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Introduction
[ Preliminaries |

Theorem (KYP) Let Z(s) = C''[s] — A]7!B be a p x p transfer function s.t.:
e the pair (A, B) is completely controllable;
e the pair (A, C) is completely observable.

Then, Z(-) is strictly positive real if and only if there exists a positive definite
matrix P such that

PA+A'P=-Q
PB=C".

Theorem The matrix A is Hurwitz (its eigen-values have strictly negative real
parts) if and only if for any Q = Q' positive definite, there exists P = P' > 0
S.t.

PA+A'P=-Q



[ Preliminaries |

Definition 1 (Persistency of excitation)

A locally integrable function ® : R>g — R™*" s said to be persistently exciting
if there exist T' and 1+ > 0 such that

t+T
/ O(s)D(s) ' ds > p Vi >0 (1)

Remarks
e ®, in the definition, is a function of time, only

e Typically, m > n hence, ®(t)®(t)' is rank deficient for each ¢t > 0 however,
(1) may still hold; it is a lowerbound on the “average” of ®(¢)®(t)'

In dynamical systems:
e.g., © = Ax "is GES" if A is Hurwitz (full rank and \;r(A) < 0)
= —®()®(t) "z is still GES iff ® is PE, even if \jr(—®()®(t)') £ 0



lllustration of persistency of excitation

t+3
Consider the system & = —a(t)x. Seemingly, 3, ;> 0 : / a(s)’ds > pu
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[ Preliminaries |

Fact. Consider the system
i = —a(t)*x,

with a(t), a(t) bounded.
The origin is globally exponentially stable iff there exist 1, 7" > 0 such that

t+T
/ a(s)’ds > p vt > 0.
t

Gradient systems. Consider the system

i=—®t)®(t) z, ®)eR™" m>n

with ®(t), ®(¢) bounded.
The origin is globally exponentially stable iff ® is persistently exciting.

—see e.g., [Anderson et al; Narendra & Annaswamy; Sastry & Bodson; ..

Rmk. Convergence rates: [Sukumar et al, Loria & Panteley; Brocket .. .]

]



[ Preliminaries |

Lemma 1 (linear MRAC). Consider the linear time-varying (LTV) system

A Bo(t)" e
—p(t)C 0 0|’

—e € R"™ s the tracking error

— 6 € R™ js the parameter estimation error

— ¢ : R — R"™ is the regressor function.

Assume that:

o the triple (A, B,C) is strictly positive real (satisfies the KYP lemma):
Vi=2"Pz>0 = V =—|e|* <0;

e ¢ Is absolutely continuous; ¢ and qb are bounded almost everywhere;

Then, the origin is uniformly globally exponentially stable if and only if ¢ is PE.




Introduction
| Basics on adaptive control |

Consider the linear autonomous system

r = Ax+ Bu
y = Cx
In canonical form.

e Let (A,B) be controllable and (A,C) be observable.

e Because (A,B) is controllable, we can perform pole placement:
[there exists (a row vector) K such that (A — BK) is Hurwitz]

e However, if there is uncertainty in A we cannot compute the appropriate K

o Let u = —Kx where K is an estimate of (the ideal) K
let K =K — K then,

i = (A—BK)xr—BKxz
y = Cx



Analysis.
o Let A:= A — BK. By design, this matrix is Hurwitz
e Also, the pair (A, C) is controllable and PB = C' therefore, let

V = 1:I:TP:L' + if(f(T
2 2y

— V = —2! [ATP + PA]x _2"PBx KT + %f(f(T

~

o We use the (passivity-based) update law: K =~z C'z"
Then: V= —2"TQu

Claim. [after adaptive control texts]:  — 0 and K is bounded.

