On Persistency of Excitation
[stability of adaptive systems]

Antonio Loría Elena Panteley

IIT Bombay, Feb. 2018
Outline

- **Introduction**
 - Preliminaries: motivations, definitions
 - Recall on (basic) adaptive control

- **Linear time-varying systems**
 - Uniform persistency of excitation
 - A result on convergence rates
 - MRAC-type systems (SPR)

- **Nonlinear systems**
 - Uniform δ-persistency of excitation
 - Necessary and sufficient conditions for stability

- **General conclusions**
Theorem (KYP) Let $Z(s) = C^\top [sI - A]^{-1}B$ be a $p \times p$ transfer function s.t.:
- the pair (A, B) is completely controllable;
- the pair (A, C) is completely observable.

Then, $Z(\cdot)$ is strictly positive real if and only if there exists a positive definite matrix P such that

$$PA + A^\top P = -Q$$
$$PB = C^\top.$$

Theorem The matrix A is Hurwitz (its eigen-values have strictly negative real parts) if and only if for any $Q = Q^\top$, positive definite, there exists $P = P^\top > 0$ s.t.

$$PA + A^\top P = -Q$$
[Preliminaries]

Definition 1 (Persistency of excitation)

A locally integrable function \(\Phi : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{m \times n} \) is said to be persistently exciting if there exist \(T \) and \(\mu > 0 \) such that

\[
\int_{t}^{t+T} \Phi(s)\Phi(s)^\top ds \geq \mu \quad \forall t \geq 0
\]

(1)

Remarks

- \(\Phi \), in the definition, is a function of time, only
- Typically, \(m \geq n \) hence, \(\Phi(t)\Phi(t)^\top \) is rank deficient for each \(t \geq 0 \) however, (1) may still hold; it is a lowerbound on the “average” of \(\Phi(t)\Phi(t)^\top \)

In dynamical systems:

e.g., \(\dot{x} = Ax \) “is GES” if \(A \) is Hurwitz (full rank and \(\lambda_{iR}(A) < 0 \))

\(\dot{x} = -\Phi(t)\Phi(t)^\top x \) is still GES iff \(\Phi \) is PE, even if \(\lambda_{iR}(-\Phi(t)\Phi(t)^\top) \not< 0 \)
Illustration of persistency of excitation

Consider the system $\dot{x} = -a(t)x$. Seemingly, $\exists \mu, \mu > 0 : \int_{t}^{t+3} a(s)^2 ds \geq \mu$
[Preliminaries]

Fact. Consider the system

\[\dot{x} = -a(t)^2 x, \]

with \(a(t), \dot{a}(t) \) bounded.

The origin is globally exponentially stable iff there exist \(\mu, T > 0 \) such that

\[\int_{t}^{t+T} a(s)^2 ds \geq \mu \quad \forall t \geq 0. \]

Gradient systems. Consider the system

\[\dot{x} = -\Phi(t)\Phi(t)^T x, \quad \Phi(t) \in \mathbb{R}^{m \times n}, \quad m \geq n \]

with \(\Phi(t), \dot{\Phi}(t) \) bounded.

The origin is globally exponentially stable iff \(\Phi \) is persistently exciting.

—see e.g., [Anderson et al; Narendra & Annaswamy; Sastry & Bodson; ...]

Rmk. Convergence rates: [Sukumar et al; Loria & Panteley; Brocket ...]
Lemma 1 (linear MRAC). Consider the linear time-varying (LTV) system

\[
\begin{bmatrix}
\dot{e} \\
\dot{\tilde{\theta}}
\end{bmatrix} =
\begin{bmatrix}
A & B\phi(t)^T \\
-\phi(t)C & 0
\end{bmatrix}
\begin{bmatrix}
e \\
\tilde{\theta}
\end{bmatrix},
\]

- \(e \in \mathbb{R}^n \) is the tracking error
- \(\tilde{\theta} \in \mathbb{R}^m \) is the parameter estimation error
- \(\phi : \mathbb{R} \rightarrow \mathbb{R}^m \) is the regressor function.

Assume that:

- The triple \((A, B, C)\) is strictly positive real (satisfies the KYP lemma):
 \[
 V := z^T P z > 0 \implies \dot{V} = -|e|^2 \leq 0;
 \]

- \(\phi \) is absolutely continuous; \(\phi \) and \(\dot{\phi} \) are bounded almost everywhere;

Then, the origin is uniformly globally exponentially stable if and only if \(\phi \) is PE.
Introduction
[Basics on adaptive control]

Consider the linear autonomous system

\[\dot{x} = Ax + Bu \]
\[y =Cx \]

in canonical form.

- Let \((A,B)\) be controllable and \((A,C)\) be observable.
- Because \((A,B)\) is controllable, we can perform pole placement:

 \[\text{there exists (a row vector) } K \text{ such that } (A - BK) \text{ is Hurwitz} \]
- However, if there is uncertainty in \(A\) we cannot compute the appropriate \(K\)
- Let \(u = -\hat{K}x\) where \(K\) is an estimate of (the ideal) \(K\);

 let \(\tilde{K} := \hat{K} - K\) then,

\[\dot{x} = (A - BK)x - B\tilde{K}x \]
\[y = Cx \]
Analysis.

