Global Bifurcations and Large Ground States in Nonlinear Schrödinger Equations

Eduard Kirr

University of Illinois at Urbana-Champaign

System & Control Engineering, July 2018

Joint work with Vivek Natarajan (IIT Bombay), Heeyeon Kim and Vlad Sadoveanu (UIUC).

The Nonlinear Schrödinger Equation

$$i\partial_t u(t,x) = (-\Delta_x + V(x))u + f(|u|^2)u \tag{1}$$

• $u: \mathbb{R} \times \mathbb{R}^n \to \mathbb{C}$; $f: \mathbb{R} \to \mathbb{R}$;

•
$$V: \mathbb{R}^n \to \mathbb{R}$$
, $\lim_{|x| \to \infty} |V(x)| = 0$, $V, x \cdot \nabla V(x) \in L^{\infty}(\mathbb{R}^n)$

Results extend to $V, x \cdot \nabla V(x) \in L^q + L^r$, $\max\{1, n/2\} < q \le r \le \infty$.

Applications: Nonlinear Optics, Water Waves, Quantum Physics in particular Bose-Einstein Condensates.

In Quantum Physics

$$i\hbar\partial_t u(t,x) = -\frac{\hbar^2}{2m}\Delta_x u + V(x)u$$

basically means the total energy of a particle is equal to the kinetic plus the potential energy. Here

 $|u(t,x)|^2$ = probability density for the particle to be at time t in position x. In analogy with photon propagation for which

$$u(t,x) = u_0 e^{\frac{i}{\hbar}(px - \mathcal{E}t)}$$

taking one derivative in time we get

$$\partial_t u(t,x) = -\frac{i}{\hbar} \mathcal{E}u(t,x)$$

or $i\hbar \partial_t u(t,x) = \mathcal{E}u(t,x)$. Similarly $-\frac{\hbar^2}{2m}\Delta u = \frac{p^2}{2m}u$.

The nonlinearity can be viewed as a the potential $f(|u|^2)$ induced by the particle, or, in Bose-Einstein Condensates, when many bosons converge to the same state (wave function u(t,x)) then the effect of the other particles on a given one is of the form

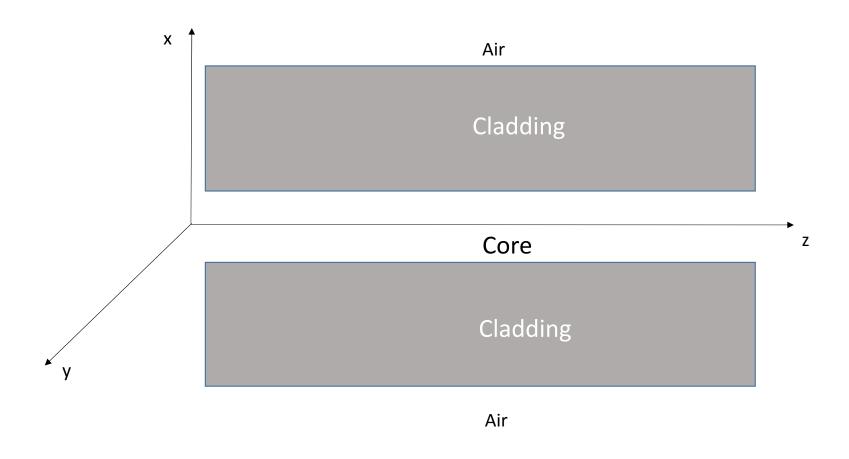
$$f(|u|^2)(x) = \int_{\mathbb{R}^n} K(|x-y|)|u(y)|^2 dy$$

where the interaction can be given by Coulomb potential $K(z) = \sigma/|z|$ giving the Hartree nonlinearity. However, in dilute gas approximation, $K(z) \approx \sigma \delta$ giving the power nonlinearity

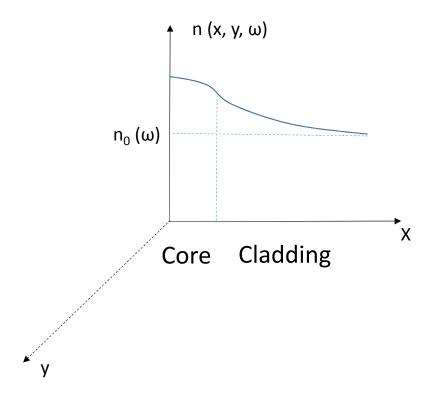
$$f(|u|^2)u = \sigma|u|^2u$$

in which case the equation is sometimes called Gross-Pitaevskii. Higher power nonlinearities result when higher order interaction between particles dominates.

In Nonlinear Optics



Refractive Index:



Maxwell Equations:

$$\nabla \times \overrightarrow{E} = -\partial_t \overrightarrow{B}
\nabla \cdot \overrightarrow{B} = 0
\nabla \cdot \overrightarrow{D} = \rho
\nabla \times \overrightarrow{H} = \partial_t \overrightarrow{D} + \overrightarrow{j}$$

where:

$$\overrightarrow{D} = \epsilon_0 \overrightarrow{E} + \overrightarrow{P}$$

$$\overrightarrow{H} = \frac{1}{\mu_0} \overrightarrow{B} - \overrightarrow{M}$$

with constitutive relations for dielectrics: $\rho=0, \ \overrightarrow{j}=0=M, \ \mu_0=(\epsilon_0c^2)^{-1}, \ \text{and}$

$$\frac{1}{\epsilon_0} \overrightarrow{P}(t) = \int_{-\infty}^t \chi^1(t - \tau) \overrightarrow{E}(\tau) d\tau
+ \int_{-\infty}^t \int_{-\infty}^t \int_{-\infty}^t \chi^3(t - \tau_1, t - \tau_2, t - \tau_3) \overrightarrow{E}(\tau_1) \cdot \overrightarrow{E}(\tau_2) \overrightarrow{E}(\tau_3) d\tau_1 d\tau_2 d\tau_3$$

The Graded Optical Fiber Ansatz:

$$\overrightarrow{E} = \varepsilon \overrightarrow{E_0} + \varepsilon^2 \overrightarrow{E_1} + \varepsilon^3 \overrightarrow{E_2} + \dots$$

$$\overrightarrow{E_0} = u(\varepsilon x, \varepsilon y, \varepsilon^2 z) e^{i(k(\omega_0)z - \omega_0 t)} \overrightarrow{e}$$

leads to

$$i\partial_Z u = -\frac{1}{2k(\omega_0)} (\partial_{XX} + \partial_{YY}) u - \frac{n^2 - n_0^2}{\varepsilon^2 n_0^2} u - \frac{k(\omega_0) n_2}{n} |u|^2 u$$

under the assumption $n^2-n_0^2$ is of size ε^2 and slowly changes with $X=\varepsilon x,\ Y=\varepsilon y.$ Note that:

$$n^2 = 1 + \widehat{\chi^1}$$
$$2n_0n_2 = 3\widehat{\chi}^3$$

In Water Waves

Involves:

- multi-scale analysis (similar to the optical case described previously)
- the Dirichlet to Neumann map due to the free surface.

General Hamiltonian Formulation

The general Hamiltonian system:

$$\partial_t u = JD\mathcal{E}(u)$$

becomes equivalent to the nonlinear Schrödinger equation under the choices:

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathbb{R}^n} |\nabla u|^2 dx + \frac{1}{2} \int_{\mathbb{R}^n} V|u|^2 dx + \frac{1}{2} \int_{\mathbb{R}^n} F(|u|^2) dx,$$

$$J = -i = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\mathcal{E}: H^1(\mathbb{R}^n, \mathbb{C}) \mapsto \mathbb{R}, \ J: H^1(\mathbb{R}^n, \mathbb{C}) \subset H^{-1}(\mathbb{R}^n, \mathbb{C}) \mapsto H^1(\mathbb{R}^n, \mathbb{C}).$$

More generally, for X a real Hilbert space, $\mathcal{E}: X \mapsto \mathbb{R}$ a C^2 map and $J: D(J) \subset X^* \mapsto X$ a skew-adjoint operator the formulation covers a large class of wave equations e.g. Hartree, Dirac, Klein-Gordon, KdV, NW.

Gauge Symmetry

The energy is assumed invariant under the action of a continuous unitary group $T(\omega)$ on X i.e.

$$\mathcal{E}(T(\omega)u) = \mathcal{E}(u), \quad T(\omega)J = JT^*(-\omega), \ \omega \in \mathbb{R}.$$

This leads to a second conserved quantity (besides the energy):

$$\mathcal{N}(u) = \frac{1}{2} \langle Bu, u \rangle,$$

where $B: X \mapsto X^*$ is self-adjoint and JB extends T'(0).

In the Schrödinger case $T(\omega)u=e^{-i\omega}u$ are rotations in the complex plane and

$$\mathcal{N}(u) = \frac{1}{2} \langle u, u \rangle = \frac{1}{2} ||u||_{L^2}^2.$$

General Coherent Structures

are solutions of the form:

$$u(t) = T(\omega t)\psi_{\omega}, \qquad \psi_{\omega} \in X.$$

Hence ψ_{ω} satisfies in the weak sense:

$$JD\mathcal{E}(\psi_{\omega}) = \omega JD\mathcal{N}(\psi_{\omega}). \tag{2}$$

Note that for an one-to-one J the coherent states are critical points of the $\mathcal{E}-\omega\mathcal{N}$ functional.

Hence, variational methods have been successfully used to prove existence of coherent structures, especially "large" ones.

Existence of Coherent Structures. The Variational Method

Particular coherent structures (ground states) are solutions of:

$$\min_{\mathcal{N}(\psi)=const.} \mathcal{E}(\psi)$$

Successful in many problems, produces orbitally stable states, but it requires sophisticated compactness arguments e.g. concentration compactness (P. L. Lions '84), when the constrain \mathcal{N} is not weakly continuous on X.

Delicate reformulations of the minimization problem are necessary in *critical and supercritical regimes* when \mathcal{E} has *no minimizer*

e.g. large power nonlinearities

$$F(|u|^2) = |u|^{2p+2}, \ p \ge 2/n$$

in NLS energy.

In this case one can use a different functional which is bounded from below (Rose-Weinstein '88):

$$\min_{\|\psi\|_{L^{2p+2}}=const.} \|\nabla\psi\|_{L^{2}}^{2} + \int_{\mathbb{R}^{n}} V|\psi|^{2} dx + E\|\psi\|_{L^{2}}^{2}$$

or Nehari manifolds, etc...

Limitations of the Variational Methods

- "artsy", non-systematic, identifies only special coherent states, minimizers or "mountain pass" (saddle) points of certain functionals.
- ullet do not guarantee smooth dependence on parameters e.g. ω .
- if they rely on functionals unrelated to the dynamical invariants they provide no stability information.

Linear Bound-States in Schrödinger Eq.

$$i\partial_t u(t,x) = (-\Delta_x + V(x))u$$

 $u(0,x) = u_0(x)$

 $-\Delta + V$ is a self adjoint operator on L^2 with domain H^2 , and V is a relative compact perturbation of $-\Delta$. Hence

Spectrum of
$$-\Delta + V = [0, \infty) \bigcup \sigma_{discrete}$$

where $\sigma_{discrete} = \{\text{isolated e-values with finite multiplicity}\}$. Via Stone's theorem for u_0 in L^2 :

$$u(t,x) = e^{i(\Delta - V)t}u_0 = \sum_{\omega \in \sigma_{discrete}} e^{-i\omega t} P_{\omega} u_0 + e^{i(\Delta - V)t} P_{c} u_0$$

Linear Evolution and Asymptotic Behavior.

Moreover $e^{i(\Delta-V)t}\mathsf{P}_c$ is unitary on L^2 but

$$||e^{i(\Delta-V)t}\mathsf{P}_c u_0||_{L^{\infty}} \le (4\pi|t|)^{-n/2}||u_0||_{L^1}$$

The nonlinear variant of this result is a conjecture:

Asymptotic Completeness Conjecture: Any solution of (1) eventually converges to a superposition of nonlinear bound-states and a radiative part which disperses to infinity.

It is only proven for the integrable case $n=1,\ V\equiv 0,$ and $f(|u|^2)u=-|u|^2u.$

Existence of Coherent Structures. The Bifurcation Methods

Find zeroes of the map:

$$F: H^1(\mathbb{R}^n, \mathbb{C}) \times \mathbb{R} \mapsto H^{-1}(\mathbb{R}^n, \mathbb{C}),$$

$$F(\psi, E) = (-\Delta + V + E)\psi + \sigma|\psi|^{2p}\psi,$$

which is equivariant under the action of O(2), i.e.:

$$F(e^{i\theta}\psi, E) = e^{i\theta}F(\psi, E),$$

$$F(\overline{\psi}, E) = \overline{F(\psi, E)}.$$

It is Fréchet differentiable over the real Banach spaces:

$$H^1(\mathbb{R}^n,\mathbb{C}) \cong H^1(\mathbb{R}^n,\mathbb{R}) \times H^1(\mathbb{R}^n,\mathbb{R}) \hookrightarrow H^{-1}(\mathbb{R}^n,\mathbb{R}) \times H^{-1}(\mathbb{R}^n,\mathbb{R}).$$

Linearization

For ψ real valued (hence $F(\psi, E)$ real valued) we have:

$$D_{\psi}F(\psi,E)[u+iv] = \begin{bmatrix} L_{+}(\psi,E) & 0\\ 0 & L_{-}(\psi,E) \end{bmatrix} \begin{bmatrix} u\\ v \end{bmatrix},$$

where

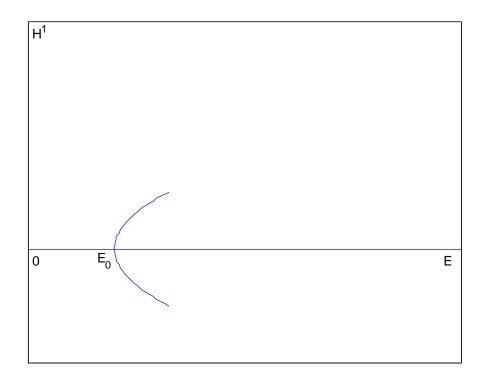
$$L_{+}(\psi, E)[u] = (-\Delta + V + E)u + (2p+1)\sigma|\psi|^{2p}u$$

$$L_{-}(\psi, E)[v] = (-\Delta + V + E)v + \sigma|\psi|^{2p}v$$

In particular

$$L_{\pm}(0,E) = -\Delta + V + E$$

Bifurcation Diagram for Ground-States in NLS



where $-E_0 < 0$ is the lowest eigenvalue of the (unbounded) linear operator $-\Delta + V$ on L^2 .

Preliminary Result: The solutions (ψ_E, E) of $(\ref{eq:condition})$ in a (small) neighborhood of $(0, E_0) \in H^1(\mathbb{R}^n) \times \mathbb{R}$ where $-E_0$ is lowest evalue of $-\Delta + V$ (which is simple!) form a two dimensional C^1 manifold:

$$(E,\theta)\mapsto e^{i\theta}\psi_E,\ 0\leq \theta<2\pi,\ \psi_E$$
 real valued,

called the *ground-state manifold*. Moreover $u(t,x) = e^{iEt+i\theta}\psi_E(x)$ are orbitally stable solutions of (1):

$$i\partial_t u = (-\Delta + V)u + \sigma |u|^{2p}u.$$

Questions: How far can we continue this manifold? Are there any bifurcations along it and/or changes of stability? Are there other ground-state manifolds not connected to this one?

Note: there are no nontrivial solutions near $(0, E_*)$ for $E_* > E_0$ since the linear operator $-\Delta + V + E_*$ is an isomorphism.

Results for Attractive Nonlinearity $\sigma < 0$:

- if $x \in \mathbb{R}$, V(x) = V(-x), and V is strictly increasing for x > 0 then the ground state branch bifurcating from E_0 can be uniquely continued for all $E > E_0$ (Jeanjean & Stuart '99, monotonicity methods).
- if $V \equiv V_s(x) = V(x_1 + s, x_2, \dots, x_n) + V(-x_1 + s, x_2, \dots, x_n)$ then there exists s_* sufficiently large such that for all $s \geq s_*$ the *ground state manifold* suffers a pitchfork type bifurcation at a finite $E_* \gtrsim E_0$ (KKP '11, see also KKSW '08 and Heeyeon's thesis all based on perturbative analysis valid for small ground states or excited states).

- if $x \in \mathbb{R}$, V(x) = V(-x), and V is twice differentiable at x = 0 with $\nabla^2 V(0) < 0$ then the *ground state manifold* suffers a pitchfork type bifurcation at a finite $E_* > E_0$ (KKP '11, extends to $x \in \mathbb{R}^n$).
- if $x \in \mathbb{R}^n$ then there is at least one ground state for each $E > E_0$ (Rose & Weinstein '88, variational methods).
- if V has more than one critical point then there are multipeak ground states and multiple ground states as $E \mapsto \infty$ (Dancer & Yan '01, Aschbacher & all '02, and more recently by T.-C. Lin, variational methods).

Global Bifurcation Theory

Topological Degree Method: If

$$S = \{(\psi, E) \mid F(\psi, E) = 0, \ \psi \not\equiv 0\}$$

then

 $S_0=$ the connected component of \overline{S} containing $(0,E_0)$ either reaches the boundary of the domain where $D_{\psi}F$ is Fredholm or contains a solution $(0,E_1),\ E_1\neq E_0.$

The method requires the introduction of a degree for $F(\cdot, E)$ i.e. certain compactness properties of the pre-images F^{-1} (bounded set). Such compactness result are not available for the attractive non-linearity. For the repelling case see Jeanjean at all '99.

Analytical Maps Method: If F is real analytic then the branch bifurcating from $(0, E_0)$ can be analytically continued until it forms a loop or reaches the boundary of the domain where $D_{\psi}F$ is Fredholm. Requires relative compactness of the connected component of the set of zeroes of F containing $(0, E_0)$:

Theorem 1. (compactness): If (ψ_{E_n}, E_n) are zeroes of F in the connected component of $(0, E_0)$ and

$$(\psi_{E_n}, E_n) \stackrel{H^1 \times \mathbb{R}}{-} (\psi_{E_*}, E_*)$$

then there exists a subsequence $(\psi_{E_{n_k}}, E_{n_k})$ such that

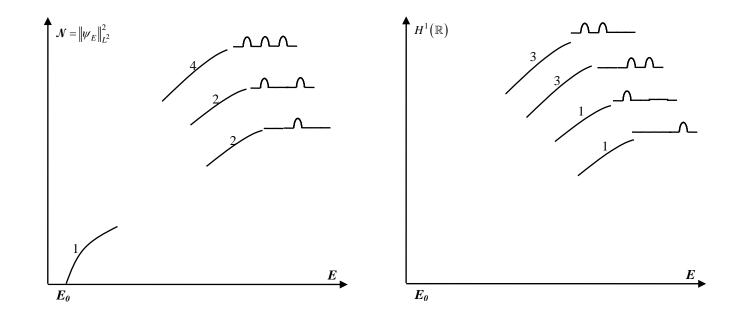
•
$$\lim_{k \to \infty} \|\psi_{E_{n_k}} - \psi_{E_*}\|_{H^1} = 0$$
 and

•
$$F(\psi_{E_*}, E_*) = 0.$$

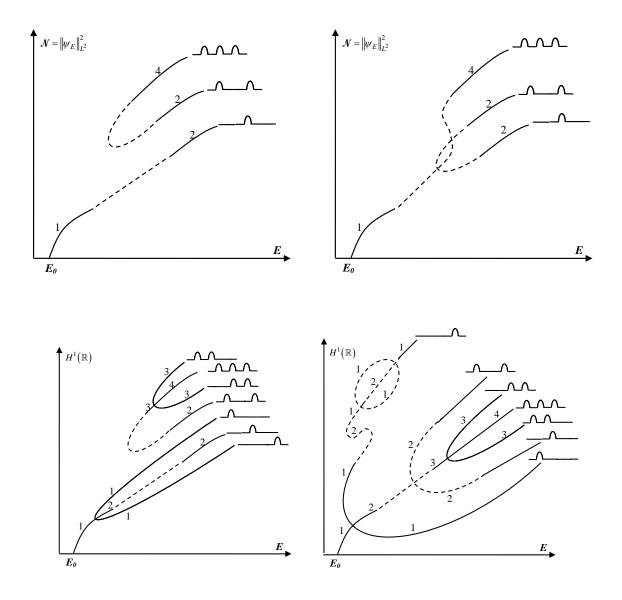
New Results (valid in any space dimension):

- No bound-state manifold blows up in L^2 (or H^1) norm at finite E. No ground state manifold goes to the left of E_0 .
- We know all ground-state manifolds near $E=\infty$ in terms of the critical points of the potential provided the latter are all non-degenerate.
- In some situations we can establish how the ground-state manifolds near $E=\infty$ connect with the one near $E=E_0$, and with each other via bifurcations, hence we can find all ground-state branches.

Ground state manifolds near $E=E_0$ and $E=\infty$ for the double well potential (see Theorems 2 & 3)

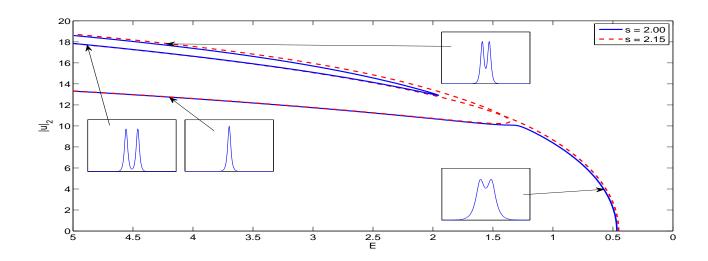


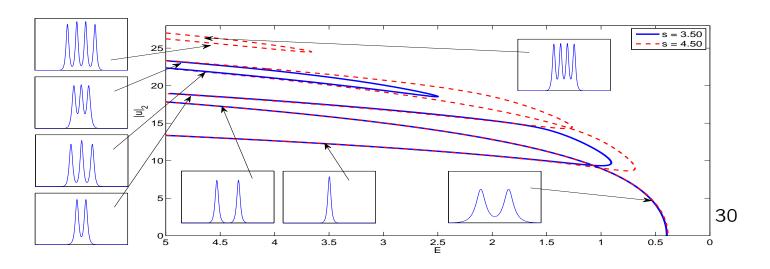
(Almost) all ground state manifolds



Comments on the Example:

• the full picture depends on how manifolds near the boundary of the Fredholm domain connect among themselves i.e., in this example, how each symmetric ground state at $E=\infty$ turns around at certain finite E and connects to a different symmetric ground state as it returns to $E=\infty$; it turns out that these connections depend on the distance "s" between wells, see next numerical graph and animated picture thanks to P. Kevrekidis and J. Lee (UMass):





Conclusions:

• We are on the verge of understanding the correlation between critical points of the potential and the bifurcations along the ground-state (and excited-state) manifolds. The missing links are results on how multi-peak solutions, which approach the same critical point in the limit $E \to \infty$, connect, and a classification of possible bifurcations in higher dimensions when a multiple eigenvalue crosses zero.

- Once all bound-state manifolds have been identified one can approach the asymptotic completeness conjecture in NLS by starting with the dynamics near the bifurcation points.
- The technique is rather general for Hamiltonian PDE's, relying on energy estimates, analysis of the linearized operator, concentration compactness and properties of the limiting equation (as the parameter approaches a certain limit). Applications to general nonlinearities in NLS are almost finished (with V. Sadoveanu). Applications to rotating BEC's and coupled wave equations are underway.

Thank you!