Proof: After ch. lll-Lemma 1, if a once continuously differentiable function
¢ : R>9 — R" satisfies

RGOS Loo, Y < Lo.
Then, necessarily lim ¢(t) = 0.

t—00

Rmk. Does K — 0?



| Basics on adaptive control |

Fact: Adaptive control systems are, in general, nonlinear time-varying

The closed-loop system has the (familiar) form

~

t = Az+ B(1)b, B(t) = —-Bz(t)" e RV™

§ = —~vC(t)x, C(t) := —z(t)B'PeR™"
A = (A—-BK)

We have: 96[,00, x— 0 6 = K'

Rmk. The notations on the right are convenient, but, at best, ambiguous!

e For a start, the matrix B(t) depends on state trajectories hence,
on the initial conditions (uniformity ...)

e If we the goal is to stir x(t) — 0, how to pretend to use

persistency of excitation? (z = 0 = B = 0 convergence of 6...)

Problem: How do we ensure (uniform) stability and convergence?

10



[ Model Reference Adaptive Control ]

e Consider now the tracking control problem, to stir x — z*, for a pair of systems:

Plant: Reference model:
1 = Io9 f{ — x;

.C.Un_l — */E’I’L :.C:,—l — aj;';
B, = ®(z)'0+ g(z)u T, = f(z")

o Let u:=g(z) ' [f(z*) — ®(z)T6 — K(-)e] and 6 = v®(x)e,

Then, define the error e := x — z*. Its dynamics corresponds to

éq 0 1 .- e 0




| Model Reference Adaptive Control ]

Common mistake.

Such closed-loop system, is commonly written in the compact form:

)40 [

Then, global exponential stability is some times claimed invoking Lemma 1;
converse theorems are used to establish statements on robust stability, ... !

A B®'
—®C 0

Rmk. The function ® depends on z and, since x := e+x*(t), the system dynamics
is, actually, nonlinear:

A Bo(t, z)" } { e

~(t,2)C 0 é}’ Mt z) = Ble + (1)

while the system in Lemma 1 is linear!!

12



[ Model-Reference-Adaptive-Control |

Problem statement

How do we infer the (asymptotic) stability of the origin of

(-t 5| 15

with A Hurwitz, (A, B) controllable, and (A, C') observable?

A Bo(t,z)"
—o(t, z)C 0

What is more, how to guarantee the stability of the origin for
| _ | AC) B() || =
5&2 C() 0 i)

where A, B and C' are, generally speaking, functions of time and the states but

have “certain structural properties” ?

Rmk. We do not want to assume that B(-) is full rank

14



| Model-Reference-Adaptive-Control |

e Consider the case-study:

e | A Bo(t,z)" e e
0| | —st,2)c 0 o """ |0

and assume that we know P such that, defining,

1
V:=e'Pe+ 5]9|2 > 0,

we obtain |
V=—le*<o.

e Inspired by Lemma 1, can we conjecture that some boundedness conditions on
¢(t, z) in addition to persistency of excitation should suffice for UGAS (UGES?).

Problem: What does PE mean for the state-dependent function ¢(¢,z) ?

e Some authors use:

t+71T
/ ¢(77 Z<7-7 to, ZO))gb(Ta Z(T, to, ZO))TdT >pl VE>t, .
t

15



[ Model-Reference-Adaptive-Control |

e The solutions are bounded (UGS). Hence, we (re)consider the system as
parameterized linear time-varying:

B A Bo(t, z(t,to, 2,)) "
0| | —o(t 2t to, 20))C 0 7

with i.c.: (t, Z) z(t) are solutions of the original NL system

QP
N

Then, we observe the following:

e If we assume that ¢(t, z(t, to, zo) is persistently exciting, i.e.,

t+1T
/ ¢(7-7Z(7-7 to, ZO))¢(7-7 Z<7-7 lo, Zo))TdT > ,u[ Yt > to .
t

(and if it is also bounded with bounded derivative) then, the origin is globally
exponentially stable uniformly in the initial conditions (%4, Z4).

e Iff the initial conditions (%4, Z«) = (o, 20) then, Z(t, 4, 24) = 2(t, to, 20),

16



| Model-Reference-Adaptive-Control |

e The solutions are bounded (UGS). Hence, we (re)consider the system as
parameterized linear time-varying:

e | A Bo(t, z(t, 1o, 25)) " é
0| | —o(t 2t to, 20))C 0 7

with i.c.: (ts, Zy) z(t) are solutions of the original NL system

However, In

t+T
/ O(T, 2(T, to, 20))P(T, 2(T, Lo, Zo>)TdT >npl Yt >t
'

[Q1] u, and T depend on the initial conditions that generate the trajectories
of the original nonlinear system hence, we loose uniformity in (., 2o)

[Q2] What if ¢(£,0) =07 ... the PE property is lost near the origin!

