb{R}^3 \to \mathfrak{so}(3)$ is the skew-symmetric cross product operator

Dynamics Model

Dynamics model for the underactuated vehicle is given by,

$$m\dot{v} = m g e_3 - f R e_3,$$

 $J\dot{\Omega} = J \Omega \times \Omega + \tau.$

Here,

- g is acceleration due to gravity
- $e_3 = [0, 0, 1]^{\top}$
- $-R e_3$ is the inertial direction of the thrust
- $f \in \mathbb{R}$ is the thrust magnitude
- $J \in \mathbb{R}^{3 \times 3}$ is the moment of inertia
- $au \in \mathbb{R}^3$ is the torque

Quadcopter Actuation Model

- VTOL quadcopter UAV model is considered here
 - Four identical actuators (propellers)
 - D is the scalar distance from the propeller axis to the center of UAV
 - ▶ $u \in C \subset \mathbb{R}^4$ is the control input which directly actuates the 3 rotational DoF and 1 translational DoF

Actuation model of quadcopter is given by

$$u = \begin{bmatrix} -f & \tau \end{bmatrix}^{\mathsf{T}} = \mathcal{K} \begin{bmatrix} \bar{\omega}_1^2 & \bar{\omega}_2^2 & \bar{\omega}_3^2 & \bar{\omega}_4^2 \end{bmatrix}^{\mathsf{T}},$$

where

$$\mathcal{K} = \begin{bmatrix} -k_f & -k_f & -k_f & -k_f \\ 0 & -k_f D & 0 & k_f D \\ k_f D & 0 & -k_f D & 0 \\ -k_\tau & k_\tau & -k_\tau & k_\tau \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

is a constant invertible matrix for $k_f
eq 0$ and $k_ au
eq 0$

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

・ロト ・四ト ・ヨト ・ヨ

Off-line

- Inspect the environment
- Initialize the UAV
- ► Select desired waypoints in ℝ³ w.r.t *I*
- Generate a desired trajectory $b^d(t) \in \mathbb{R}^3$ is \mathbb{C}^2
- On-line
 - Compute control thrust f and the desired angular velocity Ω^d
 - Compute the attitude control torque
- UAV tracking trajectory

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Translational Trajectory Tracking

- Position tracking error: $\tilde{b} := b b^d$
- Translational velocity tracking error: $\tilde{v} := v v^d = \tilde{b}$
- Acceleration tracking error: $\tilde{a} := \dot{\tilde{v}}$
- Translational error dynamics in inertial frame I are:

$$\dot{\tilde{b}} = \tilde{v} = v - v^d, \quad m\dot{\tilde{v}} = mge_3 - fr_3 - m\dot{v}^d,$$
 (2)

► After differentiating (2) and reformulating (for α > 0),

 $\begin{pmatrix} m\frac{d}{dt}\left(\tilde{a}+\alpha\tilde{v}\right) &= -m\left(\ddot{v}^{d}+\alpha\dot{v}^{d}\right)+\alpha \ m \ g \ e_{3}-(\dot{f}+\alpha f)Re_{3} \\ &-f \ R(\Omega\times e_{3}) \end{cases}$

Fully actuated with controls \dot{f} and $\left[\Omega_{(1)}, \Omega_{(2)}, 0\right]^{\top}$

Translational Trajectory Tracking

- Position tracking error: $\tilde{b} := b b^d$
- Translational velocity tracking error: $\tilde{v} := v v^d = \tilde{b}$
- Acceleration tracking error: $\tilde{a} := \dot{\tilde{v}}$
- Translational error dynamics in inertial frame I are:

$$\dot{\tilde{b}} = \tilde{v} = v - v^d, \quad m\dot{\tilde{v}} = mge_3 - fr_3 - m\dot{v}^d,$$
 (2)

► After differentiating (2) and reformulating (for α > 0),

$$\begin{cases} m\frac{d}{dt}\left(\tilde{a}+\alpha\tilde{v}\right) = -m\left(\ddot{v}^d+\alpha\dot{v}^d\right) + \alpha \ m \ g \ e_3 - (\dot{f}+\alpha f)Re_3 \\ -f \ R(\Omega \times e_3) \end{cases}$$