- Let $A := A - BK$. By design, this matrix is Hurwitz.
- Also, the pair (A, C) is controllable and $PB = C^\top$ therefore, let
 \[V = \frac{1}{2}x^\top Px + \frac{1}{2\gamma}\tilde{K}\tilde{K}^\top \]
 \[\implies \dot{V} = -x^\top [A^\top P + PA] x - x^\top PB x^\top \tilde{K}^\top + \frac{1}{\gamma}\dot{\tilde{K}}\tilde{K}^\top \]
- We use the (passivity-based) update law: $\dot{\tilde{K}} = \gamma x^\top C^\top x^\top$

Then:
 \[\dot{V} = -x^\top Qx \]

Claim. [after adaptive control texts]: $x \to 0$ and \tilde{K} is bounded.

Proof: After ch. III-Lemma 1, if a once continuously differentiable function $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ satisfies
 \[\varphi, \dot{\varphi} \in \mathcal{L}_\infty, \quad \varphi \in \mathcal{L}_2. \]
Then, necessarily $\lim_{t \to \infty} \varphi(t) = 0$.

Rmk. Does $\tilde{K} \to 0$?
[Basics on adaptive control]

Fact: Adaptive control systems are, in general, **nonlinear time-varying**

The closed-loop system has the (familiar) form

\[
\dot{x} = Ax + B(t)\tilde{\theta}, \quad B(t) := -Bx(t)^\top \in \mathbb{R}^{n \times n}
\]

\[
\dot{\tilde{\theta}} = -\gamma C(t)x, \quad C(t) := -x(t)B^\top P \in \mathbb{R}^{n \times n}
\]

\[
A := (A - BK)
\]

We have: \(\tilde{\theta} \in L_\infty, \ x \to 0\)

\[
\tilde{\theta} = \tilde{K}^\top
\]

Rmk. The notations on the right are convenient, but, at best, ambiguous!

- For a start, the matrix \(B(t)\) depends on state trajectories hence, on the initial conditions (uniformity ...)

- If we the goal is to stir \(x(t) \to 0\), how to pretend to use persistency of excitation? \((x \equiv 0 \implies B \equiv 0\) convergence of \(\tilde{\theta}\)...)

Problem: How do we ensure (uniform) stability and convergence?
Consider now the tracking control problem, to stir $x \rightarrow x^*$, for a pair of systems:

Plant:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\vdots \\
\dot{x}_{n-1} &= x_n \\
\dot{x}_n &= \Phi(x)\top \theta + g(x)u
\end{align*}
\]

Reference model:

\[
\begin{align*}
\dot{x}_1^* &= x_2^* \\
\vdots \\
\dot{x}_{n-1}^* &= x_n^* \\
\dot{x}_n^* &= f(x^*)
\end{align*}
\]

Let $u := g(x)^{-1}[f(x^*) - \Phi(x)\top \hat{\theta} - K(\cdot)e]$ and $\hat{\theta} = \gamma \Phi(x)e_n$

Then, define the error $e := x - x^*$. Its dynamics corresponds to

\[
\begin{align*}
\begin{bmatrix} \dot{e}_1 \\ \vdots \\ \dot{e}_n \end{bmatrix} &= \begin{bmatrix} 0 & 1 & \cdots \\ \vdots & \ddots & \ddots \\ -k_1 & \cdots & -k_n \end{bmatrix} \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} - \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix} \Phi(x)\top \hat{\theta} \\
\dot{\hat{\theta}} &= \gamma \Phi(x)[0 \cdots 1]e
\end{align*}
\]
Common mistake.

Such closed-loop system, is commonly written in the compact form:

\[
\begin{bmatrix}
\dot{e} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
A & B\Phi^\top \\
-\Phi C & 0
\end{bmatrix}
\begin{bmatrix}
e \\
\tilde{\theta}
\end{bmatrix}, \quad z :=
\begin{bmatrix}
e \\
\tilde{\theta}
\end{bmatrix}
\]

Then, global exponential stability is some times claimed invoking Lemma 1; converse theorems are used to establish statements on robust stability, . . . !

Rmk. The function Φ depends on x and, since $x := e + x^*(t)$, the system dynamics is, actually, nonlinear:

\[
\begin{bmatrix}
\dot{e} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
A & B\phi(t, z)^\top \\
-\phi(t, z)C & 0
\end{bmatrix}
\begin{bmatrix}
e \\
\tilde{\theta}
\end{bmatrix}, \quad \phi(t, z) := \Phi(e + x^*(t))
\]

while the system in Lemma 1 is \textit{linear}!!
Problem statement

How do we infer the (asymptotic) stability of the origin of

\[
\begin{bmatrix}
\dot{e} \\
\dot{\theta}
\end{bmatrix} = \begin{bmatrix}
A & B\phi(t, z)^T \\
-\phi(t, z)C & 0
\end{bmatrix}\begin{bmatrix}
e \\
\theta
\end{bmatrix},
\quad x := \begin{bmatrix}
e \\
\theta
\end{bmatrix}
\]

with A Hurwitz, (A, B) controllable, and (A, C) observable?

What is more, how to guarantee the stability of the origin for

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
A(\cdot) & B(\cdot) \\
C(\cdot) & 0
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

where A, B and C are, generally speaking, functions of time and the states but have “certain structural properties”?

Rmk. We do not want to assume that $B(\cdot)$ is full rank
Consider the case-study:

\[
\begin{bmatrix}
\dot{e} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
A & B\phi(t, z)^\top \\
-\phi(t, z)C & 0
\end{bmatrix}
\begin{bmatrix}
e \\
\theta
\end{bmatrix}, \quad z := \begin{bmatrix}
e \\
\theta
\end{bmatrix}
\]

and assume that we know \(P \) such that, defining,

\[
V := e^\top Pe + \frac{1}{2}|\theta|^2 > 0,
\]

we obtain

\[
\dot{V} = -|e|^2 \leq 0.
\]

Inspired by Lemma 1, can we conjecture that some \textit{boundedness} conditions on \(\phi(t, z) \) in addition to \textit{persistency of excitation} should suffice for UGAS (UGES?).