Rmk. We cannot claim global exponential stability for the nonlinear system

17



Linear parameterised time-varying systems
[ Q1: Problem statement ]

Let D be a closed set and let A\ € D be a parameter

(e.g. A= (to,20), D :=R59 x R")

We shall study systems of the form
© ‘ O ) (LTV)
0 0 0

where e € R", 0 € R™, A(t,\) € R™*", B(t,\) € R"*P (C(t,\) € R**P
are uniformly bounded.

A(t,\)  B(t,\)'
—Ct,\) 0

We aim at establishing uniform exponential stability of the origin, i.e., that
there exist r, kK and v > 0 such that for all t > ¢,, all £, > 0 and all A € D,

20| <7 = |2(t, N\ to, 20)| < k|zo] eV TE)

18



Linear parameterised time-varying systems
[ The essential tools |

Definition 2 (\-uniform persistency of excitation) Let ¢ : R>oxD — R™*"™,
¢(t, \) be absolutely continuous in both arguments. We say that ¢(t, \) is \-
uniformly persistently exciting (A\-uPE) if there exist i and T > 0 such that

t+T
/ o(1, (1, \) dr > pl, Vi>0,\eD.
t

Lemma 2 (Measure Lemma) Consider a function ¢ : R>g x D — R. Assume
that there exists ¢ such that |p(t, \)| < ¢ar forallt > 0 and all A € D. Assume
further that ¢(-,-) is A-uPE. Then, for any t > 0 the measure of the set

. . W
T = {T clt, t+T] : |b(r,\)| > 2T¢M} (1)

satisfies
I'p

C2T¢%, —

meas|[, +] > o, :

(2)

19



Linear parameterised time-varying systems
[ Example ]

Claim. The origin of & = —¢(t, A\)?x is uniformly globally exponentially stable
ldea: Let V() := 1 |z|® so that

2
V=—¢tN2* <0 (= UGS).
. T=3s ,

4 1 e T — —

| | — x(1)

3-‘ i — af(t).
051H ,—Hﬂﬁ ”u|—| : 1 : | 'Uﬂl

| ke ALl RN Bl | NS I
OO 2 4 6 8 10

time [s]

Rmk. On each window |[t,¢ + T'| there is a collection of intervals I, ;
during which ¢(¢t,)\)? > 0.5 and V (z(t)) takes a “good” decrease



Linear parameterised time-varying systems
[ The essential tools |

Lemma 3 (Integration lemma for UGES) Assume that there exist constants
r, ¢, p > 0 such that the solution x(-; \,to,xo) of & = f(t, \, x) satisfies

max {|z.,, o], } < el (3)

for all x, € B, and all t, > 0. Then, the system is \-ULES with k) := cel/P and
va 1= [pcP]t. Moreover, if ¢ > 0 exists for all x, € R", the system \-UGES
(GES unif. in the i.c. and in \).

Lemma 4 (Output injection) Let A: R>oxD — R™*", C : R5oxD — R™*",
and K : R>g x D — R"™™ be continuous and bounded on their domains.
e Assume that the origin of the system T = A(t, \)T is \-UGES.
e Then, the system & = A(t,\)x + K (t,\)y where y := C(t, \)x, is »-UGES
if there exists ¢ > 0 such that

/ ]y(s)|2ds < |:1:o|2 V (to, o) € R>g x R™. (4)
to

21



Linear parameterised time-varying systems

Lemma 5 (Speed-gradient systems) For the system
B=—g(t, Nt )z, o(t,N) € R™

assume that ¢(t, \) is A-uPE with parameters T and . > 0 and there exists
a constant ¢p; > 0 such that, for almost allt > 0 and all A € D

Oo(t, A
maxc{ ot 01 [ 202 < o 5
Then the system is A-UGES with
k=1, v 2 .

e2T[1+ ¢3,T?]