Fully actuated with controls \dot{f} and $\left[\Omega_{(1)}, \Omega_{(2)}, 0\right]^{\mathsf{I}}$

Control Framework

- Position tracking control. Design *f* and [Ω¹, Ω², 0]^T for tracking the desired position trajectory
- Angular velocity tracking control. Synthesize control torque τ so that angular velocity tracks the angular velocity profile obtained from the position tracking control design

Position Trajectory Tracking Control

Theorem

Let the feedback control law be given by:

$$\dot{f} = -\alpha f + mR^{\mathsf{T}} \left(\zeta \left(\tilde{a} + \alpha \tilde{v} \right) + \lambda \left(\tilde{v} + \alpha \tilde{b} \right) \right) \cdot e_{3} \\ - mR^{\mathsf{T}} \left(\ddot{v}^{d} + \alpha \dot{v}^{d} \right) \cdot e_{3} + \left(\alpha mgR^{\mathsf{T}}e_{3} \right) \cdot e_{3} \\ \Omega_{(1)}, \Omega_{(2)}, 0 \right]^{\mathsf{T}} = \left(\frac{1}{f} \right) e_{3} \times \left(mR^{\mathsf{T}} \left(\zeta \left(\tilde{a} + \alpha \tilde{v} \right) + \lambda \left(\tilde{v} + \alpha \tilde{b} \right) \right) \right) \\ - \left(\frac{1}{f} \right) e_{3} \times \left(mR^{\mathsf{T}} \left(\ddot{v}^{d} - \alpha \dot{v}^{d} \right) + \alpha mgR^{\mathsf{T}}e_{3} \right) \\ \end{array}$$

where ζ , $\lambda \in \mathbb{R}^+$ satisfying $\zeta^2 \neq 4\lambda$. Then tracking error dynamics is stabilized to $(\tilde{b}, \tilde{v}, \tilde{a}) = (\mathbf{0}_{1 \times 3}, \mathbf{0}_{1 \times 3}, \mathbf{0}_{1 \times 3})$ exponentially.

Position Trajectory Tracking Control

Exponential stability of position tracking control shown by expressing the feedback dynamics for \tilde{b} as:

$$\left(\frac{d^3}{dt^3} + (\alpha + \zeta)\frac{d^2}{dt^2} + (\zeta\alpha + \lambda)\frac{d}{dt} + (\alpha\lambda)\right)\tilde{b} = \mathbf{0}_{1\times 3}, \quad (3)$$

which has non-repeating roots with negative real parts.

Angular Velocity Tracking Control

- Angular velocity Ω is controlled to achieve stable tracking of desired translational motion
- Desired angular velocity $\Omega^d(t)$ chosen to be

$$\Omega^{d} = \left(\frac{1}{f}\right) e_{3} \times \left(mR^{\mathsf{T}}\left(\zeta(\tilde{a} + \alpha\tilde{v}) + \lambda(\tilde{v} + \alpha\tilde{b})\right)\right) \\ - \left(\frac{1}{f}\right) e_{3} \times \left(mR^{\mathsf{T}}(\ddot{v}^{d} - \alpha\dot{v}^{d}) + \alpha mgR^{\mathsf{T}}e_{3}\right)$$

- The third component of angular velocity chosen to be zero
- Angular velocity error defined as $e_{\Omega} = \Omega \Omega^d$
- The error dynamics are

$$rac{d}{dt}ig(Je_\Omegaig) = J\Omega imes \Omega + au - Jrac{d}{dt}(\Omega^d)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finite-Time Stable Angular Velocity Tracking Control

Theorem

The feedback control law τ for angular velocity control is given by

$$\tau = -(J\Omega) \times \Omega + J\frac{d}{dt}(\Omega^d) - \frac{L(\Omega - \Omega^d)}{\left((\Omega - \Omega^d)^{\mathsf{T}}L(\Omega - \Omega^d)\right)^{1 - \frac{1}{p}}}$$

where L is a positive definite matrix and $p \in (1, 2)$. Then, the angular velocity error dynamics is stabilized to $e_{\Omega} = \mathbf{0}_{1 \times 3}$ in finite time.

