
Laboratoire de signaux et systèmes
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Introduction
[ Preliminaries ]

Theorem (KYP) Let Z(s) = C>[sI �A]�1B be a p⇥ p transfer function s.t.:

the pair (A,B) is completely controllable;

the pair (A,C) is completely observable.

Then, Z(·) is strictly positive real if and only if there exists a positive definite
matrix P such that

PA+A>P = �Q

PB = C>.

Theorem The matrix A is Hurwitz (its eigen-values have strictly negative real
parts) if and only if for any Q = Q>, positive definite, there exists P = P> > 0
s.t.

PA+A>P = �Q
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[ Preliminaries ]

Definition 1 (Persistency of excitation)

A locally integrable function � : R�0 ! Rm⇥n
is said to be persistently exciting

if there exist T and µ > 0 such that

Z t+T

t
�(s)�(s)>ds � µ 8 t � 0 (1)

•
Remarks

�, in the definition, is a function of time, only

Typically, m � n hence, �(t)�(t)> is rank deficient for each t � 0 however,

(1) may still hold; it is a lowerbound on the “average” of �(t)�(t)>

In dynamical systems:

e.g., ẋ = Ax “is GES” if A is Hurwitz (full rank and �iR(A) < 0)

ẋ = ��(t)�(t)>x is still GES i↵ � is PE, even if �iR(��(t)�(t)>) 6< 0
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Illustration of persistency of excitation

Consider the system ẋ = �a(t)x. Seemingly, 9µ, µ > 0 :

Z t+3

t
a(s)2ds � µ
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[ Preliminaries ]

Fact. Consider the system
ẋ = �a(t)2x,

with a(t), ȧ(t) bounded.

The origin is globally exponentially stable i↵ there exist µ, T > 0 such that
Z t+T

t
a(s)2ds � µ 8t � 0.

Gradient systems. Consider the system

ẋ = ��(t)�(t)>x, �(t) 2 Rm⇥n, m � n

with �(t), �̇(t) bounded.

The origin is globally exponentially stable i↵ � is persistently exciting.

—see e.g., [Anderson et al; Narendra & Annaswamy; Sastry & Bodson; . . . ]

Rmk. Convergence rates: [Sukumar et al; Loria & Panteley; Brocket . . . ]
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[ Preliminaries ]

Lemma 1 (linear MRAC). Consider the linear time-varying (LTV) system

"
ė
˙̃✓

#
=

"
A B�(t)>

��(t)C 0

#"
e

✓̃

#
,

– e 2 Rn
is the tracking error

– ✓̃ 2 Rm
is the parameter estimation error

– � : R ! Rm
is the regressor function.

Assume that:

the triple (A,B,C) is strictly positive real (satisfies the KYP lemma):

V := z>Pz > 0 =) V̇ = � |e|2  0;

� is absolutely continuous; � and �̇ are bounded almost everywhere;

Then, the origin is uniformly globally exponentially stable if and only if � is PE.
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Introduction
[ Basics on adaptive control ]

Consider the linear autonomous system

ẋ = Ax+ Bu

y = Cx

in canonical form.

Let (A,B) be controllable and (A,C) be observable.

Because (A,B) is controllable, we can perform pole placement:
[there exists (a row vector) K such that (A� BK) is Hurwitz]

However, if there is uncertainty in A we cannot compute the appropriate K

Let u = �K̂x where K is an estimate of (the ideal) K;
let K̃ := K̂ �K then,

ẋ = (A� BK)x� BK̃x

y = Cx
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Analysis.

Let A := A� BK. By design, this matrix is Hurwitz

Also, the pair (A,C) is controllable and PB = C> therefore, let

V =
1

2
x>Px+

1

2�
K̃K̃>

=) V̇ = �x>
⇥
A>P + PA

⇤
x� x>PBx>K̃> +

1

�
˙̃KK̃>

We use the (passivity-based) update law: ˙̃K = �x>C>x>

Then: V̇ = �x>Qx

Claim. [after adaptive control texts]: x ! 0 and K̃ is bounded.