That is,
2(t)| < klzo|e M) Wi>t,, te >0, A€ D

22



Linear parameterised time-varying systems
[ Passive-interconnected systems |

Theorem 1 (UGES of LTV) The origin of the system

R E e I
—C(t,\) 0 { 7

under Assumptions 1 and 2, is \-UGES if and only if B(t, \) is A-uPE.

Assumption 1 there exists by > 0 such that, for almost all t > 0 and all A € D

aBg;, a) '} < by . (7)

max {|A(t, ML |B(tA)]

Assumption 2 There exist symmetric matrices P(t,\) and Q(t, \) such that
Pt, B\ =Ct N
—Q(t,\) :== A(t, ) TP(t,\) + P(t, N A(t, \) + P(t,\)
There exist pm, Gm, pym, and gy > 0 such that, for all (t,\) € R>g x D,
pml < P, A) <pml,  gnl < Q@A) < qul

23



Proof of Theorem 1. We split the system and use output injection:

First, consider the globally invertible change of coordinates:

o fl B 1 0 &
<= 1| =B, I 0

so {z =0} is A-UGES for (6) if and only if so is {£ = 0} for the system
H | AN B(t, )" } ﬁ L | B&NTB@®N
&2

:|€17

— R (ta )‘) _B(ta )‘)B(tv )‘)T 52 Ry (ta )‘) — Ry (ta )‘)
We establish that:

A(t, \) K(t, M)
1) the origin of &€ = A(t, A) is \-UGES,
2

)
3) &1 is square integrable (uniformly in \), and
4) K(t, \) is bounded.

the solutions £(¢, \) are uniformly bounded,

24



Linear parameterised time-varying systems

Corollary. The solutions satisfy the bound:

| 2 Py,
|x(t,A)|gtMt;qv<”;) o] e o o) VE >t .

- (c32kn)? . 1
— *tmv 2 , 0 < s
T = c30 + (City)) [4(1—,0) < p < minqp

C32 ‘= 1Max § p i Yo = @

where:

e 1, is the convergence rate for (¢, \) in ©(t,\) = —B(t, \)B(t, \) " z(t, \)

o 1/2
e c.isaboundon le|, = (/ le(t, A)F)
(

e}

e 1, i are bounds on coordinates transformations
e ky is a bound on an output injection term

e by is the bound on B(¢,\) and its derivative

25



Problem statement
[ Model-Reference-Adaptive-Control |

e “Since the solutions are bounded (UGS) one can consider the LTV system” :

e | A Bo(t, z(t, to, 20)) " é
01 | =0t 2t te, 2))CT 0 7
2(t) = [e(t)T, Q(t)T]T (solutions of the original NL system)

However, in

t+T
/ ¢<7—7 Z(Tv to, ZO))¢(7-7 Z(T, to, Zo))TdT > ,uI Vt > ts .
t

[m] 1, and 1" depend on the initial conditions that generate the trajectories

of the original nonlinear system hence, we loose uniformity in (., 2o)

[Q2] Whatif ¢(¢,0) =07 ... the PE property is lost near the origin!

26



Persistency of excitation for nonlinear systems
[Q2: what if ¢(¢,0=0)7]
Example 1 Consider the system 7 = —sin(t)?z° or, equivalently,
i = —sin(t)*z(t, \)*x, To = 2o, to =15 :=1,
e Assume that, given any 0 > 0, 315 C R>q, such that
2(t,\)| > ViteTs
then, defining v(t) := 1/2x(t)?, we have
o(t) = —8%sin(t)?v(t) V t € I
On the other hand,
t+m T
/ sin(7)%6%dr = =6°
" 2
that is, 0(t) = —p(t)?v(t), where ¢(t) := sin(7)d is PE.
e We conclude that: z(t,\)| > 6 = |2(t,\)| — 0 exponentially fast!

e If this holds for any 0 > 0 we recover uniform attractivity

27



Persistency of excitation for nonlinear systems
[ Rationale ]

e The origin is UGS, i.e.

F7 € Koo = sup|2(t)] < 7 (J2(t)])

e Trajectories o-far from the origin = PE

|2(to)|
y

28



Persistency of excitation for nonlinear systems
[ Rationale ]

The origin is UGS, i.e.,

Fy € Koo sup [2(1)] < v ([2(t)])

Trajectories d-far from the origin = PE
hence, exponential convergence to zero

0-close to the origin, PE is lost

28



Persistency of excitation for nonlinear systems

[ Rationale |

The origin is UGS, i.e.,

Fy € Koo = sup |2(1)] < v ([2(to)])
t>t,

Trajectories d-far from the origin = PE
hence, exponential convergence to zero

0-close to the origin, PE is lost

Attractivity :
Foreache >0and r >0, 47T > 0 s.t.

2(to)| < T = |2(t)| <e Vt>to+T

For each € > 0 there exists d(¢) s.t.

2(t)| <6 = |z(t)| <e V>t
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Persistency of excitation for nonlinear systems
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Persistency of excitation for nonlinear systems
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Persistency of excitation for nonlinear systems
[ Uniform J-Persistency of excitation |

Consider nonlinear time-varying systems:
= F(t,x)

where F'(-,-) is such that solutions exist (locally) and are unique.

Let + € R" be partitioned into x := [z ,2,]' where 1 € R™ and z5 € R".
Define the column vector function ¢ : R x R™ — R™ to be such that ¢(-,x) is
locally integrable for each x € R".

Definition 3 (UJ-PE) A function ¢(-,-) is said to be uniformly §-persistently
exciting with respect to xy if for each x € (R™\ {0}) x R™ there exist § > 0,
T >0 and >0 s.t.

t+T
z—z| <) = / (T, 2)|dTr>p VteR. (8)
t

29



Persistency of excitation for nonlinear systems
[ Characterizations of UJ)-PE |

Lemma 6 The function ¢(-,-) is Uo-PE with respect to x1 if and only if

(A) for each 6 > 0 and A > § there exist T > 0 and p > 0 such that,
for all t € R,

t+T
lz1] € [0, A], |x2| € [0, A] :>/ (T, x)|dr >pn VteR.
t

Example 2 Remember the system @ = —sin(t)?z>; for the function ¢(t,x) :

sin(t)?x? we have:

T

t+m
relfA = / sin(7)%6%dr = 552
t

That is, ¢(t, ) := sin(t)?x? is U5-PE.

30



Persistency of excitation for nonlinear systems
[ Characterizations of UJ)-PE |

Lemma 7 If (t,z) — ¢ is continuous in x uniformly in t then ¢(-,-) is U5-PE
with respect to x1 if and only if

(B) for each z such that x; # 0 there exist 7" > 0 and p > 0 such that,

t+T
[ iz p vier
t

Example 3 Let ¢(t,z) := ®(t)' x. Then, ¢(t,z) is US-PE with respect to x if
and only if there exist T' and 11 > 0 such that

/HT O(1)®(r) 'dr >pul  VteR. (9)

31



Persistency of excitation for nonlinear systems
[ Characterizations of UJ)-PE |

Example 4 Consider once more the function ¢(t,x) := sin(t)?z? which is uni-

formly continuous. We see that

t+m T
r#0 = / sin(7)%z?dr = 5332 =: u(x)
t

Actually, in general, we also have the following:

Lemma 8 The function ¢(-,-) is US-PE with respect to x1 if and only if

(C) for each A > 0 there exist ua € K and 0 : Rsg — R<g continuous
strictly decreasing such that, for all t € R,

t+0a (|21 ])
a1 20, [ea] €0, A]} = / 6(r,2)| dr > pa(|za]).

Rmk. It is clear that, in general, for nonlinear functions, the “PE bound” depends
on the “parameter’ x

32



Persistency of excitation for nonlinear systems
[ US-PE: A sufficient and necessary condition |

Theorem 2 (UGAS = UJ-PE) The origin of the system
= F(t,x)

where F'(-,-) is Lipschitz in x uniformly in t, is UGAS only if F(-,-) is Ud-PE with
respect to x € R". °

Rmk. Sufficiency also holds under extra conditions.
Proposition 1 The origin of the system

5= —u(t)*s’
is UGAS if and only if v(t) is persistently exciting (in the usual sense). o
Sketch of proof: The origin is UGS because V = |z|* yields V = —uv(t)%2* < 0.
The function ¢(t, z) = v(t)%23 is US-PE:

t+T t+T
/ v(r)dr>p Vt>0, 240 = / ‘1}(7')223‘ dr > plz|?
t t

33



Persistency of excitation for nonlinear systems
| Passive-interconnected systems |

Theorem 3 [11] Consider the system

{j;l } _ | Att,2) B(t@) H 1 }

C(t,x) 0 T9
under the following assumptions:

e We have a Lyapunov function V' such that

on(|z]) < V(t,2) < as(|z])

Vit,x) < —as(|x1|) a.e.

e The functions A, B and C are locally Lipschitz in x uniformly in t, uni-
formly bounded in t, B is once differentiable with partial derivatives in t, and

A(t, )|z =0 = Ct,2)]z,=0 = 0.

[The origin is UGAS if and only if B(t,x)x2|s,—0 is U5-PE with respect to xo ]

34



Persistency of excitation for nonlinear systems
[ Slotine & Li adaptive controller |

Proposition 2 Consider the lossless Lagrangian system (without friction)

Dy(q)G + Co(q,q)q + go(q) = u

in closed loop with the certainty-equivalence controller

§ = —Td(t,s,q) s
q.r ‘= q.d _ )\q~7 S = q T q.v“

Then, the origin if uniformly globally asymptotically stable for any A, kg > 0
if and only if () := ®(¢,0,0) is persistently exciting, that is

t+T
/ O, (TP (T) dT > p, Vt>0.
t

Rmk. Note that ®,(¢) is such that
O, (t)" 0 = Dy(qa(t))da(t) + Co(qa(t), Ga(t))da(t) + go(qa(t))

35



Persistency of excitation for nonlinear systems
[ Slotine & Li adaptive controller |

Analysis of the closed-loop system.—

The closed-loop dynamics, for which we have z; — 0, is

HE e e P
: 0 =Dy ()[Co()) +hal] || s Dyt (-)®(t,q,s)"
~ ~~ A~ ~ J
“A(t, z1)" 71 “B(t,z1)"
R en)| L E)
—

The result follows, directly, from Theorem 3, by recognizing that system has the
interconnected passive-systems form

T, = A(t,z1)z1 + B(t, 11)72
j?g = —B(t,xl)TP:r;l
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0-PE controllers
[ Stabilization of nonholonomic systems |

Consider the system:

I — U+
Ly = U3
L3 = U2

Rmk. [Brocket| The origin is not stabilizable via smooth autonomous
state-feedback

Proposition: Let us(t,x) := —ax3 — u (¢, x)z2 then,
j71 = U (t, CU)
j32 — U (ta ZC)ZC?)
.jﬂ'g — —QaXs3 — Uy (t, ZC)CCQ

Rmk. The general n-dimensional case is also solvable similarly
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0-PE controllers
[ Stabilization of nonholonomic systems |

Consider the system:

j31 — U
.jﬂ'g — U1T3
T3 = U

Rmk. [Brocket| The origin is not stabilizable via smooth autonomous
state-feedback

Proposition: Let uy(t,z) := —ax3 — u (¢, x)xs then,

T, = U (ta J?)

T3 —a  —u(t,x)| |x3
To u(t, x) 0 To

Rmk. We need u; to stabilize the x;-equation and to excite the x5, x3-equations
We use: u; := —kix1 + h(t, z2,x3). For instance

uy := —kyx1 + sin(t) [ |25]° + \:1:3]2]
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e Persistency of excitation was originally introduced by K. J. Astrém from
LTH, Sweden, in [1], in a discrete-time context

e It has been thoroughly developed by authors that include: Narendra,
Anderson, Annaswamy, lannou, to mention a few:

— In [9] the authors give a very detailed account of persistency of excitation
and uniform asymptotic stability. See also [7, 8]

— “Classical” theory of (linear) adaptive control systems is extensively
explained in [2]; in particular, output injection.

e The material on linear parameterized systems is taken from [3]

e The concept of uniform §-PE was originally introduced in [6].
More elaborated definitions and tools appeared in [4, 10, 5]
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