Finite-time stability of the angular velocity tracking control scheme is shown by the Lyapunov function:

$$\mathcal{V}_{rot} = \frac{1}{2} (\Omega - \Omega^d)^{\mathsf{T}} J (\Omega - \Omega^d)$$
(4)

Finite-Time Stable Angular Velocity Tracking Control

Theorem

The feedback control law τ for angular velocity control is given by

$$\tau = -(J\Omega) \times \Omega + J\frac{d}{dt}(\Omega^d) - \frac{L(\Omega - \Omega^d)}{\left((\Omega - \Omega^d)^{\mathsf{T}}L(\Omega - \Omega^d)\right)^{1 - \frac{1}{p}}}$$

where L is a positive definite matrix and $p \in (1, 2)$. Then, the angular velocity error dynamics is stabilized to $e_{\Omega} = \mathbf{0}_{1 \times 3}$ in finite time.

Finite-time stability of the angular velocity tracking control scheme is shown by the Lyapunov function:

$$\mathcal{V}_{rot} = \frac{1}{2} (\Omega - \Omega^d)^{\mathsf{T}} J (\Omega - \Omega^d)$$
(4)

Stability of the Overall Feedback System

Theorem

The overall feedback system given by translational tracking error dynamics and the angular velocity error dynamics is exponentially stabilized to $(\tilde{b}, \tilde{v}, \tilde{a}, e_{\Omega}) = (\mathbf{0}_{1\times 3}, \mathbf{0}_{1\times 3}, \mathbf{0}_{1\times 3}, \mathbf{0}_{1\times 3})$

Overall stability of system is shown by: (1) finite-time convergence and stability of angular velocity to desired angular velocity profile; and (2) exponential convergence of position tracking errors to zero thereafter.

Numerical Simulations

- Moment of inertia and mass of UAV are selected as $J = \text{diag}([0.0820, 0.0845, 0.1377]) \text{kg m}^2, m = 4.34 \text{kg}.$
- Initial configuration:

$$b(0) = \begin{bmatrix} 0, \ 0.35, \ 0 \end{bmatrix}^{\mathsf{T}} \mathsf{m}, \quad v(0) = \begin{bmatrix} 0, \ 0, \ 0 \end{bmatrix}^{\mathsf{T}} \mathsf{m/s}$$
$$R(0) = I, \quad \Omega(0) = \begin{bmatrix} 0, \ 0, \ 1 \end{bmatrix}^{\mathsf{T}} \mathsf{rad/s}.$$

 At least two inertial sensors including three-axis rate gyro are assumed to be onboard the rigid body.

• The desired trajectory is chosen to be helical, $b^{d}(t) = [0.4t, 0.4\cos(t), 0.6\sin(t)]^{\mathsf{T}} \mathsf{m}$

Desired and achieved position trajectories of the simulated vehicle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tracking Errors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Control Inputs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Conclusion

- Trajectory generation
- Exponentially stable position trajectory tracking
- Finite time stable angular velocity tracking
- Yaw rate stabilized to zero
- Validation of integrated guidance and control

Future Work

Experimental Results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Integrated Guidance and Nonlinear Feedback Control of Underactuated Unmanned Aerial Vehicles in SE(3)

Sasi Prabhakaran. V Postdoc Syracuse University **Amit K. Sanyal** Associate Professor Syracuse University Rakesh R. Warier PhD Student IIT Bombay

Systems and Control Seminar, IIT Bombay

Mumbai, India

UAV Control in SE(3)

July 26, 2017 1 / 17

(4) (日本)

Unmanned Vehicle Systems

Autonomous Multirotor UAV

イロト イヨト イヨト イヨト

Unmanned Vehicle Systems

Autonomous Multirotor UAV <u>Underactauted:</u>

Quadrotor/Quadcopter

Quadcopter

- Four independent control inputs
- Six Degrees of Freedom (DoF); 3 DoF attitude is controlled
- Only the magnitude of thrust (1 DoF in translation) is controlled

Prabhakaran, Sanyal, Warier

UAV Control in SE(3)

