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The Nonlinear Schrödinger Equation

i∂tu(t, x) = (−∆x + V (x))u+ f(|u|2)u (1)

• u : R× Rn → C; f : R→ R;

• V : Rn → R, lim|x|→∞ |V (x)| = 0, V, x · ∇V (x) ∈ L∞(Rn)

Results extend to V, x·∇V (x) ∈ Lq+Lr, max{1, n/2} < q ≤ r ≤ ∞.

Applications: Nonlinear Optics, Water Waves, Quantum Physics

in particular Bose-Einstein Condensates.
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In Quantum Physics

i~∂tu(t, x) = −
~2

2m
∆xu+ V (x)u

basically means the total energy of a particle is equal to the
kinetic plus the potential energy. Here

|u(t, x)|2 = probability density for the particle to be at time t

in position x. In analogy with photon propagation for which

u(t, x) = u0e
i
~(px−Et)

taking one derivative in time we get

∂tu(t, x) = −
i

~
Eu(t, x)

or i~∂tu(t, x) = Eu(t, x). Similarly − ~2

2m∆u = p2

2mu.
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The nonlinearity can be viewed as a the potential f(|u|2) induced

by the particle, or, in Bose-Einstein Condensates, when many

bosons converge to the same state (wave function u(t, x)) then

the effect of the other particles on a given one is of the form

f(|u|2)(x) =
∫
Rn
K(|x− y|)|u(y)|2dy

where the interaction can be given by Coulomb potential K(z) =

σ/|z| giving the Hartree nonlinearity. However, in dilute gas ap-

proximation, K(z) ≈ σδ giving the power nonlinearity

f(|u|2)u = σ|u|2u

in which case the equation is sometimes called Gross-Pitaevskii.

Higher power nonlinearities result when higher order interaction

between particles dominates.
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In Nonlinear Optics
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Maxwell Equations:

∇×−→E = −∂t
−→
B

∇ · −→B = 0

∇ · −→D = ρ

∇×−→H = ∂t
−→
D +

−→
j

where:
−→
D = ε0

−→
E +

−→
P

−→
H =

1

µ0

−→
B −−→M

with constitutive relations for dielectrics: ρ = 0,
−→
j = 0 =−→

M, µ0 = (ε0c
2)−1, and

1

ε0

−→
P (t) =

∫ t

−∞
χ1(t− τ)

−→
E (τ)dτ

+
∫ t

−∞

∫ t

−∞

∫ t

−∞
χ3(t− τ1, t− τ2, t− τ3)

−→
E (τ1) · −→E (τ2)

−→
E (τ3)dτ1dτ2dτ3
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The Graded Optical Fiber Ansatz:

−→
E = ε

−→
E0 + ε2−→E1 + ε3−→E2 + . . .

−→
E0 = u(εx, εy, ε2z)ei(k(ω0)z−ω0t)−→e

leads to

i∂Zu = −
1

2k(ω0)
(∂XX + ∂Y Y )u−

n2 − n2
0

ε2n2
0
u−

k(ω0)n2

n
|u|2u

under the assumption n2 − n2
0 is of size ε2 and slowly changes

with X = εx, Y = εy. Note that:

n2 = 1 + χ̂1

2n0n2 = 3χ̂3
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In Water Waves

Involves:

• multi-scale analysis (similar to the optical case described pre-

viously)

• the Dirichlet to Neumann map due to the free surface.
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General Hamiltonian Formulation

The general Hamiltonian system:

∂tu = JDE(u)

becomes equivalent to the nonlinear Schrödinger equation under
the choices:

E(u) =
1

2

∫
Rn
|∇u|2dx+

1

2

∫
Rn
V |u|2dx+

1

2

∫
Rn
F (|u|2)dx,

J = −i =

[
0 1
−1 0

]
E : H1(Rn,C) 7→ R, J : H1(Rn,C) ⊂ H−1(Rn,C) 7→ H1(Rn,C).

More generally, for X a real Hilbert space, E : X 7→ R a C2 map
and J : D(J) ⊂ X∗ 7→ X a skew-adjoint operator the formulation
covers a large class of wave equations e.g. Hartree, Dirac, Klein-
Gordon, KdV, NW.
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Gauge Symmetry

The energy is assumed invariant under the action of a continuous
unitary group T (ω) on X i.e.

E(T (ω)u) = E(u), T (ω)J = JT ∗(−ω), ω ∈ R.

This leads to a second conserved quantity (besides the energy):

N (u) =
1

2
〈Bu, u〉,

where B : X 7→ X∗ is self-adjoint and JB extends T ′(0).

In the Schrödinger case T (ω)u = e−iωu are rotations in the com-
plex plane and

N (u) =
1

2
〈u, u〉 =

1

2
‖u‖2

L2.
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General Coherent Structures

are solutions of the form:

u(t) = T (ωt)ψω, ψω ∈ X.

Hence ψω satisfies in the weak sense:

JDE(ψω) = ωJDN (ψω). (2)

Note that for an one-to-one J the coherent states are critical

points of the E − ωN functional.

Hence, variational methods have been successfully used to prove

existence of coherent structures, especially ”large” ones.
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Existence of Coherent Structures. The Variational

Method

Particular coherent structures (ground states) are solutions of:

min
N (ψ)=const.

E(ψ)

Successful in many problems, produces orbitally stable states,

but it requires sophisticated compactness arguments e.g. con-

centration compactness (P. L. Lions ’84), when the constrain N
is not weakly continuous on X.

Delicate reformulations of the minimization problem are neces-

sary in critical and supercritical regimes when E has no minimizer
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e.g. large power nonlinearities

F (|u|2) = |u|2p+2, p ≥ 2/n

in NLS energy.

In this case one can use a different functional which is bounded

from below (Rose-Weinstein ’88):

min
‖ψ‖

L2p+2=const.
‖∇ψ‖2

L2 +
∫
Rn
V |ψ|2dx+ E‖ψ‖2

L2

or Nehari manifolds, etc...
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Limitations of the Variational Methods

• ”artsy”, non-systematic, identifies only special coherent states,

minimizers or ”mountain pass” (saddle) points of certain

functionals.

• do not guarantee smooth dependence on parameters e.g. ω.

• if they rely on functionals unrelated to the dynamical invari-

ants they provide no stability information.
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Linear Bound-States in Schrödinger Eq.

i∂tu(t, x) = (−∆x + V (x))u

u(0, x) = u0(x)

−∆ + V is a self adjoint operator on L2 with domain H2, and V

is a relative compact perturbation of −∆. Hence

Spectrum of −∆ + V = [0,∞)
⋃
σdiscrete

where σdiscrete = {isolated e-values with finite multiplicity}. Via

Stone’s theorem for u0 in L2 :

u(t, x) = ei(∆−V )tu0 =
∑

ω∈σdiscrete
e−iωtPωu0 + ei(∆−V )tPcu0
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Linear Evolution and Asymptotic Behavior.

Moreover ei(∆−V )tPc is unitary on L2 but

‖ei(∆−V )tPcu0‖L∞ ≤ (4π|t|)−n/2‖u0‖L1

The nonlinear variant of this result is a conjecture:

Asymptotic Completeness Conjecture: Any solution of (1)

eventually converges to a superposition of nonlinear bound-states

and a radiative part which disperses to infinity.

It is only proven for the integrable case n = 1, V ≡ 0, and

f(|u|2)u = −|u|2u.
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Existence of Coherent Structures. The Bifurcation

Methods

Find zeroes of the map:

F : H1(Rn,C)× R 7→ H−1(Rn,C),

F (ψ,E) = (−∆ + V + E)ψ + σ|ψ|2pψ,

which is equivariant under the action of O(2), i.e.:

F (eiθψ,E) = eiθF (ψ,E),

F (ψ,E) = F (ψ,E).

It is Fréchet differentiable over the real Banach spaces:

H1(Rn,C) ∼= H1(Rn,R)×H1(Rn,R) ↪→ H−1(Rn,R)×H−1(Rn,R).
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Linearization

For ψ real valued (hence F (ψ,E) real valued) we have:

DψF (ψ,E)[u+ iv] =

[
L+(ψ,E) 0

0 L−(ψ,E)

] [
u
v

]
,

where

L+(ψ,E)[u] = (−∆ + V + E)u+ (2p+ 1)σ|ψ|2pu
L−(ψ,E)[v] = (−∆ + V + E)v + σ|ψ|2pv

In particular

L±(0, E) = −∆ + V + E
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Bifurcation Diagram for Ground-States in NLS

0 E0 E

H1

where −E0 < 0 is the lowest eigenvalue of the (unbounded) linear
operator −∆ + V on L2.
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Preliminary Result: The solutions (ψE, E) of (??) in a (small)
neighborhood of (0, E0) ∈ H1(Rn) × R where −E0 is lowest e-
value of −∆ + V (which is simple!) form a two dimensional C1

manifold:

(E, θ) 7→ eiθψE, 0 ≤ θ < 2π, ψE real valued,

called the ground-state manifold. Moreover u(t, x) = eiEt+iθψE(x)
are orbitally stable solutions of (1):

i∂tu = (−∆ + V )u+ σ|u|2pu.

Questions: How far can we continue this manifold? Are there
any bifurcations along it and/or changes of stability? Are there
other ground-state manifolds not connected to this one?

Note: there are no nontrivial solutions near (0, E∗) for E∗ > E0

since the linear operator −∆ + V + E∗ is an isomorphism.
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Results for Attractive Nonlinearity σ < 0 :

• if x ∈ R, V (x) = V (−x), and V is strictly increasing for x > 0

then the ground state branch bifurcating from E0 can be

uniquely continued for all E > E0 (Jeanjean & Stuart ’99,

monotonicity methods).

• if V ≡ Vs(x) = V (x1 + s, x2, . . . , xn) + V (−x1 + s, x2, . . . , xn)

then there exists s∗ sufficiently large such that for all s ≥ s∗
the ground state manifold suffers a pitchfork type bifurca-

tion at a finite E∗ & E0 (KKP ’11, see also KKSW ’08 and

Heeyeon’s thesis all based on perturbative analysis valid for

small ground states or excited states).
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• if x ∈ R, V (x) = V (−x), and V is twice differentiable at x = 0

with ∇2V (0) < 0 then the ground state manifold suffers a

pitchfork type bifurcation at a finite E∗ > E0 (KKP ’11,

extends to x ∈ Rn).

• if x ∈ Rn then there is at least one ground state for each

E > E0 (Rose & Weinstein ’88, variational methods).

• if V has more than one critical point then there are multipeak

ground states and multiple ground states as E 7→ ∞ (Dancer

& Yan ’01, Aschbacher & all ’02, and more recently by T.-C.

Lin, variational methods).
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Global Bifurcation Theory

Topological Degree Method: If

S = {(ψ,E) | F (ψ,E) = 0, ψ 6≡ 0}

then

S0 = the connected component of S containing (0, E0)

either reaches the boundary of the domain where DψF is Fred-

holm or contains a solution (0, E1), E1 6= E0.

The method requires the introduction of a degree for F (·, E) i.e.

certain compactness properties of the pre-images F−1(bounded set).

Such compactness result are not available for the attractive non-

linearity. For the repelling case see Jeanjean at all ’99.
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Analytical Maps Method: If F is real analytic then the branch
bifurcating from (0, E0) can be analytically continued until it
forms a loop or reaches the boundary of the domain where DψF

is Fredholm. Requires relative compactness of the connected
component of the set of zeroes of F containing (0, E0) :

Theorem 1. (compactness): If (ψEn, En) are zeroes of F in the
connected component of (0, E0) and

(ψEn, En)
H1×R
⇀ (ψE∗, E∗)

then there exists a subsequence (ψEnk
, Enk) such that

• limk→∞ ‖ψEnk − ψE∗‖H1 = 0 and

• F (ψE∗, E∗) = 0.
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New Results (valid in any space dimension):

• No bound-state manifold blows up in L2 (or H1) norm at

finite E. No ground state manifold goes to the left of E0.

• We know all ground-state manifolds near E =∞ in terms of

the critical points of the potential provided the latter are all

non-degenerate.

• In some situations we can establish how the ground-state

manifolds near E = ∞ connect with the one near E = E0,

and with each other via bifurcations, hence we can find all

ground-state branches.
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Ground state manifolds near E = E0 and E =∞ for the double

well potential (see Theorems 2 & 3)
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(Almost) all ground state manifolds
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Comments on the Example:

• the full picture depends on how manifolds near the boundary

of the Fredholm domain connect among themselves i.e., in

this example, how each symmetric ground state at E = ∞
turns around at certain finite E and connects to a different

symmetric ground state as it returns to E =∞; it turns out

that these connections depend on the distance “s” between

wells, see next numerical graph and animated picture thanks

to P. Kevrekidis and J. Lee (UMass):
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Conclusions:

• We are on the verge of understanding the correlation between

critical points of the potential and the bifurcations along

the ground-state (and excited-state) manifolds. The missing

links are results on how multi-peak solutions, which approach

the same critical point in the limit E → ∞, connect, and

a classification of possible bifurcations in higher dimensions

when a multiple eigenvalue crosses zero.
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• Once all bound-state manifolds have been identified one can

approach the asymptotic completeness conjecture in NLS by

starting with the dynamics near the bifurcation points.

• The technique is rather general for Hamiltonian PDE’s, re-

lying on energy estimates, analysis of the linearized opera-

tor, concentration compactness and properties of the limit-

ing equation (as the parameter approaches a certain limit).

Applications to general nonlinearities in NLS are almost fin-

ished (with V. Sadoveanu). Applications to rotating BEC’s

and coupled wave equations are underway.

Thank you!

32