Proof: After ch. III-Lemma 1, if a once continuously di↵erentiable function
' : R�0 ! Rn satisfies

', '̇ 2 L1, ' 2 L2.

Then, necessarily lim
t!1

'(t) = 0.

Rmk. Does K̃ ! 0?



[ Basics on adaptive control ]

Fact: Adaptive control systems are, in general, nonlinear time-varying

The closed-loop system has the (familiar) form

ẋ = Ax+B(t)✓̃,

˙̃✓ = ��C(t)x,

We have: ✓̃ 2 L1, x ! 0

B(t) := �Bx(t)> 2 Rn⇥n

C(t) := �x(t)B>P 2 Rn⇥n

A := (A� BK)

✓̃ = K̃>

Rmk. The notations on the right are convenient, but, at best, ambiguous!

For a start, the matrix B(t) depends on state trajectories hence,
on the initial conditions (uniformity ...)

If we the goal is to stir x(t) ! 0, how to pretend to use
persistency of excitation? (x ⌘ 0 =) B ⌘ 0 convergence of ✓̃...)

Problem: How do we ensure (uniform) stability and convergence?
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[Model Reference Adaptive Control ]

Consider now the tracking control problem, to stir x ! x⇤, for a pair of systems:

Plant:

ẋ1 = x2
...

ẋn�1 = xn

ẋn = �(x)>✓ + g(x)u

Reference model:

ẋ⇤1 = x⇤2
...

ẋ⇤n�1 = x⇤n
ẋ⇤n = f(x⇤)

Let u := g(x)�1
⇥
f(x⇤)� �(x)>✓̂ �K(·)e

⇤
and ˙̃✓ = ��(x)en

Then, define the error e := x� x⇤. Its dynamics corresponds to
2
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=

2
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[Model Reference Adaptive Control ]

Common mistake.

Such closed-loop system, is commonly written in the compact form:
"

ė
˙̃✓

#
=

"
A B�>

��C 0

#"
e

✓̃

#
, z :=

"
e

✓̃

#

Then, global exponential stability is some times claimed invoking Lemma 1;
converse theorems are used to establish statements on robust stability, . . . !

Rmk. The function � depends on x and, since x := e+x⇤(t), the system dynamics
is, actually, nonlinear:

"
ė
˙̃✓

#
=

"
A B�(t, z)>

��(t, z)C 0

#"
e

✓̃

#
, �(t, z) := �(e+ x⇤(t))

while the system in Lemma 1 is linear !!
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[Model-Reference-Adaptive-Control ]

Problem statement

How do we infer the (asymptotic) stability of the origin of
"

ė

✓̇

#
=

"
A B�(t, z)>

��(t, z)C 0

#"
e

✓

#
, x :=

"
e

✓

#

with A Hurwitz, (A,B) controllable, and (A,C) observable?

What is more, how to guarantee the stability of the origin for
"

ẋ1

ẋ2

#
=

"
A(·) B(·)
C(·) 0

#"
x1

x2

#

where A, B and C are, generally speaking, functions of time and the states but
have “certain structural properties” ?

Rmk. We do not want to assume that B(·) is full rank
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[Model-Reference-Adaptive-Control ]

Consider the case-study:
"

ė

✓̇

#
=

"
A B�(t, z)>

��(t, z)C 0

#"
e

✓

#
, z :=

"
e

✓

#

and assume that we know P such that, defining,

V := e>Pe+
1

2
|✓|2 > 0,

we obtain
V̇ = � |e|2  0.

Inspired by Lemma 1, can we conjecture that some boundedness conditions on
�(t, z) in addition to persistency of excitation should su�ce for UGAS (UGES?).

Problem: What does PE mean for the state-dependent function �(t, z) ?

Some authors use:
Z t+T

t
�(⌧, z(⌧, t�, z�))�(⌧, z(⌧, t�, z�))

>d⌧ � µ I 8t � t� .
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[Model-Reference-Adaptive-Control ]

The solutions are bounded (UGS). Hence, we (re)consider the system as
parameterized linear time-varying:

"
˙̄e
˙̄✓

#
=

"
A B�(t, z(t, t�, z�))>

��(t, z(t, t�, z�))C 0

#"
ē

✓̄

#

with i.c.: (t⇤, z̄⇤) z(t) are solutions of the original NL system

Then, we observe the following:

If we assume that �(t, z(t, t�, z�) is persistently exciting, i.e.,
Z t+T

t
�(⌧, z(⌧, t�, z�))�(⌧, z(⌧, t�, z�))

>d⌧ � µ I 8t � t� .

(and if it is also bounded with bounded derivative) then, the origin is globally
exponentially stable uniformly in the initial conditions (t⇤, z̄⇤).

I↵ the initial conditions (t⇤, z̄⇤) = (t�, z�) then, z̄(t, t⇤, z̄⇤) = z(t, t�, z�),
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[Model-Reference-Adaptive-Control ]

The solutions are bounded (UGS). Hence, we (re)consider the system as
parameterized linear time-varying:

"
˙̄e
˙̄✓

#
=

"
A B�(t, z(t, t�, z�))>

��(t, z(t, t�, z�))C 0

#"
ē

✓̄

#

with i.c.: (t⇤, z̄⇤) z(t) are solutions of the original NL system

However, in
Z t+T

t
�(⌧, z(⌧, t�, z�))�(⌧, z(⌧, t�, z�))

>d⌧ � µ I 8t � t�,

[Q1] µ, and T depend on the initial conditions that generate the trajectories
of the original nonlinear system hence, we loose uniformity in (t�, z�)

[Q2] What if �(t, 0) ⌘ 0 ? . . . the PE property is lost near the origin!

Rmk. We cannot claim global exponential stability for the nonlinear system
17



Linear parameterised time-varying systems
[Q1: Problem statement ]

Let D be a closed set and let � 2 D be a parameter

(e.g. � := (t�, z�), D := R�0 ⇥ Rn)

We shall study systems of the form
"

ė

✓̇

#
=

"
A(t,�) B(t,�)>

�C(t,�) 0

#"
e

✓

#
, z :=

"
e

✓

#
(ltv)

where e 2 Rn, ✓ 2 Rm, A(t,�) 2 Rn⇥n, B(t,�) 2 Rn⇥p, C(t,�) 2 Rn⇥p

are uniformly bounded.

We aim at establishing uniform exponential stability of the origin, i.e., that
there exist r, k and � > 0 such that for all t � t�, all t� � 0 and all � 2 D,

|z�| < r ) |z(t,�, t�, z�)|  k |z�| e��(t�t�) .
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Linear parameterised time-varying systems
[The essential tools ]

Definition 2 (�-uniform persistency of excitation) Let � : R�0⇥D ! Rn⇥m
,

�(t,�) be absolutely continuous in both arguments. We say that �(t,�) is �-
uniformly persistently exciting (�-uPE) if there exist µ and T > 0 such that

Z t+T

t
�(⌧,�)�(⌧,�)>d⌧ � µI, 8 t � 0,� 2 D.

•

Lemma 2 (Measure Lemma) Consider a function � : R�0 ⇥ D ! R. Assume

that there exists �M such that |�(t,�)|  �M for all t � 0 and all � 2 D. Assume

further that �(·, ·) is �-uPE. Then, for any t � 0 the measure of the set

Iµ,t :=

⇢
⌧ 2 [t, t+ T ] : |�(⌧,�)| � µ

2T�M

�
(1)

satisfies

meas [Iµ,t] � �µ :=
Tµ

2T�2
M � µ

. (2)
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Linear parameterised time-varying systems
[ Example ]

Claim. The origin of ẋ = ��(t,�)2x is uniformly globally exponentially stable

Idea: Let V (x) := 1
2 |x|

2 so that

V̇ = ��(t,�)2x2  0 () UGS).

0.5

Rmk. On each window [t, t+ T ] there is a collection of intervals Iµ,t
during which �(t,�)2 � 0.5 and V (x(t)) takes a “good” decrease
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Linear parameterised time-varying systems
[The essential tools ]

Lemma 3 (Integration lemma for UGES) Assume that there exist constants

r, c, p > 0 such that the solution x(· ;�, t�, x�) of ẋ = f(t,�, x) satisfies

max
n
|x|1 , |x|p

o
 c |x�| (3)

for all x� 2 Br and all t� � 0. Then, the system is �-ULES with k� := ce1/p and

�� := [p cp]�1
. Moreover, if c > 0 exists for all x� 2 Rn

, the system �-UGES
(GES unif. in the i.c. and in �).

Lemma 4 (Output injection) Let A : R�0⇥D ! Rn⇥n
, C : R�0⇥D ! Rm⇥n

,

and K : R�0 ⇥D ! Rn⇥m
be continuous and bounded on their domains.

Assume that the origin of the system ˙̄x = A(t,�)x̄ is �-UGES.

Then, the system ẋ = A(t,�)x +K(t,�)y where y := C(t,�)x, is �-UGES
if there exists c > 0 such that

Z 1

t�

|y(s)|2 ds  c2 |x�|2 8 (t�, x�) 2 R�0 ⇥ Rn . (4)
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Linear parameterised time-varying systems

Lemma 5 (Speed-gradient systems) For the system

ẋ = ��(t,�)�(t,�)>x, �(t,�) 2 Rm⇥n

assume that �(t,�) is �-uPE with parameters T and µ > 0 and there exists

a constant �M > 0 such that, for almost all t � 0 and all � 2 D

max

⇢
|�(t,�)| ,

����
@�(t,�)

@t

����

�
 �M . (5)

Then the system is �-UGES with

k = 1, � � µ

e 2 T [1 + �4
MT 2]

That is,

|x(t)|  k|x�|e��(t�t�) 8 t � t�, t� � 0, � 2 D
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Linear parameterised time-varying systems
[ Passive-interconnected systems ]

Theorem 1 (UGES of LTV) The origin of the system

"
ė

✓̇

#
=

"
A(t,�) B(t,�)>

�C(t,�) 0

#"
e

✓

#
, z :=

"
e

✓

#
, (6)

under Assumptions 1 and 2, is �-UGES if and only if B(t,�) is �-uPE.

Assumption 1 there exists bM > 0 such that, for almost all t � 0 and all � 2 D

max

⇢
|A(t,�)| , |B(t,�)| ,

����
@B(t,�)

@t

����

�
 bM . (7)

Assumption 2 There exist symmetric matrices P (t,�) and Q(t,�) such that

P (t,�)B(t,�)> = C(t,�)>

�Q(t,�) := A(t,�)>P (t,�) + P (t,�)A(t,�) + Ṗ (t,�)

There exist pm, qm, pM , and qM > 0 such that, for all (t,�) 2 R�0 ⇥ D,

pmI  P (t,�)  pMI, qmI  Q(t,�)  qMI
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Proof of Theorem 1. We split the system and use output injection:

First, consider the globally invertible change of coordinates:

⇠ :=

"
⇠1

⇠2

#
=

"
I 0

�B(t,�) I

#"
e

✓

#

so {z = 0} is �-UGES for (6) if and only if so is {⇠ = 0} for the system
"
⇠̇1

⇠̇2

#
=

"
A(t,�) B(t,�)>

�R1(t,�) �B(t,�)B(t,�)>

#

| {z }
A(t,�)

"
⇠1

⇠2

#
+

"
B(t,�)>B(t,�)

R1(t,�)�R2(t,�)

#

| {z }
K(t,�)

⇠1 ,

We establish that:

1) the origin of ⇠̇ = A(t,�) is �-UGES,

2) the solutions ⇠(t,�) are uniformly bounded,

3) ⇠1 is square integrable (uniformly in �), and

4) K(t,�) is bounded.
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Linear parameterised time-varying systems

Corollary. The solutions satisfy the bound:

|x(t,�)|  tmt
inv
m

✓
⇡ e

⇢

◆1/2

|x�| e
�

⇢

2⇡
(t� t�) 8t � t� .

where:

⇡ := c32 + (c⇤t
inv
m )2


(c32km)2

4(1� ⇢)

�
, 0 < ⇢  min

⇢
pm,

1

2b2m

�

c32 := max

⇢
pm,

1

2�x

�
, �x :=

µ

T (1 + b2mT )

�x is the convergence rate for x(t,�) in ẋ(t,�) = �B(t,�)B(t,�)>x(t,�)

c⇤ is a bound on |e|2 =
✓Z 1

t�
|e(t,�)|2

◆1/2

tm, tinvm are bounds on coordinates transformations

km is a bound on an output injection term

bm is the bound on B(t,�) and its derivative

nn n
��✏�
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Problem statement
[Model-Reference-Adaptive-Control ]

“Since the solutions are bounded (UGS) one can consider the LTV system” :
"

˙̄e
˙̄✓

#
=

"
A B�(t, z(t, t�, z�))>

��(t, z(t, t�, z�))C> 0

#"
ē

✓̄

#

z(t) = [e(t)>, ✓(t)>]> (solutions of the original NL system)

However, in
Z t+T

t
�(⌧, z(⌧, t�, z�))�(⌧, z(⌧, t�, z�))

>d⌧ � µ I 8t � t� .

[Q1]4 µ, and T depend on the initial conditions that generate the trajectories

of the original nonlinear system hence, we loose uniformity in (t�, z�)

[Q2] What if �(t, 0) ⌘ 0 ? . . . the PE property is lost near the origin!
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Persistency of excitation for nonlinear systems
[Q2: what if �(t, 0 ⌘ 0)? ]

Example 1 Consider the system ż = � sin(t)2z3 or, equivalently,

ẋ = � sin(t)2z(t,�)2x , x� = z�, tx� = tz� := t�

Assume that, given any � > 0, 9 I� ⇢ R�0, such that

|z(t,�)| � � 8 t 2 I�
then, defining v(t) := 1/2x(t)2, we have

v̇(t) = ��2 sin(t)2v(t) 8 t 2 I�
On the other hand, Z t+⇡

t
sin(⌧)2�2d⌧ =

⇡

2
�2

that is, v̇(t) = �'(t)2v(t), where '(t) := sin(⌧)� is PE.

We conclude that: |z(t,�)| � � =) |z(t,�)| ! 0 exponentially fast!

If this holds for any � > 0 we recover uniform attractivity
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Persistency of excitation for nonlinear systems
[ Rationale ]

The origin is UGS, i.e.

9� 2 K1 : sup
t�t�

|z(t)|  � (|z(t�)|)

t

r

�(r)

|z(t�)|

Trajectories �-far from the origin ) PE
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[ Rationale ]

t

The origin is UGS, i.e.,

9� 2 K1 : sup
t�t�

|z(t)|  � (|z(t�)|)
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�(r)

|z(t�)|

Trajectories �-far from the origin ) PE
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�-close to the origin, PE is lost �
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hence, exponential convergence to zero

�-close to the origin, PE is lost �

Attractivity :
For each " > 0 and r > 0, 9 T > 0 s.t.

|z(t�)|  r =) |z(t)|  " 8 t � t� + T

"

For each " > 0 there exists �(") s.t.
��z(t0�)

��  � =) |z(t)|  " 8t � t0�
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Persistency of excitation for nonlinear systems
[Uniform �-Persistency of excitation ]

Consider nonlinear time-varying systems:

ẋ = F (t, x)

where F (·, ·) is such that solutions exist (locally) and are unique.

Let x 2 Rn be partitioned into x := [x>1 , x
>
2 ]

> where x1 2 Rn1 and x2 2 Rn2 .
Define the column vector function � : R ⇥ Rn ! Rm to be such that �(·, x) is
locally integrable for each x 2 Rn.

Definition 3 (U�-PE) A function �(·, ·) is said to be uniformly �-persistently
exciting with respect to x1 if for each x 2 (Rn1\ {0}) ⇥ Rn2 there exist � > 0,
T > 0 and µ > 0 s.t.

|z � x|  � =)
Z t+T

t
|�(⌧, z)| d⌧ � µ 8 t 2 R. (8)

•
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Persistency of excitation for nonlinear systems
[ Characterizations of U�-PE ]

Lemma 6 The function �(·, ·) is U�-PE with respect to x1 if and only if

(A) for each � > 0 and � � � there exist T > 0 and µ > 0 such that,

for all t 2 R,

|x1| 2 [�, �] , |x2| 2 [0, �] =)
Z t+T

t
|�(⌧, x)| d⌧ � µ 8 t 2 R.

•

Example 2 Remember the system ẋ = � sin(t)2x3; for the function �(t, x) :=
sin(t)2x2 we have:

x 2 [�,�] =)
Z t+⇡

t
sin(⌧)2�2d⌧ =

⇡

2
�2

That is, �(t, x) := sin(t)2x2 is U�-PE. •
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Persistency of excitation for nonlinear systems
[ Characterizations of U�-PE ]

Lemma 7 If (t, x) 7! � is continuous in x uniformly in t then �(·, ·) is U�-PE
with respect to x1 if and only if

(B) for each x such that x1 6= 0 there exist T > 0 and µ > 0 such that,
Z t+T

t
|�(⌧, x)|d⌧ � µ 8 t 2 R

•

Example 3 Let �(t, x) := �(t)>x. Then, �(t, x) is U�-PE with respect to x if

and only if there exist T and µ > 0 such that

Z t+T

t
�(⌧)�(⌧)>d⌧ � µI 8 t 2 R . (9)
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Persistency of excitation for nonlinear systems
[ Characterizations of U�-PE ]

Example 4 Consider once more the function �(t, x) := sin(t)2x2 which is uni-

formly continuous. We see that

x 6= 0 =)
Z t+⇡

t
sin(⌧)2x2d⌧ =

⇡

2
x2 =: µ(x)

Actually, in general, we also have the following:

Lemma 8 The function �(·, ·) is U�-PE with respect to x1 if and only if

(C) for each � > 0 there exist µ� 2 K and ✓� : R>0 ! R>0 continuous

strictly decreasing such that, for all t 2 R,

�
|x1| 6= 0, |x2| 2 [0, �]

 
=)

Z t+✓�(|x1|)

t
|�(⌧, x)| d⌧ � µ�(|x1|) .

Rmk. It is clear that, in general, for nonlinear functions, the “PE bound” depends
on the “parameter” x
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Persistency of excitation for nonlinear systems
[U�-PE: A su�cient and necessary condition ]

Theorem 2 (UGAS ) U�-PE) The origin of the system

ẋ = F (t, x)

where F (·, ·) is Lipschitz in x uniformly in t, is UGAS only if F (·, ·) is U�-PE with

respect to x 2 Rn
. •

Rmk. Su�ciency also holds under extra conditions.

Proposition 1 The origin of the system

ż = �v(t)2z3

is UGAS if and only if v(t) is persistently exciting (in the usual sense). •

Sketch of proof: The origin is UGS because V = |z|2 yields V̇ = �v(t)2z4  0.

The function �(t, z) = v(t)2z3 is U�-PE:
Z t+T

t
v(⌧)2d⌧ � µ 8 t � 0, z 6= 0 =)

Z t+T

t

��v(⌧)2z3
�� d⌧ � µ |z|3
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Persistency of excitation for nonlinear systems
[ Passive-interconnected systems ]

Theorem 3 [11] Consider the system

"
ẋ1

ẋ2

#
=

"
A(t, x) B(t, x)

C(t, x) 0

#"
x1

x2

#

under the following assumptions:

We have a Lyapunov function V such that

↵1(|x|)  V (t, x)  ↵2(|x|)
V̇ (t, x)  �↵3(|x1|) a.e..

The functions A, B and C are locally Lipschitz in x uniformly in t, uni-

formly bounded in t, B is once di↵erentiable with partial derivatives in t, and
A(t, x)|x1=0 = C(t, x)|x1=0 = 0.⌥⌃ ⌅⇧The origin is UGAS if and only if B(t, x)x2|x1=0 is U�-PE with respect to x2
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Persistency of excitation for nonlinear systems
[ Slotine & Li adaptive controller ]

Proposition 2 Consider the lossless Lagrangian system (without friction)

D✓(q)q̈ + C✓(q, q̇)q̇ + g✓(q) = u

in closed loop with the certainty-equivalence controller

u = D✓̂(q)q̈r + C✓̂(q, q̇)q̇r + g✓̂(q)� kds
˙̂✓ = ���(t, s, q̃)>s

q̇r := q̇d � �q̃, s := q̇ � q̇r

Then, the origin if uniformly globally asymptotically stable for any �, kd > 0

if and only if ��(t) := �(t, 0, 0) is persistently exciting, that is

Z t+T

t

��(⌧)��(⌧)
>d⌧ � µ, 8 t � 0.

Rmk. Note that ��(t) is such that

��(t)
>✓ = D✓(qd(t))q̈d(t) + C✓(qd(t), q̇d(t))q̇d(t) + g✓(qd(t))
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Persistency of excitation for nonlinear systems
[ Slotine & Li adaptive controller ]

Analysis of the closed-loop system.–

The closed-loop dynamics, for which we have x1 ! 0, is
"

˙̃q

ṡ

#

=

"
��I I

0 �D�1
✓ (·)

⇥
C✓(·) + kdI

⇤

#

| {z }
“A(t, x1)”

"
q̃

s

#

| {z }
x1

+

"
0

D�1
✓ (·)�(t, q̃, s)>

#

| {z }
“B(t, x1)”

✓̃

˙̃✓ = ���1
h
0 �(t, q̃, s)D✓(·)

i " �kdI 0

0 D�1
✓ (·)

#

| {z }
P✓(·)

"
q̃

s

#

| {z }
x1

The result follows, directly, from Theorem 3, by recognizing that system has the
interconnected passive-systems form

ẋ1 = A(t, x1)x1 +B(t, x1)x2

ẋ2 = �B(t, x1)
>Px1
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�-PE controllers
[ Stabilization of nonholonomic systems ]

Consider the system:

ẋ1 = u1

ẋ2 = u1x3

ẋ3 = u2

Rmk. [Brocket] The origin is not stabilizable via smooth autonomous
state-feedback

Proposition: Let u2(t, x) := �ax3 � u1(t, x)x2 then,

ẋ1 = u1(t, x)

ẋ2 = u1(t, x)x3

ẋ3 = �ax3 � u1(t, x)x2

Rmk. The general n-dimensional case is also solvable similarly
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�-PE controllers
[ Stabilization of nonholonomic systems ]

Consider the system:

ẋ1 = u1

ẋ2 = u1x3

ẋ3 = u2

Rmk. [Brocket] The origin is not stabilizable via smooth autonomous
state-feedback

Proposition: Let u2(t, x) := �ax3 � u1(t, x)x2 then,

ẋ1 = u1(t, x)"
ẋ3

ẋ2

#

=

"
�a �u(t, x)

u(t, x) 0

#"
x3

x2

#

Rmk. We need u1 to stabilize the x1-equation and to excite the x2, x3-equations
We use: u1 := �k1x1 + h(t, x2, x3). For instance

u1 := �k1x1 + sin(t)
⇥
|x2|2 + |x3|2

⇤
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