July 26, 2017 2 / 17

Kinematics

Coordinate frame definition

- ullet $\mathcal B$ is a body fixed frame, fixed to the mass center of the vehicle
- $\checkmark \ \mathcal{I}$ is fixed in space and takes the role of an inertial coordinate frame

The pose of the vehicle is represented in matrix form as follows:

$$g = \begin{bmatrix} R & b \\ 0 & 1 \end{bmatrix} \in SE(3)$$
(1)

- $R \in SO(3)$ is rotation matrix from frame \mathcal{B} to frame \mathcal{I}
- $b \in \mathbb{R}^3$ denotes position vector of origin of frame \mathcal{B} with respect to frame \mathcal{I} represented in frame \mathcal{I}

< □ > < 同 > < 回 > < 回 > < 回 >

Kinematics

Kinematic Equations

Pose kinematics of the vehicle is given by,

$$\dot{g}(t) = g(t)\xi(t)^{\vee}, \qquad (2)$$

with
$$\xi^{\vee} = \begin{bmatrix} \Omega^{\times} & \nu \\ 0 & 0 \end{bmatrix} \in \mathfrak{se}(3) \subset \mathbb{R}^{4 \times 4}$$
 for $\xi = \begin{bmatrix} \Omega \\ \nu \end{bmatrix} \in \mathbb{R}^{6}$.

Here,

- $\Omega(t) \in \mathbb{R}^3$ is the angular velocity
- $u(t) \in \mathbb{R}^3$ is the translational velocity
- $(\cdot)^{\times} : \mathbb{R}^3 \to \mathfrak{so}(3) \subset \mathbb{R}^{3 \times 3}$ is the skew-symmetric cross-product operator that gives the vector space isomorphism between \mathbb{R}^3 and $\mathfrak{so}(3)$

< □ > < □ > < □ > < □ > < □ > < □ >

Dynamics Model

"Nominal" model of the dynamics for the underactuated vehicle is given by

$$I\dot{\xi} = \mathrm{ad}_{\xi}^* I\xi + \varphi(g,\xi) + Bu, \ u \in \mathcal{C} \subset \mathbb{R}^4,$$
(3)

where,

$$\mathbb{I} = \begin{bmatrix} J & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & mI_3 \end{bmatrix} \in \mathbb{R}^{6\times6}, \ B = \begin{bmatrix} I_3 & \mathbf{0}_{3\times1} \\ \mathbf{0}_{3\times3} & e_3 \end{bmatrix} \in \mathbb{R}^{6\times4},$$

I denotes the mass (m) and inertia (J) properties of the vehicle
 φ(g, ξ) ∈ ℝ⁶ is the vector of known (modeled) moments and forces
 e₃ = [0 0 1]^T ∈ ℝ³

イロト 不得 トイヨト イヨト 二日

Quadcopter Actuation Model

VTOL quadcopter UAV model is considered here

- 4 identical actuators (propellers)
- \square D is the scalar distance from the propeller axis to the center of UAV
- so $u \in C \subset \mathbb{R}^4$ is the control input which directly actuates the 3 rotational DoF and 1 translational DoF

$$u = \begin{bmatrix} \tau^{\mathsf{T}} & f \end{bmatrix}^{\mathsf{T}} = \mathcal{K} \begin{bmatrix} \bar{\omega}_1^2 & \bar{\omega}_2^2 & \bar{\omega}_3^2 & \bar{\omega}_4^2 \end{bmatrix}^{\mathsf{T}},$$

where

$$\tau \in \mathbb{R}^{3}, \ \mathcal{K} = \begin{bmatrix} -k_{f} & -k_{f} & -k_{f} & -k_{f} \\ 0 & -k_{f}D & 0 & k_{f}D \\ k_{f}D & 0 & -k_{f}D & 0 \\ -k_{\tau} & k_{\tau} & -k_{\tau} & k_{\tau} \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

is a constant invertible matrix for $k_f
eq 0$ and $k_ au
eq 0$

< □ > < □ > < □ > < □ > < □ > < □ >

Prabhakaran, Sanyal, Warier

UAV Control in SE(3)