\textbf{Problem:} What does PE mean for the \textit{state-dependent} function \(\phi(t, z) \)?

Some authors use:

\[
\int_t^{t+T} \phi(\tau, z(\tau, t_\circ, z_\circ))\phi(\tau, z(\tau, t_\circ, z_\circ))^\top d\tau \geq \mu I \quad \forall t \geq t_\circ.
\]
The solutions are bounded (UGS). Hence, we (re)consider the system as parameterized linear time-varying:

\[
\begin{bmatrix}
\dot{\bar{e}} \\
\dot{\bar{\theta}}
\end{bmatrix} =
\begin{bmatrix}
A & B\phi(t, z(t, t_o, z_o))^T \\
-\phi(t, z(t, t_o, z_o))C & 0
\end{bmatrix}
\begin{bmatrix}
\bar{e} \\
\bar{\theta}
\end{bmatrix}
\]

with i.c.: \((t_*, \bar{z}_*)\)

\(z(t)\) are solutions of the original NL system

Then, we observe the following:

- If we assume that \(\phi(t, z(t, t_o, z_o))\) is persistently exciting, \(i.e.,\)

\[
\int_{t}^{t+T} \phi(\tau, z(\tau, t_o, z_o))\phi(\tau, z(\tau, t_o, z_o))^T d\tau \geq \mu I \quad \forall t \geq t_o.
\]

(and if it is also bounded with bounded derivative) then, the origin is globally exponentially stable uniformly in the initial conditions \((t_*, \bar{z}_*)\).

- Iff the initial conditions \((t_*, \bar{z}_*) = (t_o, z_o)\) then, \(\bar{z}(t, t_*, \bar{z}_*) = z(t, t_o, z_o),\)
The solutions are bounded (UGS). Hence, we (re)consider the system as parameterized linear time-varying:

\[
\begin{bmatrix}
\dot{e} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
A & B\phi(t, z(t, t_0, z_0))^	op \\
-\phi(t, z(t, t_0, z_0))C & 0
\end{bmatrix}
\begin{bmatrix}
e \\
\theta
\end{bmatrix}
\]

with i.c.: \((t_*, z_*)\) \(z(t)\) are solutions of the original **NL** system

However, in

\[
\int_{t_0}^{t+T} \phi(\tau, z(\tau, t_0, z_0))\phi(\tau, z(\tau, t_0, z_0))^	op d\tau \geq \mu I \quad \forall t \geq t_0,
\]

[Q1] \(\mu,\) and \(T\) depend on the initial conditions that generate the trajectories of the original **nonlinear system** hence, we loose uniformity in \((t_0, z_0)\)

[Q2] What if \(\phi(t, 0) \equiv 0\) ? \ldots \quad the **PE** property is **lost** near the origin!

Rmk. We cannot claim global exponential stability for the nonlinear system
Linear parameterised time-varying systems
[Q1: Problem statement]

Let \mathcal{D} be a closed set and let $\lambda \in \mathcal{D}$ be a parameter (e.g. $\lambda := (t_0, z_0)$, $\mathcal{D} := \mathbb{R}_{\geq 0} \times \mathbb{R}^n$)

We shall study systems of the form

$$
\begin{bmatrix}
\dot{e} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
A(t, \lambda) & B(t, \lambda)^\top \\
-C(t, \lambda) & 0
\end{bmatrix}
\begin{bmatrix}
e \\
\theta
\end{bmatrix},
\quad
z :=
\begin{bmatrix}
e \\
\theta
\end{bmatrix}
$$

(LTV)

where $e \in \mathbb{R}^n$, $\theta \in \mathbb{R}^m$, $A(t, \lambda) \in \mathbb{R}^{n \times n}$, $B(t, \lambda) \in \mathbb{R}^{n \times p}$, $C(t, \lambda) \in \mathbb{R}^{n \times p}$ are uniformly bounded.

We aim at establishing uniform exponential stability of the origin, i.e., that there exist r, k and $\gamma > 0$ such that for all $t \geq t_0$, all $t_0 \geq 0$ and all $\lambda \in \mathcal{D}$,

$$
|z_0| < r \Rightarrow |z(t, \lambda, t_0, z_0)| \leq k |z_0| e^{-\gamma (t-t_0)}.
$$
Definition 2 (\(\lambda\)-uniform persistency of excitation) Let \(\phi : \mathbb{R}_{\geq 0} \times \mathcal{D} \to \mathbb{R}^{n \times m}\), \(\phi(t, \lambda)\) be absolutely continuous in both arguments. We say that \(\phi(t, \lambda)\) is \(\lambda\)-uniformly persistently exciting (\(\lambda\)-uPE) if there exist \(\mu\) and \(T > 0\) such that

\[
\int_{t}^{t+T} \phi(\tau, \lambda)\phi(\tau, \lambda)^{\top} d\tau \geq \mu I, \quad \forall \ t \geq 0, \lambda \in \mathcal{D}.
\]

Lemma 2 (Measure Lemma) Consider a function \(\phi : \mathbb{R}_{\geq 0} \times \mathcal{D} \to \mathbb{R}\). Assume that there exists \(\phi_M\) such that \(|\phi(t, \lambda)| \leq \phi_M\) for all \(t \geq 0\) and all \(\lambda \in \mathcal{D}\). Assume further that \(\phi(\cdot, \cdot)\) is \(\lambda\)-uPE. Then, for any \(t \geq 0\) the measure of the set

\[
I_{\mu,t} := \left\{ \tau \in [t, t+T] : |\phi(\tau, \lambda)| \geq \frac{\mu}{2T\phi_M} \right\}
\]

satisfies

\[
\text{meas}[I_{\mu,t}] \geq \sigma_{\mu} := \frac{T\mu}{2T\phi_M^2} - \mu.
\]
Linear parameterised time-varying systems

[Example]

Claim. The origin of $\dot{x} = -\phi(t, \lambda)^2 x$ is uniformly globally exponentially stable

Idea: Let $V(x) := \frac{1}{2} |x|^2$ so that

$$\dot{V} = -\phi(t, \lambda)^2 x^2 \leq 0 \quad (\Rightarrow \text{UGS}).$$

Rmk. On each window $[t, t + T]$ there is a collection of intervals $I_{\mu,t}$ during which $\phi(t, \lambda)^2 \geq 0.5$ and $V(x(t))$ takes a “good” decrease
Linear parameterised time-varying systems

[The essential tools]

Lemma 3 (Integration lemma for UGES) Assume that there exist constants $r, c, p > 0$ such that the solution $x(\cdot; \lambda, t_\circ, x_\circ)$ of $\dot{x} = f(t, \lambda, x)$ satisfies

$$\max\left\{ |x|_\infty, |x|_p \right\} \leq c |x_\circ|$$

(3)

for all $x_\circ \in B_r$ and all $t_\circ \geq 0$. Then, the system is λ-ULES with $k_\lambda := ce^{1/p}$ and $\gamma_\lambda := [p c^p]^{-1}$. Moreover, if $c > 0$ exists for all $x_\circ \in \mathbb{R}^n$, the system λ-UGES (GES unif. in the i.c. and in λ).

Lemma 4 (Output injection) Let $A : \mathbb{R}_{\geq 0} \times \mathcal{D} \to \mathbb{R}^{n \times n}$, $C : \mathbb{R}_{\geq 0} \times \mathcal{D} \to \mathbb{R}^{m \times n}$, and $K : \mathbb{R}_{\geq 0} \times \mathcal{D} \to \mathbb{R}^{n \times m}$ be continuous and bounded on their domains.

- Assume that the origin of the system $\dot{x} = A(t, \lambda)x$ is λ-UGES.
- Then, the system $\dot{x} = A(t, \lambda)x + K(t, \lambda)y$ where $y := C(t, \lambda)x$, is λ-UGES if there exists $c > 0$ such that

$$\int_{t_\circ}^{\infty} |y(s)|^2 \, ds \leq c^2 |x_\circ|^2 \quad \forall (t_\circ, x_\circ) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n.$$ (4)
Lemma 5 (Speed-gradient systems) For the system

\[\dot{x} = -\phi(t, \lambda)\phi(t, \lambda)^\top x, \quad \phi(t, \lambda) \in \mathbb{R}^{m \times n} \]

assume that \(\phi(t, \lambda) \) is \(\lambda \)-uPE with parameters \(T \) and \(\mu > 0 \) and there exists a constant \(\phi_M > 0 \) such that, for almost all \(t \geq 0 \) and all \(\lambda \in \mathcal{D} \)

\[
\max \left\{ |\phi(t, \lambda)|, \left| \frac{\partial \phi(t, \lambda)}{\partial t} \right| \right\} \leq \phi_M. \tag{5}
\]

Then the system is \(\lambda \)-UGES with

\[
k = 1, \quad \gamma \geq \frac{\mu}{e^2 T[1 + \phi_M^4 T^2]}
\]

That is,

\[
|x(t)| \leq k|x_0|e^{-\lambda(t-t_0)} \quad \forall t \geq t_0, \ t_0 \geq 0, \ \lambda \in \mathcal{D}
\]
Theorem 1 (UGES of LTV) The origin of the system
\[
\begin{bmatrix}
\dot{e} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
A(t, \lambda) & B(t, \lambda)^\top \\
-C(t, \lambda) & 0
\end{bmatrix}
\begin{bmatrix}
e \\
\theta
\end{bmatrix},
z :=
\begin{bmatrix}
e \\
\theta
\end{bmatrix},
\]
(6)

under Assumptions 1 and 2, is λ-UGES if and only if $B(t, \lambda)$ is λ-uPE.

Assumption 1 there exists $b_M > 0$ such that, for almost all $t \geq 0$ and all $\lambda \in \mathcal{D}$
\[
\max \left\{ |A(t, \lambda)|, |B(t, \lambda)|, \left| \frac{\partial B(t, \lambda)}{\partial t} \right| \right\} \leq b_M.
\]
Assumption 2 There exist symmetric matrices $P(t, \lambda)$ and $Q(t, \lambda)$ such that
\[
P(t, \lambda)B(t, \lambda)^\top = C(t, \lambda)^\top
\]
\[-Q(t, \lambda) := A(t, \lambda)^\top P(t, \lambda) + P(t, \lambda)A(t, \lambda) + \dot{P}(t, \lambda)
\]
There exist $p_m, q_m, p_M, \text{ and } q_M > 0$ such that, for all $(t, \lambda) \in \mathbb{R}_{\geq 0} \times \mathcal{D}$,
\[
p_m I \leq P(t, \lambda) \leq p_M I,
q_m I \leq Q(t, \lambda) \leq q_M I
\]
Proof of Theorem 1. We split the system and use output injection:

First, consider the globally invertible change of coordinates:

\[
\begin{bmatrix}
\xi_1 \\
\xi_2
\end{bmatrix} = \begin{bmatrix}
I & 0 \\
-B(t, \lambda) & I
\end{bmatrix}
\begin{bmatrix}
e \\
\theta
\end{bmatrix}
\]

so \(\{ z = 0 \} \) is \(\lambda \)-UGES for (6) if and only if so is \(\{ \xi = 0 \} \) for the system

\[
\begin{bmatrix}
\dot{\xi}_1 \\
\dot{\xi}_2
\end{bmatrix} = \begin{bmatrix}
A(t, \lambda) & B(t, \lambda)^\top \\
-R_1(t, \lambda) & -B(t, \lambda)B(t, \lambda)^\top
\end{bmatrix}
\begin{bmatrix}
\xi_1 \\
\xi_2
\end{bmatrix} + \begin{bmatrix}
B(t, \lambda)^\top B(t, \lambda) \\
R_1(t, \lambda) - R_2(t, \lambda)
\end{bmatrix}
\begin{bmatrix}
\xi_1 \\
K(t, \lambda)
\end{bmatrix},
\]

We establish that:

1) the origin of \(\dot{\xi} = A(t, \lambda) \) is \(\lambda \)-UGES,
2) the solutions \(\xi(t, \lambda) \) are uniformly bounded,
3) \(\xi_1 \) is square integrable (uniformly in \(\lambda \)), and
4) \(K(t, \lambda) \) is bounded.
Corollary. The solutions satisfy the bound:

\[|x(t, \lambda)| \leq t_M t^{\text{inv}}_M \left(\frac{\pi e}{\rho} \right)^{1/2} |x_\infty| e^{-\frac{\rho}{2\pi}(t - t_\infty)} \quad \forall t \geq t_\infty. \]

where:

\[\pi := c_{32} + (c_* t^{\text{inv}}_M)^2 \left[\frac{(c_{32} k_M)^2}{4(1 - \rho)} \right], \quad 0 < \rho \leq \min \left\{ p_m, \frac{1}{2k^2_M} \right\} \]

\[c_{32} := \max \left\{ p_M, \frac{1}{2\gamma_x} \right\}, \quad \gamma_x := \frac{\mu}{T(1 + b^2_M T)} \]

- \(\gamma_x \) is the convergence rate for \(x(t, \lambda) \) in \(\dot{x}(t, \lambda) = -B(t, \lambda)B(t, \lambda)^\top x(t, \lambda) \)
- \(c_* \) is a bound on \(|e|_2 = \left(\int_{t_\infty}^{\infty} |e(t, \lambda)|^2 \right)^{1/2} \)
- \(t_M, t^{\text{inv}}_M \) are bounds on coordinates transformations
- \(k_M \) is a bound on an output injection term
- \(b_M \) is the bound on \(B(t, \lambda) \) and its derivative
Problem statement
[Model-Reference-Adaptive-Control]

“Since the solutions are bounded (UGS) one can consider the LTV system”:

\[
\begin{bmatrix}
\dot{\bar{e}} \\
\dot{\bar{\theta}}
\end{bmatrix}
= \begin{bmatrix}
A & B\phi(t, z(t, t_o, z_o))^\top \\
-\phi(t, z(t, t_o, z_o))C^\top & 0
\end{bmatrix}
\begin{bmatrix}
\bar{e} \\
\bar{\theta}
\end{bmatrix}
\]

\[
z(t) = [e(t)^\top, \theta(t)^\top]^\top
\]

(solutions of the original NL system)

However, in

\[
\int_{t}^{t+T} \phi(\tau, z(\tau, t_o, z_o))\phi(\tau, z(\tau, t_o, z_o))^\top d\tau \geq \mu I \quad \forall t \geq t_o.
\]

[Q1] \(\mu\), and \(T\) depend on the initial conditions that generate the trajectories of the original nonlinear system hence, we loose uniformity in \((t_o, z_o)\)

[Q2] What if \(\phi(t, 0) \equiv 0\) ? ... the PE property is lost near the origin!
Persistency of excitation for nonlinear systems

[Q2: what if $\phi(t, 0 \equiv 0)$?]

Example 1 Consider the system
\[\dot{z} = -\sin(t)^2 z^3 \quad \text{or, equivalently,} \]
\[\dot{x} = -\sin(t)^2 z(t, \lambda)^2 x, \quad x_0 = z_0, \quad t^x = t^z := t_0 \]

• Assume that, given any $\delta > 0$, $\exists I_\delta \subset \mathbb{R}_{\geq 0}$, such that
\[|z(t, \lambda)| \geq \delta \quad \forall t \in I_\delta \]
then, defining $v(t) := \frac{1}{2} x(t)^2$, we have
\[\dot{v}(t) = -\delta^2 \sin(t)^2 v(t) \quad \forall t \in I_\delta \]

On the other hand,
\[\int_t^{t+\pi} \sin(\tau)^2 \delta^2 d\tau = \frac{\pi}{2} \delta^2 \]
that is, $\dot{v}(t) = -\varphi(t)^2 v(t)$, where $\varphi(t) := \sin(\tau)\delta$ is PE.

• We conclude that:
\[|z(t, \lambda)| \geq \delta \implies |z(t, \lambda)| \to 0 \quad \text{exponentially fast!} \]

• If this holds for any $\delta > 0$ we recover uniform attractivity
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, i.e.
 \[
 \exists \gamma \in \mathcal{K}_{\infty} : \sup_{t \geq t_0} |z(t)| \leq \gamma (|z(t_0)|)
 \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, i.e.,

\[\exists \gamma \in \mathcal{K}_\infty : \sup_{t \geq t_0} |z(t)| \leq \gamma (|z(t_0)|) \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE hence, exponential convergence to zero
- \(\delta \)-close to the origin, PE is lost
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, i.e.,
 \[\exists \gamma \in \mathcal{K}_\infty : \sup_{t \geq t_0} |z(t)| \leq \gamma (|z(t_0)|) \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE hence, exponential convergence to zero

- \(\delta \)-close to the origin, PE is lost

- Attractivity:
 - For each \(\varepsilon > 0 \) and \(r > 0 \), \(\exists T > 0 \) s.t.
 \[|z(t_0)| \leq r \implies |z(t)| \leq \varepsilon \quad \forall t \geq t_0 + T \]
 - For each \(\varepsilon > 0 \) there exists \(\delta(\varepsilon) \) s.t.
 \[|z(t'_0)| \leq \delta \implies |z(t)| \leq \varepsilon \quad \forall t \geq t'_0 \]
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, i.e.,

\[\exists \gamma \in \mathcal{K}_\infty : \sup_{t \geq t_0} |z(t)| \leq \gamma(|z(t_0)|) \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE

hence, exponential convergence to zero

- \(\delta \)-close to the origin, PE is lost

- Attractivity:

For each \(\varepsilon > 0 \) and \(r > 0 \), \(\exists T > 0 \) s.t.

\[|z(t_0)| \leq r \implies |z(t)| \leq \varepsilon \quad \forall t \geq t_0 + T \]

- For each \(\varepsilon > 0 \) there exists \(\delta(\varepsilon) \) s.t.

\[|z(t'_0)| \leq \delta \implies |z(t)| \leq \varepsilon \quad \forall t \geq t'_0 \]
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, *i.e.*, \[\exists \gamma \in \mathcal{K}_\infty : \sup_{t \geq t_0} |z(t)| \leq \gamma (|z(t_0)|) \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE hence, exponential convergence to zero

- \(\delta \)-close to the origin, PE is lost

Attractivity:
For each \(\epsilon > 0 \) and \(r > 0 \), \(\exists \ T > 0 \) s.t.
\[|z(t_0)| \leq r \implies |z(t)| \leq \epsilon \quad \forall t \geq t_0 + T \]

For each \(\epsilon > 0 \) there exists \(\delta(\epsilon) \) s.t.
\[|z(t'_0)| \leq \delta \implies |z(t)| \leq \epsilon \quad \forall t \geq t'_0 \]
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, i.e.,
 \[\exists \gamma \in \mathcal{K}_\infty : \sup_{t \geq t_o} |z(t)| \leq \gamma (|z(t_0)|) \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE hence, exponential convergence to zero
- \(\delta \)-close to the origin, PE is lost

- Attractivity:
 - For each \(\varepsilon > 0 \) and \(r > 0 \), \(\exists T > 0 \) s.t.
 \[|z(t_0)| \leq r \implies |z(t)| \leq \varepsilon \quad \forall t \geq t_0 + T \]
 - For each \(\varepsilon > 0 \) there exists \(\delta(\varepsilon) \) s.t.
 \[|z(t'_0)| \leq \delta \implies |z(t)| \leq \varepsilon \quad \forall t \geq t'_0 \]
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, i.e.,
 \[\exists \gamma \in \mathcal{K}_\infty : \sup_{t \geq t_0} |z(t)| \leq \gamma (|z(t_0)|) \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE hence, exponential convergence to zero
- \(\delta \)-close to the origin, PE is lost

- Attractivity:
 For each \(\varepsilon > 0 \) and \(r > 0 \), \(\exists T > 0 \) s.t.
 \[|z(t_0)| \leq r \implies |z(t)| \leq \varepsilon \quad \forall t \geq t_0 + T \]
 For each \(\varepsilon > 0 \) there exists \(\delta(\varepsilon) \) s.t.
 \[|z(t'_0)| \leq \delta \implies |z(t)| \leq \varepsilon \quad \forall t \geq t'_0 \]
Persistency of excitation for nonlinear systems

[Rationale]

- The origin is UGS, \(i.e. , \)
 \[\exists \gamma \in \mathcal{K}_\infty : \sup_{t \geq t_o} |z(t)| \leq \gamma (|z(t_o)|) \]

- Trajectories \(\delta \)-far from the origin \(\Rightarrow \) PE hence, exponential convergence to zero
- \(\delta \)-close to the origin, PE is lost

- Attractivity:
 For each \(\varepsilon > 0 \) and \(r > 0 \), \(\exists \ T > 0 \) s.t.
 \[|z(t_o)| \leq r \implies |z(t)| \leq \varepsilon \quad \forall \ t \geq t_o + T \]

- For each \(\varepsilon > 0 \) there exists \(\delta(\varepsilon) \) s.t.
 \[|z(t'_o)| \leq \delta \implies |z(t)| \leq \varepsilon \quad \forall \ t \geq t'_o \]
Persistency of excitation for nonlinear systems

[Uniform \(\delta \)-Persistency of excitation]

Consider nonlinear time-varying systems:

\[
\dot{x} = F(t, x)
\]

where \(F(\cdot, \cdot) \) is such that solutions exist (locally) and are unique.

Let \(x \in \mathbb{R}^n \) be partitioned into \(x := [x_1^T, x_2^T]^T \) where \(x_1 \in \mathbb{R}^{n_1} \) and \(x_2 \in \mathbb{R}^{n_2} \). Define the column vector function \(\phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m \) to be such that \(\phi(\cdot, x) \) is locally integrable for each \(x \in \mathbb{R}^n \).

Definition 3 (U\(\delta \)-PE) A function \(\phi(\cdot, \cdot) \) is said to be uniformly \(\delta \)-persistently exciting with respect to \(x_1 \) if for each \(x \in (\mathbb{R}^{n_1} \setminus \{0\}) \times \mathbb{R}^{n_2} \) there exist \(\delta > 0, T > 0 \) and \(\mu > 0 \) s.t.

\[
|z - x| \leq \delta \quad \Rightarrow \quad \int_t^{t+T} |\phi(\tau, z)| \, d\tau \geq \mu \quad \forall t \in \mathbb{R}. \tag{8}
\]
Lemma 6 The function \(\phi(\cdot, \cdot) \) is U\(\delta \)-PE with respect to \(x_1 \) if and only if

(A) for each \(\delta > 0 \) and \(\Delta \geq \delta \) there exist \(T > 0 \) and \(\mu > 0 \) such that, for all \(t \in \mathbb{R} \),

\[
| x_1 | \in [\delta, \Delta], \ | x_2 | \in [0, \Delta] \implies \int_t^{t+T} | \phi(\tau, x) | d\tau \geq \mu \quad \forall \ t \in \mathbb{R}.
\]

Example 2 Remember the system \(\dot{x} = -\sin(t)^2 x^3 \); for the function \(\phi(t, x) := \sin(t)^2 x^2 \) we have:

\[
x \in [\delta, \Delta] \implies \int_t^{t+\pi} \sin(\tau)^2 \delta^2 d\tau = \frac{\pi}{2} \delta^2
\]

That is, \(\phi(t, x) := \sin(t)^2 x^2 \) is U\(\delta \)-PE.
Lemma 7 If \((t, x) \mapsto \phi \) is continuous in \(x \) uniformly in \(t \) then \(\phi(\cdot, \cdot) \) is \(\text{U}_\delta \text{-PE} \) with respect to \(x_1 \) if and only if

(B) for each \(x \) such that \(x_1 \neq 0 \) there exist \(T > 0 \) and \(\mu > 0 \) such that,

\[
\int_{t}^{t+T} |\phi(\tau, x)| \, d\tau \geq \mu \quad \forall t \in \mathbb{R}
\]

Example 3 Let \(\phi(t, x) := \Phi(t)^\top x \). Then, \(\phi(t, x) \) is \(\text{U}_\delta \text{-PE} \) with respect to \(x \) if and only if there exist \(T \) and \(\mu > 0 \) such that

\[
\int_{t}^{t+T} \Phi(\tau)\Phi(\tau)^\top \, d\tau \geq \mu I \quad \forall t \in \mathbb{R}.
\]
Example 4 Consider once more the function $\phi(t, x) := \sin(t)^2 x^2$ which is uniformly continuous. We see that

$$x \neq 0 \implies \int_t^{t+\pi} \sin(\tau)^2 x^2 d\tau = \frac{\pi}{2} x^2 =: \mu(x)$$

Actually, in general, we also have the following:

Lemma 8 The function $\phi(\cdot, \cdot)$ is $U\delta$-PE with respect to x_1 if and only if

(C) for each $\Delta > 0$ there exist $\mu_\Delta \in K$ and $\theta_\Delta : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ continuous strictly decreasing such that, for all $t \in \mathbb{R}$,

$$\left\{ |x_1| \neq 0, |x_2| \in [0, \Delta] \right\} \implies \int_t^{t+\theta_\Delta(|x_1|)} |\phi(\tau, x)| d\tau \geq \mu_\Delta(|x_1|).$$

Rmk. It is clear that, in general, for nonlinear functions, the “PE bound” depends on the “parameter” x.
Persistency of excitation for nonlinear systems

[\text{U}_\delta\text{-PE: A sufficient and necessary condition}]

\textbf{Theorem 2 (UGAS }\Rightarrow\text{ U}_\delta\text{-PE)} \quad \text{The origin of the system}
\begin{equation*}
\dot{x} = F(t, x)
\end{equation*}
where \(F(\cdot, \cdot) \) is Lipschitz in \(x \) uniformly in \(t \), is UGAS only if \(F(\cdot, \cdot) \) is U\(\delta \)\text{-PE with respect to } x \in \mathbb{R}^n. \quad \bullet
\end{equation*}

\textbf{Rmk.} Sufficiency also holds under extra conditions.

\textbf{Proposition 1} \quad \text{The origin of the system}
\begin{equation*}
\dot{z} = -v(t)^2z^3
\end{equation*}
is UGAS if and only if \(v(t) \) is persistently exciting (in the usual sense). \quad \bullet
\end{equation*}

\textbf{Sketch of proof:} The origin is UGS because \(V = |z|^2 \) yields \(\dot{V} = -v(t)^2z^4 \leq 0 \).
The function \(\phi(t, z) = v(t)^2z^3 \) is U\(\delta \)\text{-PE:}
\begin{equation*}
\int_t^{t+T} v(\tau)^2d\tau \geq \mu \quad \forall t \geq 0, \; z \neq 0 \quad \Rightarrow \quad \int_t^{t+T} |v(\tau)^2z^3| \, d\tau \geq \mu |z|^3
\end{equation*}
Theorem 3 [11] Consider the system

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
A(t, x) & B(t, x) \\
C(t, x) & 0
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

under the following assumptions:

- We have a Lyapunov function \(V \) such that
 \[
 \alpha_1(|x|) \leq V(t, x) \leq \alpha_2(|x|)
 \]
 \[
 \dot{V}(t, x) \leq -\alpha_3(|x_1|) \quad \text{a.e.}
 \]

- The functions \(A, B \) and \(C \) are locally Lipschitz in \(x \) uniformly in \(t \), uniformly bounded in \(t \), \(B \) is once differentiable with partial derivatives in \(t \), and
 \(A(t, x)|_{x_1=0} = C(t, x)|_{x_1=0} = 0 \).

The origin is UGAS if and only if \(B(t, x)x_2|_{x_1=0} \) is \(U\delta\)-PE with respect to \(x_2 \).
Persistency of excitation for nonlinear systems
[Slotine & Li adaptive controller]

Proposition 2 Consider the lossless Lagrangian system (without friction)
\[D_\theta(q)\ddot{q} + C_\theta(q, \dot{q})\dot{q} + g_\theta(q) = u \]
in closed loop with the certainty-equivalence controller
\[u = D_\dot{\theta}(q)\dot{q}_r + C_\dot{\theta}(q, \dot{q})\dot{q}_r + g_\dot{\theta}(q) - k_ds \]
\[\dot{\hat{\theta}} = -\Gamma\Phi(t, s, \tilde{q})^T s \]
\[\dot{\tilde{q}} := \dot{q}_d - \lambda\tilde{q}, \quad s := \dot{q} - \dot{q}_r \]

Then, the origin if uniformly globally asymptotically stable for any \(\lambda, \ k_d > 0 \)
if and only if \(\Phi_o(t) := \Phi(t, 0, 0) \) is persistently exciting, that is
\[\int_{t}^{t+T} \Phi_o(\tau)\Phi_o(\tau)^T d\tau \geq \mu, \ \forall t \geq 0. \]

Rmk. Note that \(\Phi_o(t) \) is such that
\[\Phi_o(t)^T \theta = D_\theta(q_d(t))\ddot{q}_d(t) + C_\theta(q_d(t), \dot{q}_d(t))\dot{q}_d(t) + g_\theta(q_d(t)) \]
Analysis of the closed-loop system.

The closed-loop dynamics, for which we have $x_1 \rightarrow 0$, is

\[
\begin{bmatrix}
\dot{\tilde{q}} \\
\dot{s}
\end{bmatrix} = \begin{bmatrix}
-\lambda I & I \\
0 & -D_{\theta}^{-1}(\cdot)[C_{\theta}(\cdot) + k_d I]
\end{bmatrix} \begin{bmatrix}
\tilde{q} \\
s
\end{bmatrix} + \begin{bmatrix}
0 \\
D_{\theta}^{-1}(\cdot)\Phi(t, \tilde{q}, s)^{\top}
\end{bmatrix} \dot{\theta}
\]

\[
\dot{\theta} = -\Gamma^{-1} \begin{bmatrix}
0 & \Phi(t, \tilde{q}, s)D_{\theta}(\cdot)
\end{bmatrix} \begin{bmatrix}
\lambda k_d I & 0 \\
0 & D_{\theta}^{-1}(\cdot)
\end{bmatrix} \begin{bmatrix}
\tilde{q} \\
s
\end{bmatrix}
\]

The result follows, directly, from Theorem 3, by recognizing that system has the interconnected passive-systems form

\[
\begin{align*}
\dot{x}_1 &= A(t, x_1)x_1 + B(t, x_1)x_2 \\
\dot{x}_2 &= -B(t, x_1)^{\top}P x_1
\end{align*}
\]
Consider the system:

\[
\begin{align*}
\dot{x}_1 &= u_1 \\
\dot{x}_2 &= u_1 x_3 \\
\dot{x}_3 &= u_2
\end{align*}
\]

Rmk. [Brocket] The origin is not stabilizable via smooth autonomous state-feedback

Proposition: Let \(u_2(t, x) := -ax_3 - u_1(t, x)x_2 \) then,

\[
\begin{align*}
\dot{x}_1 &= u_1(t, x) \\
\dot{x}_2 &= u_1(t, x)x_3 \\
\dot{x}_3 &= -ax_3 - u_1(t, x)x_2
\end{align*}
\]

Rmk. The general \(n \)-dimensional case is also solvable similarly
Consider the system:

\[
\begin{align*}
\dot{x}_1 &= u_1 \\
\dot{x}_2 &= u_1 x_3 \\
\dot{x}_3 &= u_2
\end{align*}
\]

Rmk. [Brocket] The origin is not stabilizable via smooth autonomous state-feedback

Proposition: Let \(u_2(t, x) := -ax_3 - u_1(t, x)x_2 \) then,

\[
\begin{align*}
\dot{x}_1 &= u_1(t, x) \\
\begin{bmatrix}
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} &= \begin{bmatrix}
-a & -u(t, x) \\
u(t, x) & 0
\end{bmatrix} \begin{bmatrix} x_3 \\ x_2 \end{bmatrix}
\end{align*}
\]

Rmk. We need \(u_1 \) to stabilize the \(x_1 \)-equation and to excite the \(x_2, x_3 \)-equations

We use: \(u_1 := -k_1 x_1 + h(t, x_2, x_3) \). For instance

\[
u_1 := -k_1 x_1 + \sin(t) \left[|x_2|^2 + |x_3|^2 \right] \]
Bibliographical remarks

- Persistency of excitation was originally introduced by K. J. Åström from LTH, Sweden, in [1], in a discrete-time context.

- It has been thoroughly developed by authors that include: Narendra, Anderson, Annaswamy, Iannou, to mention a few:
 - In [9] the authors give a very detailed account of persistency of excitation and uniform asymptotic stability. See also [7, 8]
 - “Classical” theory of (linear) adaptive control systems is extensively explained in [2]; in particular, output injection.

- The material on linear parameterized systems is taken from [3]

- The concept of uniform δ-PE was originally introduced in [6]. More elaborated definitions and tools appeared in [4, 10, 5]