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Variable Structure System (VSS)

Operating domain with disjoint interiors

Gj ⊂ Rn, j = 1, . . . , N

and boundaries ∂Gj of measure zero.
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Variable Structure System (VSS) (cont’d)

Individual subsystem

ẋ = fj(x), x ∈ Gj , j = 1, . . . , N

of class C0 with finite limit

lim
x∗→x

fj(x
∗) = fj(x), x∗ ∈ Gj , x ∈ ∂Gj

at the boundary.
In general, fj(x) 6= fi(x) for x ∈ ∂Gji = Ḡj ∩ Ḡi.Y. Orlov 5 / 68



Variable Structure Dynamics
Utkin Sliding Modes in Cnntrol and Optimization Springer, 1992
Edwards, Spurgeon Sliding Mode Control – Theory and Applications CRS, 1998

Significantly different from the behavior of each individual
subsystem.

Sliding Modes (SM) along the boundaries ∂Gj, if any, to be
defined

May be possible to stabilize a system by varying its structure,
even if all individual subsystems are unstable.

Y. Orlov 6 / 68



Variable Structure Dynamics
Utkin Sliding Modes in Cnntrol and Optimization Springer, 1992
Edwards, Spurgeon Sliding Mode Control – Theory and Applications CRS, 1998

Significantly different from the behavior of each individual
subsystem.

Sliding Modes (SM) along the boundaries ∂Gj, if any, to be
defined

May be possible to stabilize a system by varying its structure,
even if all individual subsystems are unstable.

Y. Orlov 6 / 68



Variable Structure Dynamics
Utkin Sliding Modes in Cnntrol and Optimization Springer, 1992
Edwards, Spurgeon Sliding Mode Control – Theory and Applications CRS, 1998

Significantly different from the behavior of each individual
subsystem.

Sliding Modes (SM) along the boundaries ∂Gj, if any, to be
defined

May be possible to stabilize a system by varying its structure,
even if all individual subsystems are unstable.

Y. Orlov 6 / 68



Example: VSS puzzle

Controlled Plant
ẍ = u(x, ẋ) (1)

Two unstable structures u = u1 and u = u2:

u1(x, ẋ) = 6ẋ+ 16x unstable saddle (2)

u2(x, ẋ) = 6ẋ− 16x unstable focus. (3)
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Example: VSS puzzle (cont’d)

x

ẋ

x

ẋ

(b)(a)

Figure: Phase portrait of unstable saddle (a); unstable focus (b)
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Example: VSS puzzle (cont’d)

Switching rule

u(x, ẋ) =

{
6ẋ+ 16x if xs(x, ẋ) < 0
6ẋ− 16x if xs(x, ẋ) > 0

(4)

forcing the system structure to slide along the surface

s(x, ẋ) = ẋ+ cx, c > 0 (5)

results in asymptotical stability of the closed-loop system.
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Example: VSS puzzle (cont’d)
Phase portrait of the closed-loop VSS

x

ẋ

s = 0

SM equation s = ẋ+ cx = 0 is of reduced order

SM does not depend on the plant dynamics

The gain c is at the designer’s will

Y. Orlov 10 / 68



Example: VSS puzzle (cont’d)
Phase portrait of the closed-loop VSS

x

ẋ
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SM equation s = ẋ+ cx = 0 is of reduced order

SM does not depend on the plant dynamics

The gain c is at the designer’s will

Y. Orlov 10 / 68



Example: VSS puzzle (cont’d)
Phase portrait of the closed-loop VSS

x

ẋ
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Trivial SM Example

Scalar relay system

ẋ = f(t)−Msign x with ‖f‖∞ < M (6)

Lyapunov function V (x) = x2

V̇ = 2xẋ = 2|x|[f(t)signx−M ] ≤ −2(M − ‖f‖∞) ≤ −2
√
V (M − ‖f‖∞)

ẋ(t) = 0 for all t ≥ T and some T > 0⇒Msign 0
???
= f(t)
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Another SM Example
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ANTICIPATED SLIDING MODE FEATURES

Counteracting non-vanishing disturbances and plant uncertainties.

Synthesis decomposition: SM control is synthesized to steer the system to
a switching manifold in finite time; after that the system slides along this
manifold selected independently of the control law.

PRINCIPAL OPERATING MODES

First order SMs occur on the manifold of co-dimension 1.
Extensively developed from early 60s – Emel’yanov & Utkin school

Alternatively, the state can be forced to avoid evolving on the switching
manifolds, while steering to their intersections of higher co-dimension
where HOSM (higher order sliding mode) occurs.
Fuller phenomenon discovered in 1960
Systematic study from late 80s – Emel’yanov, Korovin, Levantovskii
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Example of SOSM: The Fuller phenomenon
Fuller, IFAC World Congress, Moscow, 1960

Optimal Control Problem∫ ∞
0

x2(t)dt→ min (7)

subject to
ẍ = u(x, ẋ) (8)

under the input constraint

|u(t)| ≤ 1 for all t ≥ 0. (9)

Minimum principle yields the optimal synthesis

u(x, ẋ) =

{
1 if s(x, ẋ) < 0
−1 if s(x, ẋ) > 0

. (10)

with the switching curve

s(x, ẋ) = x+ cẋ2sign ẋ (11)

for some constant c
Y. Orlov 14 / 68



Example: The Fuller phenomenon (cont’d)
Fuller, IFAC World Congress, Moscow, 1960

0

0

x

ẋ

Figure: Fuller phenomenon (dotted line is for the switching curve, solid line is for an
optimal trajectory).
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Example: The Fuller phenomenon features
Fuller, IFAC World Congress, Moscow, 1960

No sliding modes on the switching curve, the optimal trajectories cross it
at countably many points.

The switching times have a finite accumulation point (Zeno behavior).

The closed-loop variable structure system is steered to the origin in finite
time.

After that there appears a so-called SOSM (sliding mode of the second
order).

The sliding manifold has codimension 2, i.e., it is confined to the origin
only.
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Primary SOSMs

Twisting Algorithm

Dynamic state feedback (knowledge of both x and ẋ is required)

ẋ = f + u, u̇ = −asign x− bsign ẋ, a > b > 0

⇓ y = f + u

ẋ = y, ẏ = ḟ − asign x− bsign y, |ḟ | < min{b, a− b}

Discontinuities:
– in the controller dynamics,
not in the plant!

Analysis tools of:
– robustness, finite time
stability, settling time
estimation, tuning rules ???

Y. Orlov 17 / 68



Primary SOSMs

Supertwisting Algorithm

Dynamic position feedback (only knowledge of x is required)

ẋ = f + u, u = v − µ
√
|x|sign x

v̇ = −νsign x, µ, ν > 0

y = f + v ⇒ ẋ = y − µ
√
|x|sign x, ẏ = ḟ − νsign x, |ḟ | < min

{
µ,

µν

1 + µ

}

Discontinuities:
– in the controller dynamics,
not in the plant!

Analysis tools of:
– robustness, finite time
stability, settling time
estimation, tuning rules ???
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Mathematical Tools of VSS
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Filippov Solutions
Early 60s

Non-autonomous VSS
ẋ = f(x, t), x ∈ Rn (12)

f is piece-wise continuous

Definition

Let F (x, t) be the smallest convex closed set that contains all the limit points
of f(x∗, t) as x∗ → x, t = const, and (x∗, t) ∈ Rn+1 \ (∪Nj=1∂Gj). An
absolutely continuous function x(·) is a Filippov solution of (12) on an interval
I if it satisfies the differential inclusion

ẋ ∈ F (x, t) (13)

almost everywhere on I.
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Geometrical Illustration of Filippov Convex Hull

ẋ =

{
f+(x, t) if s(x) > 0
f−(x, t) if s(x) < 0

Y. Orlov 21 / 68



Computation of Filippov Velocity f0

f0 belongs to convex hull of f+ and f−

⇓

f0(x, t) = µ(x, t)f+(x, t) + [1− µ(x, t)]f−(x, t), µ(x, t) ∈ [0, 1]

Once f0(x, t) belongs to tangential plane it is orthogonal to grad s, i.e.,

gradT s(x) {µ(x, t)f+(x, t) + [1− µ(x, t)]f−(x, t)} = 0

⇓

µ(x, t) =
gradT s(x) f−(x, t)

gradT s(x) [f−(x, t)− f+(x, t)]

Y. Orlov 22 / 68
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Solution Redefinition on a Discontinuity Manifold
Summary

VSS trajectories are defined in the conventional sense beyond the
discontinuity manifold s = 0

Sliding modes on s = 0 are subject to refining as they do not exist in the
conventional sense

Regularization procedure should be invoked to provide a physical sense
behind a sliding mode on s = 0.

Filippov solution concept for an ODE with discontinuous right-hand side
is the most adequate solution redefinition as it covers existing
regularizations such as hysteresis switching, delayed switching and many
others

For controlled VSS, the equivalent control method (EQM) is an
alternative to the Filippov solutions, well-suited to unmodelled dynamics
of the applied actuator(s).

Filippov convexization and EQM result in the same provided the
underlying VSS is affine (linear in control). Just in case all possible
regularizations yield the same.
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Stability analysis
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Basic Definitions

Nonautonomous VSS

ẋ = ϕ(x, t) (14)

x = (x1, . . . , xn)T is the state vector,

t ∈ R is the time variable,

ϕ(x, t) = (ϕ1(x, t), . . . , ϕn(x, t))T is a piece-wise continuous function,

ϕ(x, t) undergoes discontinuities on the boundary set N =
⋃N
j=1 ∂Gj ,

Boundaries ∂Gj of the disjoint continuity domains
Gj ⊂ Rn+1, j = 1, . . . , N of ϕ(x, t) are of zero measure.
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Basic Definitions
Recall

The precise meaning of the differential equation ẋ = ϕ(x, t) with a piece-wise
continuous right-hand side is defined in the sense of Filippov as that of the
differential inclusion

ẋ ∈ Φ(x, t) (15)

Φ(x, t) is the smallest convex closed set containing all the limit values of
ϕ(x∗, t) for (x∗, t) ∈ Rn+1 \ N , x∗ → x, t = const.

Filippov solution of the underlying system exists for arbitrary initial
conditions x(t0) = x0 ∈ Rn.

Such a solution is locally defined on some time interval [t0, t1), however, it
is generally speaking non-unique.

Example of an ambiguous behaviour

ẋ = sign x⇒ solutions x(t) = 0, x(t) = t, x(t) = −t.

Y. Orlov 26 / 68
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ẋ = sign x⇒ solutions x(t) = 0, x(t) = t, x(t) = −t.

Y. Orlov 26 / 68



Basic definitions: revisited
Stability

The solution x = 0 of ẋ ∈ Φ(x, t) is stable (uniformly stable) iff for
each t0 ∈ R, ε > 0, there is δ = δ(ε, t0) > 0 (respectively, δ(ε)
independent on t0) such that each Filippov solution x(t, t0, x

0) with
the initial data x(t0) = x0 ∈ Bδ within the ball Bδ exists for all t ≥ t0
and satisfies the inequality

‖x(t, t0, x
0)‖ < ε, t0 ≤ t <∞.

Y. Orlov 27 / 68



Basic definitions: revisited
Asymptotic stability

The solution x = 0 of the underlying differential inclusion is
(uniformly) asymptotically stable iff it is (uniformly) stable and

limt→∞‖x(t, t0, x
0)‖ = 0 (16)

holds for all solutions x(t, t0, x
0) initialized within some Bδ

(uniformly in t0 and x0).

If (16) holds true for all solutions x(t, t0, x
0) regardless of the

choice of the initial data (and, respectively, it is uniform in t0
and x0 ∈ Bδ for each δ > 0), the solution x = 0 is said to be
globally (uniformly) asymptotically stable.
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Stability and Nonsmooth Lyapunov Functions
Warning counterexample

Example

ẋ = sign x, ẏ = −2sign y

Lyapunov function V = |x|+ |y|
Time derivative beyond the manifold xy = 0 is as simple as
V̇ = ẋsign x+ ẏsign y = 1− 2 = −1

This is however insufficient to ensure the system stability

Indeed, the system generates unstable sliding modes on the x-axis:

ẋ = sign x, y = 0

The time derivative of V = |x|+ |y| on the sliding line y = 0 is positive
definite V̇ = ẋsign x = 1

Thus, the system is unstable with the trajectories, escaping to infinity
along the x-axis.
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Stability and Nonsmooth Lyapunov Functions
The analysis to be presented

Seeking for a positive (semi)definite Lipschitz-continuous Lyapunov
function V (x, t), nonincreasing along the system trajectories.

Special attention to the behavior of the composed function V (x(t), t) on
sliding manifolds and on nondifferentiability sets of V (x, t) !!!

All the system trajectories are concluded to be bounded and, due to
Filippov, they prove to be globally defined, possibly non-uniquely, in the
direction of increasing t.

By applying standard Lyapunov arguments, the system stability is
guaranteed.

Asymptotic stability is additionally to be studied (Barbalat lemma,
extended invariance principle...)
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Stability and Nonsmooth Lyapunov Functions
Differentiation Rule for a Lipschitz-continuous Function

V (x, t) is Lipschitz continuous, x(t) is a solution of ẋ = ϕ(x, t)

⇓

The composite function V (x (t) , t) is absolutely continuous and

d

dt
V (x (t) , t) =

d

dh
V (x (t) + hẋ (t) , t+ h)

∣∣∣∣
h=0

almost everywhere.
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Lyapunov approach
Extension to VSS

Theorem
There exists a Lipschitz-continuous, positive definite, decrescent function
V (x, t) such that its time derivative

d

dt
V (x (t) , t) =

d

dh
V (x (t) + hẋ (t) , t+ h)

∣∣∣∣
h=0

≤ 0 (17)

for almost all t and for all trajectories x(t) of the VSS ẋ = ϕ(x, t), initialized
within some Bδ.

⇓

The VSS is uniformly stable.
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Taking care just at the nondifferentiability set of V

Corollary: The stability of the VSS ẋ = ϕ(x, t) remains in force if the time
derivative d

dtV (x (t) , t) is nonpositive at the points of the nondifferentiability
set NV of V (x, t) and in the continuity domain of the function ϕ (x, t) where
it is expressed in the standard form

d

dt
V (x, t) =

∂V (x, t)

∂t
+ grad V (x, t) ·ϕ (x, t) , (x, t) ∈ Rn+1 \ (N ∪NV ) (18)

Indeed, at the discontinuity points (x, t) ∈ N of the function ϕ (x, t), the
right-hand side Φ (x, t) of the corresponding differential inclusion
ẋ ∈ Φ(x, t) is obtained by closure of the graph of ϕ (x, t) and by passing
over to a convex hull.

⇓

These procedures do not increase the upper value of (18) and hence the
negative semidefiniteness of (18) guarantees the negative definiteness of
d
dtV (x, t) for all (x, t) ∈ N .
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Moreover
Simple hint

If any trajectory intersects NV \ {x = 0} just on a set of measure 0 then it
suffices to verify the negative semidefinbiteness of the Lyapunov time derivative
beyond sliding modes and nondifferentiability set.

Corollary: No trajectory of the VSS ẋ = ϕ(x, t) stay in the
nondifferentiablity set NV \ {x = 0} possibly except the origin for a finite time
interval.

⇓

The VSS is stable provided that d
dtV (x, t) ≤ 0 for all

(x, t) ∈ Rn+1 \ (N ∪NV ).

Indeed, any trajectory of the VSS is in
(
Rn+1 \ NV

)
∪ {x = 0} almost

always
⇓

d
dtV (x (t) , t) ≤ 0 is satisfied almost everywhere.
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Krasovskii–LaSalle Invariance Principle

Ensures the convergence of the state trajectories x (t) to the largest
invariant subset M of the manifold where the time derivative of the
Lyapunov function takes no value.

M ⊂ Rn is an invariant set of (14) if, for all x0 ∈M , the trajectories
initialized at x0 at some time t0 remain in M for all t > t0.

Proven for autonomous continuous dynamic systems

In general, not valid for non-autonomous systems

Non-extendible to general differential inclusions and, particularly, to
discontinuous dynamic systems, possibly, due to their ambiguous
behavior.
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Invariance Principle
Extension to a Class of Discontinuous Systems

The invariance principle remains in force for autonomous VSS

ẋ = ϕ (x) ,

whose solutions are uniquely continuable to the right.

Sufficient right uniqueness conditions for solutions of the above system and
continuous dependence of the solutions on their initial data have been carried
out by Filippov.
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Invariance Principle

Application to Frictional Oscillator

Mathematical model
mÿ + P (ẏ) + ky = 0

Coulomb friction

P (ẏ) =

{
+P0 if ẏ > 0
−P0 if ẏ < 0

P0 > 0 is the Coulomb friction level

Dimensionless model (
ẋ1

ẋ2

)
=

(
x2

−x1 − sign x2

)
(19)

Lyapunov function V (x) =
(
x2

1 + x2
2

)
/2 ⇒ V̇ (x) = − |x2|
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Invariance Principle
Application to Frictional Oscillator

The discontinuity manifold

S =
{
x ∈ R2 : x2 = 0

}

The phase plane R2 is partitioned into two regions

G+ =
{
x ∈ R2 : x2 > 0

}
and G− =

{
x ∈ R2 : x2 < 0

}
.

In the discontinuity manifold S the vector fields

ϕ+ (xs) = lim
x→xs, x∈G+

ϕ (x) =

(
0

−x1 − 1

)
,

ϕ− (xs) = lim
x→xs, x∈G−

ϕ (x) =

(
0

−x1 + 1

)
(20)

are directed to opposite directions inside the segment |x1| ≤ 1 and they
point toward the same region (G+ for x < −1 and G− for x > 1) outside
the segment.
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Phase Portrait

By invariance principle, any trajectory of the unforced system (19)
converges to the segment I = {x : |x1| ≤ 1, x2 = 0} rather than the whole
x1-axis.
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Invariance Principle
Application to Frictional Oscillator

The controlled oscillator(
ẋ1

ẋ2

)
=

(
x2

−x1 − sign x2 + u

)
(21)

is asymptotically stabilizable by the control law

u (x) = −sign x1. (22)

y

m u
k

Figure: One-degree-of-freedom mechanical oscillator.
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The closed-loop vector field

ϕ (x) =

(
x2

−x1 − sign x1 − sign x2

)
, x = (x1, x2)

T ∈ R2, (23)

The Discontinuity Manifolds

S1 =
{
x ∈ R2 : x1 = 0

}
, S2 =

{
x ∈ R2 : x2 = 0

}
The phase plane R2 is partitioned into four regions

G1 = {x : x1 > 0, x2 > 0} , G2 = {x : x1 > 0, x2 < 0} ,
G3 = {x : x1 < 0, x2 > 0} , G4 = {x : x1 < 0, x2 < 0} ,

The velocity vectors in these regions are such that the trajectories of the
closed-loop system cross the discontinuity manifolds S1 and S2 everywhere
except the origin x = 0, which is the only equilibrium point of the system.
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Asymptotic Stability of the Controlled Oscillator

The closed-loop system meets the right uniqueness property and the
invariance principle is applicable

The nonsmooth Lyapunov function

V (x1, x2) =
1

2

(
x2

1 + x2
2

)
+ |x1| ⇒ V̇ = −|x2|

By invariance principle, the closed loop system is asymptotically
stable because the largest invariant manifold is now reduced to the origin.
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Finite-time Stability of Uncertain Homogeneous and
Quasihomogeneous Systems
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Uncertain Systems and Equiuniform (Robust) Stability

Perturbed VSS’

ẋ = ϕ(x, t) + ψ(x, t), x ∈ Rn (24)

Disturbance ψ(x, t) = (ψ1(x, t), . . . , ψn(x, t))T is piece-wise continuous

Uniform Boundedness of Admissible Disturbances

|ψi(x, t)| ≤Mi, i = 1, . . . , n (25)

for almost all (x, t) ∈ Bδ ×R and some constants Mi ≥ 0, fixed a priori.

The above equation (24) is viewed as an uncertain differential equation
with rectangular uncertainties, whose Filippov solutions xψ are associated
with an admissible disturbance ψ
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Uncertain Systems and Equiuniform Stability

Definition

The equilibrium point x = 0 of the uncertain system (24), (25) is equiuniformly
stable iff for each t0 ∈ R, ε > 0, there is δ = δ(ε) > 0, dependent on ε and
independent of t0 and ψ, such that each solution xψ(t, t0, x

0) of (24), (25) with
the initial data x0 ∈ Bδ exists for all t ≥ t0 and satisfies the inequality

‖xψ(t, t0, x
0)‖ < ε, t0 ≤ t <∞.
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Uncertain Systems and Equiuniform Stability

Definition

The equilibrium point x = 0 of the uncertain system (24), (25) is said to be
equiuniformly asymptotically stable if it is equiuniformly stable and the
convergence

limt→∞‖xψ(t, t0, x
0)‖ = 0 (26)

holds for all solutions of (24), (25) initialized within some Bδ, uniformly in the
initial data t0 and x0, and all the solutions xψ(·, t0, x0). If this convergence
remains in force for each δ > 0 the equilibrium point is said to be globally
equiuniformly asymptotically stable.
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Uncertain Systems and Equiuniform Stability

Definition

The equilibrium point x = 0 of the uncertain system (24), (25) is said to be
globally equiuniformly finite-time stable if, in addition to the global
equiuniform asymptotical stability, the limiting relation

xψ(t, t0, x
0) = 0 (27)

holds for each solution xψ(·, t0, x0) and all t ≥ t0 + T (t0, x
0) where the settling

time function

T (t0, x
0) = sup

xψ(·,t0,x0)

inf{T ≥ 0 : xψ(t, t0, x
0) = 0 for all t ≥ t0 + T} (28)

is such that

T (Bδ) = supt0∈R, x0∈BδT (t0, x
0) <∞ for each δ > 0.

.
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Homogeneous Functions

Definition

A piece-wise continuous function ϕ(x, t) is called locally homogeneous of degree
q ∈ R with respect to dilation (r1, . . . , rn) where ri > 0, i = 1, . . . , n if there
exist a constant c0 > 0 and a ball Bδ ⊂ Rn such that

ϕi(c
r1x1, . . . , c

rnxn, c
−qt) = cq+riϕi(x1, . . . , xn, t) (29)

for all c ≥ c0 and almost all (x, t) ∈ Bδ ×R.

Constructive definition admits analytical verification!

The twisting and supertwisting vector functions

ϕtw =

(
x2

−αsign x1 − βsign x2

)
, ϕstw =

(
x2 − µ

√
x1sign x1

−νsign x1

)
(30)

with constant α, β, µ, ν ∈ R are homogeneous of degree q = −1 with
respect to dilation r = (2, 1).
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Quasihomogeneous Uncertain Systems

Definition
The uncertain system

ẋ = ϕ(x, t) + ψ(x, t)

with rectangular uncertainties

|ψi(x, t)| ≤Mi, i = 1, . . . , n

is called locally quasihomogeneous of degree q ∈ R with respect to dilation
(r1, . . . , rn) where ri > 0, i = 1, . . . , n if there exist a constant c0 > 0, called a
lower estimate of the homogeneity parameter, and a ball Bδ ⊂ Rn, called a
homogeneity ball, such that any solution xψ(t) of the uncertain system,
evolving within the ball Bδ, generates a parameterized set of solutions xc(t) of
the same system (but affected by another admissible disturbance ψc(t)!) with
parameter c ≥ c0 and components

xci (t) = crixi(c
qt). (31)
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Homogeneous Functions Generate Quasihomogeneous
Uncertain Systems

Lemma (Orlov, CDC’2003)

Let a piece-wise continuous function ϕ(x, t) be locally homogeneous of degree
q ∈ R with respect to dilation (r1, . . . , rn). Then the uncertain system

ẋ = ϕ(x, t) + ψ(x, t)

with rectangular uncertainties

|ψi(x, t)| ≤Mi, i = 1, . . . , n

is locally quasihomogeneous of the same degree q ∈ R with respect to the same
dilation (r1, . . . , rn).

Proof is based on embedding a quasihomogeneous uncertain system into
an appropriate framework of homogeneous differential inclusion.

Y. Orlov 50 / 68



Homogeneous Functions Generate Quasihomogeneous
Uncertain Systems

Lemma (Orlov, CDC’2003)

Let a piece-wise continuous function ϕ(x, t) be locally homogeneous of degree
q ∈ R with respect to dilation (r1, . . . , rn). Then the uncertain system
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Finite-time Stability of Quasihomogeneous Systems

While being globally asymptotically stable, a locally homogeneous vector field
ϕ(x, t) of degree q < 0 generates a globally finite-time stable uncertain VSS

Theorem (Quasihomogeneity Principle; Orlov, CDC’2003;
SIAM’2005)

1 the right-hand side of an uncertain differential equation

ẋ = ϕ(x, t) + ψ(x, t) (32)

consists of a locally homogeneous piece-wise continuous function ϕ of
degree q < 0 with respect to dilation (r1, . . . , rn) and a piece-wise
continuous function ψ whose components ψi, i = 1, . . . , n are locally
uniformly bounded by constants Mi ≥ 0 within a homogeneity ball;

2 Mi = 0 whenever q + ri > 0;

3 the uncertain system (32) is globally equiuniformly asymptotically stable
around the origin.
Then VSS (32) is globally equiuniformly finite-time stable.
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Settling Time Estimate
Orlov, SICON 2005

Going through this route yields:
Upper Estimate

T (t0, x
0) ≤ τ(x0, ER) +

1

1− 2q
(δR−1)qs(δ)

of the settling-time function

T (t0, x
0) = sup

x(·,t0,x0)

inf{T ≥ 0 : x(t, t0, x
0) = 0 for all t ≥ t0 + T}

in terms of the reaching-time function

τ(x0, ER) = sup
x(·,t0,x0)

inf{T ≥ 0 : x(t, t0, x
0) ∈ ER for all t0 ∈ R, t ≥ t0 + T}

of attaining the ellipsoid

ER = {x ∈ Rn :

√
Σni=1

( xi
Rri

)2

≤ 1},

and the semidistance-time function

s(δ) = sup
x0∈Eδ

τ(x0, E 1
2 δ

)
Y. Orlov 52 / 68



Arsenal of Finite-time Stability Analysis Tools
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Trivial First-order Quasihomogeneous System

The quasihomogeneous first-order VSS

ẋ = −αsign x+ w(x, t) (33)

of degree q = −1 with respect to dilation r = 1.

Uniform Upper Bound on Disturbance magnitude

|w(x, t)| ≤ N

The higher switching magnitude is chosen:

α > N > 0
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First-order Quasihomogeneous System
Lyapunov analysis

The quadratic Lyapunov function

V (x) = x2

Time derivative along the solutions of ẋ = −αsign x+ w(x, t):

V̇ (x(t)) = −2|x(t)|[α− w(x(t), t)sign x(t)] ≤ −2(α−N)|x(t)|
= −2(α−N)

√
V (x(t)). (34)

The global equiuniform asymptotic stability is thus ensured.

By quasihomogeneity principle, the global equiuniform finite time
stability is guaranteed.

Remark, the decay rate (34) itself results in the same conclusion. Indeed
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Finite-time Stability of Useful Differential Inequality

Lemma

Let an everywhere non-negative function V (t) meet the differential inequality

V̇ (t) ≤ −2γV β(t) (35)

for all t ≥ 0 and for some constants γ > 0 and β ∈ (0, 1). Then V (t) = 0 for
all t ≥ [2γ(1− β)]−1V 1−β(0).

Proof is based on the comparison principle: an arbitrary non-negative
solution V (t) of inequality (35) is dominated V (t) ≤ V0(t) by the solution

V0(t) =

 [V (1−β)(0)− 2γ(1− β)t]
1

1−β if t ∈ [0, V
(1−β)(0)

2γ(1−β) ]

0 if t ≥ V (1−β)(0)
2γ(1−β)

(36)

of the differential equation

V̇0(t) = −2γV β0 (t),

specified with the same initial condition V0(0) = V (0).
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Finite-time Stability of Supertwisting Algorithm
Orlov, Aoustin, Chevallereau, IEEE TAC 2011

The homogeneous second-order VSS

ẋ = y − µ
√
|x|sign x, µ > 0

ẏ = −νsign x, ν > 0. (37)

of degree q = −1 with respect to dilation (1, 2).

Lyapunov function and its derivative

V = ν|x|+ 1

2
y2 ⇒ V̇ = −µν

√
|x|

Invariance principle is applicable (no sliding modes on x = 0, verified by
the invalidity of yẏ < 0 as x→ 0)

⇓

(37) is GAS ⇒ (37) is FTS due to homogeneity

Y. Orlov 57 / 68



Finite-time Stability of Supertwisting Algorithm
Orlov, Aoustin, Chevallereau, IEEE TAC 2011

The homogeneous second-order VSS
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Robust Finite-time Stability of Supertwisting Algorithm
Moreno, Osorio, CDC’2008 & Orlov, Aoustin, Chevallereau , IEEE TAC 2011

The perturbed second-order VSS

ẋ = y − µ
√
|x|sign x, µ > 0

ẏ = −νsign x+ ω(t), ν > 0.

is no longer homogeneous.

External disturbances are uniformly bounded by some M > 0:

ess sup
t>0
|ω(t)| ≤M < min

{
µ

2
,
µν

1 + µ

}

Lyapunov function

V = ν|x|+ 1

2
y2 +

1

2
(y − µ

√
|x|sign x)2

Y. Orlov 58 / 68



Robust Finite-time Stability of Supertwisting Algorithm
Moreno, Osorio, CDC’2008 & Orlov, Aoustin, Chevallereau , IEEE TAC 2011

The perturbed second-order VSS
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Robust Finite-time Stability of Supertwisting Algorithm
Orlov, Aoustin, Chevallereau, IEEE TAC 2011

The Lyapunov function is shown to meet the useful differential inequality

V̇ ≤ −γ
√
V

with

γ =
√

2ν ·min
{

2(µν −M −Mν)

4ν + 3µ2
,
µ− 2M

4

}

⇓

Robust (equiuniform) finite time stability is thus guaranteed with the
settling time estimate

T (x0, y0) ≤ 2
√
V (x0, y0)γ−1
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Finite-time Stability of Twisting Algorithm
Orlov, CDC’2003

The homogeneous second-order VSS

ẋ = y, ẏ = −asign x− bsign y, a > b > 0. (38)

of degree q = −1 with respect to dilation (1, 2).

1. Beyond the origin, no
sliding modes on axes ⇒
solutions are uniquely
determined to the right
2. Nonstrict Lyapunov
function V = a|x|+ 1

2y
2

3. Time derivative V̇ = −b|y|
4. Invariance principle ⇒ GAS
5. Quasihomogeneuity
principle ⇒ FTS
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Robust Finite-time Stability of Twisting Algorithm
Orlov, CDC’2003

The perturbed nonautonomous second-order VSS

ẋ = y,

ẏ = −asign x− bsign y − hx− py + ω(x, y, t), h, p > 0 & a > b > 0

is no longer homogeneous.

External disturbances are uniformly bounded by some M > 0 such that:

ess sup
t>0
|ω(t)| ≤M < b < a−M.

Nonstrict Lyapunov function V = a|x|+ 1
2 (hx2 + y2) posseses

non-positive definite time derivative V̇ ≤ −(b−M)|y|.
Given a specific disturbance ω, the composite function V (x(t), y(t)) is
non-strictly monotonically decreasing along the solutions and GAS is still
ensured by the invariance principle.
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ẏ = −asign x− bsign y − hx− py + ω(x, y, t), h, p > 0 & a > b > 0

is no longer homogeneous.

External disturbances are uniformly bounded by some M > 0 such that:

ess sup
t>0
|ω(t)| ≤M < b < a−M.

Nonstrict Lyapunov function V = a|x|+ 1
2 (hx2 + y2) posseses

non-positive definite time derivative V̇ ≤ −(b−M)|y|.
Given a specific disturbance ω, the composite function V (x(t), y(t)) is
non-strictly monotonically decreasing along the solutions and GAS is still
ensured by the invariance principle.

Y. Orlov 61 / 68



Robust Finite-time Stability of Twisting Algorithm
Embedding into homogeneous differential inclusion framework

The perturbed nonautonomous second-order VSS

ẋ = y,

ẏ = −asign x− bsign y − hx− py + ω(x, y, t), h, p > 0 & a > b > 0

might be viewed as an autonomous homogeneous differential inclusion

ẍ ∈ F (x, ẋ) + Ω

(of the same homogeneity degree and dilation as the nominal unperturbed
system!) with Filippov convex hull F (x, ẋ) and a class Ω of admissible
external disturbances subject to rectangular restrictions

ess sup
t>0
|ω(t)| ≤M < b < a−M. (39)

Semiglobal Strict Lyapunov functions are subsequently involved to prove
Equiuniform GAS.
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Robust Finite-time Stability of Twisting Algorithm
Semiglobal Strict Lyapunov Functions

R-parameterized family of Lyapunov functions

VR(x, y) = a|x|+ 1

2
(y2 + hx2) + κRxy, κR > 0 (40)

The weight parameter κR > 0 is chosen according to

κR < min{1, 2a2

R
,
a(b−M)

a
√

2R+ pR
}. (41)

to ensure that the Lyapunov function VR(x, y) is positive definite on the
corresponding compact set

DR = {(x, y) ∈ R2 : a|x|+ 1

2
(hx2 + y2) ≤ R} (42)
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Robust Finite-time Stability of Twisting Algorithm
Equiuniform Global Asymptotic Stability

Differentiating VR along the solutions yields

V̇R(xω(t), yω(t)) ≤ −KRVR(xω(t), yω(t)) (43)

where

KR =
2acR

max{2a2 + hR, a
√

2R+ 2κRR}
> 0

cR = min{b−M − κR(
√

2R+
pR

a
), κR(a− b−M)} > 0

Semiglobal (not global!) equiuniform exponentail stability is established:

VR(xω(t), yω(t)) ≤ VR(xω(t0), yω(t0))e−KR(t−t0)

and Equiuniform GAS follows
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Robust Finite-time Stability of Twisting Algorithm
Global Finite-time Stability

The perturbed nonautonomous VSS

ẋ = y,

ẏ = −asign x− bsign y − hx− py + ω(x, y, t), h, p > 0 & a > b > 0

being represented in the form of the autonomous homogeneous differential
inclusion

ẍ ∈ F (x, ẋ) + Ω

of the homogeneity degree q = −1 and dilation r = (2, 1) with Filippov convex
hull F (x, ẋ) and a class Ω of admissible external disturbances subject to
rectangular restrictions

ess sup
t>0
|ω(t)| ≤M < b < a−M.

is shown to be equiuniformly GAS

By quasihomogeneity principle, equiuniform global FTS is concluded.
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Supertwisting observer
Davila, Fridman, Levant, IEEE TAC 2005

The uncertain non-autonomous system

ẋ = y, ẏ = u+ ω(t)

Finite-time Velocity Observer

˙̂x = ŷ + µ
√
|x− x̂|sign (x− x̂), ˙̂y = u+ νsign (x− x̂)

The finite time error convergence e1 = x− x̂→ 0, e2 = y − ŷ → 0 as
t→∞ is guaranteed under uniform disturbance magnitude constraint

ess sup
t>0
|ω(t)| ≤M < min

{
µ

2
,
µν

1 + µ

}
for some M > 0

The idea behind the velocity observer: the error dynamics
ė1 = e2 − µ

√
|e1|sign e1, ė2 = −νsign e1 + ω

are in the form of the FTS supertwisting algorithm.
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Finite-time Stabilizing Output Feedback Synthesis
Orlov, Aoustin, Chevallereau, IEEE TAC 2011

Twisting State Feedback u = −asign x− bsign y is coupled to the
Supertwisting-observer

˙̂x = ŷ + µ
√
|x− x̂|sign (x− x̂), ˙̂y = u+ νsign (x− x̂)

⇓

Dynamic Position Feedback u = −asign x− bsign ŷ,
globally FT stabilizes the uncertain non-autonomous system

ẋ = y, ẏ = u+ ω(x, y, t)
Gain Tuning

ess sup
t>0
|ω(t)| ≤ M < min

{
µ

2
,
µν

1 + µ

}
ess sup

t>0
|ω(t)| ≤ M < b < a−M.
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Concluding Remarks
Orlov Discontinuous Systems - Lyapunov Analysis and Robust Synthesis under Uncertainty
Conditions, Springer-Verlag, London, 2009

Analysis tools of discontinuous systems and sliding mode design methods
of the first and second orders were presented.

Capabilities of the methods and their robustness features were illustrated
in mechanical applications
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