→ ▲ 重 ▶ 重 ∽ へ ペ July 26, 2017 7 / 17

Off-line

Inspect the environment

Off-line

- Inspect the environment
- Initialize the UAV
- ${\scriptstyle \hbox{\scriptsize IS}}$ Select desired waypoints in \mathbb{R}^3 w.r.t $\mathcal I$

UAV Control in SE(3)

July 26, 2017 7 / 17

🖝 Off-line

- Inspect the environment
- Initialize the UAV
- ${\scriptstyle \hbox{\scriptsize IS}}$ Select desired waypoints in \mathbb{R}^3 w.r.t $\mathcal I$
- Generate a desired trajectory $b_d(t) = \mathrm{C}^2(\mathbb{R}^3)$

On-line

UAV Control in SE(3)

🖝 Off-line

- Inspect the environment
- Initialize the UAV
- Generate a desired
 trajectory $b_d(t) = \mathrm{C}^2(\mathbb{R}^3)$

On-line

- \square Compute control thrust f
- Generate the desired attitude trajectory, $R_d(t)$
- Compute the attitude control torque

🖝 Off-line

- Inspect the environment
- Initialize the UAV
- ${\scriptstyle \hbox{\scriptsize IS}}$ Select desired waypoints in \mathbb{R}^3 w.r.t $\mathcal I$
- Generate a desired trajectory $b_d(t) = \mathrm{C}^2(\mathbb{R}^3)$

On-line

- \square Compute control thrust f
- Generate the desired attitude trajectory, $R_d(t)$
- Compute the attitude control torque
- UAV tracking trajectory

Overview

Integrated trajectory generation and control

🖝 Off-line

- Inspect the environment
- Initialize the UAV
- Generate a desired
 trajectory $b_d(t) = \mathrm{C}^2(\mathbb{R}^3)$

On-line

- \square Compute control thrust f
- Generate the desired attitude trajectory, $R_d(t)$
- Compute the attitude control torque
- UAV tracking trajectory

Tracking errors definition

- ${\tt I}{\tt S}{\tt S}$ Position tracking error: $\tilde{b}:=b-b_d$
- ranslational velocity tracking error: $ilde{v} := v v_d = ilde{b}$
- Solution Attitude tracking error: $Q = R_d^T R$
- reference of the second secon
- \checkmark Translational error dynamics in inertial frame $\mathcal I$ is:

$$\dot{\tilde{b}} = \tilde{v} = v - v_d, \quad m\dot{\tilde{v}} = mge_3 - fr_3 - m\dot{v}_d,$$
(4)

- True attitude of the body is represented by $r_3 = Re_3$
- \mathbb{I} Control force vector, $\mathit{fr}_3 = \bar{\varphi}_c$ is expressed in \mathcal{I}

イロト イポト イヨト イヨト 二日

Translational Control Law

Theorem

Consider the translational dynamics given in (4); define

$$z(t) = \frac{\tilde{b}}{\left(\tilde{b}^{\tau}\tilde{b}\right)^{1-\frac{1}{\rho}}},$$
(5)

where $p \in (1, 2)$. The feedback control $u \in \mathbb{R}^3$ given by,

$$u = ge_3 - \dot{v}_d + k\dot{z} + k\tilde{b} + \frac{kP(\tilde{v} + kz)}{\left[(\tilde{v} + kz)^T P(\tilde{v} + kz)\right]^{1 - \frac{1}{p}}},$$
(6)

where control gain matrix $P \succ 0$, stabilizes the translational error dynamics

$$\dot{ ilde{v}} = ge_3 - \dot{v}_d - u$$
; where $mu(t) = f(t)r_3$,

in finite time.

Prabhakaran, Sanyal, Warier

Generating desired attitude trajectory

- Attitude is controlled to achieve stable tracking of the desired translational motion
- ∠ Desired attitude $R_d = [r_{2d} \times r_{3d} \ r_{2d} \ r_{3d}] \in SO(3)$ is generated as follows:

$$r_{3d} = R_d e_3 = \frac{u}{\|u\|}.$$
 (7)

Mow compute $r_{2d} = \frac{r_{3d} \times s_d}{\|r_{3d} \times s_d\|} = R_d e_2$, by selecting an appropriate $s_d(t) \in C^2(\mathbb{R}^3)$ such that it is transverse to r_{3d}

Theorem

Let $r_{3d} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}^T \in \mathbb{S}^2 \subset \mathbb{R}^3$ be a known unit vector as given in (7). The vector

$$s_d = \begin{bmatrix} a_2 + a_3 & a_3 - a_1 & -a_1 - a_2 \end{bmatrix}^{\mathsf{T}}$$
(8)

is orthogonal to r_{3d} .

Finite-time Stable Attitude Tracking Control on TSO(3)

Theorem

The feedback control law τ_c for attitude control is given by

$$\begin{aligned} \tau_{c} &= J\left(Q^{\mathsf{T}}\dot{\Omega}_{d} - \frac{\kappa H(s_{\mathcal{K}}(Q))}{\left(s_{\mathcal{K}}^{\mathsf{T}}(Q)s_{\mathcal{K}}(Q)\right)^{1-1/p}}w(Q,\omega)\right) \\ &+ (Q^{\mathsf{T}}\Omega_{d})^{\times}J\left(Q^{\mathsf{T}}\Omega_{d} - \kappa z_{\mathcal{K}}(Q)\right) + \kappa J\left(z_{\mathcal{K}}(Q) \times Q^{\mathsf{T}}\Omega_{d}\right) \\ &+ \kappa J(\omega + Q^{\mathsf{T}}\Omega_{d}) \times z_{\mathcal{K}}(Q) - k_{p}s_{\mathcal{K}}(Q) \\ &- \frac{L\Psi(Q,\omega)}{\left(\Psi(Q,\omega)^{\mathsf{T}}L\Psi(Q,\omega)\right)^{1-1/p}}, \end{aligned}$$
(9)

where

$$\Psi(Q,\omega) = \omega + \kappa z_{\mathcal{K}}(Q), \text{ and } H(x) = I - \frac{2(1-1/p)}{x^{\mathsf{T}}x} x x^{\mathsf{T}}.$$
 (10)

Then the feedback attitude tracking error dynamics is stabilized to $(Q, \omega) = (I, 0)$ in finite time.

Prabhakaran, Sanyal, Warier

UAV Control in SE(3)

July 26, 2017 11 / 17

Stability of the Overall Feedback System on TSE(3)

Theorem

The overall feedback control system given by the tracking error kinematics and dynamics is finite-time stable for the generated state trajectory $(b_d(t), R_d(t), v_d(t), \Omega_d(t)) \subset \text{TSE}(3)$. Moreover, the domain of convergence is almost global over the state space.

Lyapunov functions used (for translational and rotational motions):

$$V_{tr}(\tilde{b},\tilde{v}) = \frac{1}{2} \left(k \tilde{b}^{\mathsf{T}} \tilde{b} + (\tilde{v} + kz)^{\mathsf{T}} (\tilde{v} + kz) \right), \tag{11}$$

$$V_{rot}(Q,\omega) = k_{\rho} \langle K, I - Q \rangle + \Psi(Q,\omega)^{\mathsf{T}} J \Psi(Q,\omega).$$
(12)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Numerical Results

Prabhakaran, Sanyal, Warier

July 26, 2017 13 / 17

Numerical Results

(a) Norm of position tracking error

(c) Attitude tracking error

(d) Magnitude of total thrust

Conclusion

- $\ensuremath{\,^{\scriptsize \hbox{\tiny \ensuremath{\mathbb{S}}}}}$ Position trajectory tracking on $\ensuremath{\mathbb{R}}^3$ through given waypoints
- Thrust force control for finite-time stable position trajectory tracking
- $\ensuremath{\,\cong}$ Attitude trajectory generation on ${\rm SO}(3)$ based on desired thrust direction
- Finite time stable attitude control to track required attitude
- Validation of integrated guidance and control

Future/Ongoing Work

- Optimal C^2 position trajectory generation with known bounds on velocities and accelerations
- Optimal C² position and pointing trajectory generation through given waypoints (on R³ × S²)
- Experiments to be carried out in Autonomous Unmanned Systems Laboratory (AUSL), Syracuse Center of Excellence

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prabhakaran, Sanyal, Warier

UAV Control in SE(3)

July 26, 2017 17 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <