Global Bifurcations and Large Ground
States in Nonlinear Schrodinger
Equations

Eduard Kirr
University of Illinois at Urbana-Champaign

System & Control Engineering, July 2018

Joint work with Vivek Natarajan (IIT Bombay), Heeyeon Kim
and Vlad Sadoveanu (UIUC).



The Nonlinear Schrodinger Equation
iOpu(t, ) = (= Az 4+ V(@))u~+ f(|ul?)u (1)
o u . RXR"—=>C;, f:R—R;
o VIR" SR, liMy . |V(2)| =0, V,z-VV(z) € L®(R")

Results extend to V,z-VV (x) € LI4L", max{1,n/2} < q <r < .

Applications: Nonlinear Optics, Water Waves, Quantum Physics
in particular Bose-Einstein Condensates.



In Quantum Physics

hQ
thowu(t, x) = —Q—Axu + V(x)u
m

basically means the total energy of a particle is equal to the
kinetic plus the potential energy. Here

\u(t,az)|2 — probability density for the particle to be at time ¢

in position x. In analogy with photon propagation for which

u(t,z) = uoe%(px_gt)

taking one derivative in time we get

Hu(t,r) = —%&L(t, x)

2

or thowu(t,z) = Eu(t,x). Similarly —%Au = .



The nonlinearity can be viewed as a the potential f(Ju|?) induced
by the particle, or, in Bose-Einstein Condensates, when many
bosons converge to the same state (wave function u(¢,z)) then
the effect of the other particles on a given one is of the form

2 — 2
FluP)@) = [ K (e = yDlu()l?dy

where the interaction can be given by Coulomb potential K(z) =
o/|z| giving the Hartree nonlinearity. However, in dilute gas ap-
proximation, K(z) ~ od giving the power nonlinearity

f([ul®)u = olul*u

in which case the equation is sometimes called Gross-Pitaevskii.
Higher power nonlinearities result when higher order interaction
between particles dominates.



In Nonlinear Optics
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Maxwell Equations:

V X ﬁ = —8t§
V.-B = 0
V-B = p
V X ﬁ = 81534—7
where:
D = E+ P
H=_B_-W
HO
vl>ith constitutive relations for dielectrics: p = O, ? = 0 =
M7 HO — (6062)_17 and
t
1B = [ Xt-nE@r
€0 —00
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The Graded Optical Fiber Ansatz:

E = 5E04‘52E14—5_E2—F,“
E(; = wu(ex, ey, e22)etk(wo)z—wot) 2
leads to
107u =~ 1 (Oxx + Oyy)u — - n%u - k<w0)n2|u|2u
2k(wo) =22

under the assumption n? — n3 is of size 2 and slowly changes
with X = ez, Y = ¢y. Note that:

n? = 1+4x1
2nono

|
w
<



In Water Waves

Involves:

e multi-scale analysis (similar to the optical case described pre-
viously)

e the Dirichlet to Neumann map due to the free surface.



General Hamiltonian Formulation

The general Hamiltonian system:

oru = JDE(u)

becomes equivalent to the nonlinear Schrodinger equation under
the choices:

1 1 1
E(u) = §/ﬂ%n|Vu|2dw—l—E/RnV|u|2d:r:—l—§/nF(|u|2)da:,
O 1
—1 0

E:HIR"C)—R, J: HY(R",C) c H}(R",C) — HY(R",C).

More generally, for X a real Hilbert space, £ : X — R a C2 map
and J: D(J) C X* — X a skew-adjoint operator the formulation
covers a large class of wave equations e.g. Hartree, Dirac, Klein-
Gordon, KdV, NW.
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Gauge Symmetry

The energy is assumed invariant under the action of a continuous
unitary group T'(w) on X i.e.

E(T(wu) = &), T(w)J=JT"(—w), weR.
This leads to a second conserved quantity (besides the energy):

N () = (Buw)

where B : X — X* is self-adjoint and JB extends T'(0).

In the Schrodinger case T(w)u = e~ ™y are rotations in the com-
plex plane and

1 1
N(u) = 5 (u,u) = 5||u||§2.
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General Coherent Structures

are solutions of the form:

uw(t) = T (wt) Yo, Yy € X.

Hence v, satisfies in the weak sense:

JDE(Yw) = wIDN (Yu). (2)

Note that for an one-to-one J the coherent states are critical
points of the & — wN functional.

Hence, variational methods have been successfully used to prove
existence of coherent structures, especially " large” ones.
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Existence of Coherent Structures. The Variational
Method

Particular coherent structures (ground states) are solutions of:

min E
N (¢)=const. (%)

Successful in many problems, produces orbitally stable states,
but it requires sophisticated compactness arguments e.g. con-
centration compactness (P. L. Lions '84), when the constrain N
IS not weakly continuous on X.

Delicate reformulations of the minimization problem are neces-
sary in critical and supercritical regimes when £ has no minimizer
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e.g. large power nonlinearities
F(|u[*) = [u[*PT2, p>2/n
in NLS energy.

In this case one can use a different functional which is bounded
from below (Rose-Weinstein '88):

min Vel + [ VIvPRde + Elul3
||¢||L2p+2=const. L R™ L

or Nehari manifolds, etc...
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Limitations of the Variational Methods

e artsy’, non-systematic, identifies only special coherent states,
minimizers or "mountain pass’ (saddle) points of certain
functionals.

e dO not guarantee smooth dependence on parameters e.g. w.

e if they rely on functionals unrelated to the dynamical invari-
ants they provide no stability information.
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Linear Bound-States in Schrodinger Eq.

Ow(t,z) = (—Ag+V(z))u
u(0,z) = wuo(z)

— A+ V is a self adjoint operator on L2 with domain H2, and V
is a relative compact perturbation of —A. Hence

Spectrum of — A+ V = [0,00) | Jogiscrete

where o4;..rete = {isOlated e-values with finite multiplicity}. Via
Stone’s theorem for ug in L2 :

u(t,x) — 6Z(A—V)tuo — Z e—iwtpqu _I_ e’i(A—V)tPCuO

WEOT discrete
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Linear Evolution and Asymptotic Behavior.

Moreover e(2=VItp_is unitary on L2 but

(A — —n/2
1€ A=VIP g oo < (An[t]) T2 |ug]| ;1

The nonlinear variant of this result is a conjecture:

Asymptotic Completeness Conjecture: Any solution of (1)
eventually converges to a superposition of nonlinear bound-states
and a radiative part which disperses to infinity.

It is only proven for the integrable case n = 1, V = 0, and
f(ul®)u = —|ul?u.
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EXistence of Coherent Structures. The Bifurcation
Methods
Find zeroes of the map:
F:HY(R" C) xR— H Y(R", ),
F(, E) = (=& + V + E)¢ + ol ?Pap,
which is equivariant under the action of O(2), i.e.:

F(e%, E) = YF (4, E),

F(y,E) = F(y, E).

It is Fréchet differentiable over the real Banach spaces:
HYR™, C) &2 HI(R",R) x H}(R",R) — H™Y(R™,R) x H~}(R",R).
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Linearization

For 1) real valued (hence F'(+, E) real valued) we have:

DyF (b, )+ io] = | FH ) O ”u]

0 L_(¢,E) || v
where
Li($,B)[u] = (—A+V 4+ E)u+ (2p+ 1)o||?Pu
L (¢, E)v] = (=A+V + E)v+ oly|*Pv

In particular

Li(0,E)=-A+V+E



Bifurcation Diagram for Ground-States in NLS

Hl

0 ) \ E

where —FEg < 0 is the lowest eigenvalue of the (unbounded) linear
operator —A + V on L2,
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Preliminary Result: The solutions (v g, E) of (??) in a (small)
neighborhood of (0,Ep) € HY(R™) x R where —Ej is lowest e-
value of —A 4+ V (which is simple!) form a two dimensional C1
manifold:

(E,0) — ewwE, 0 <0 < 2w, g real valued,

called the ground-state manifold. Moreover u(t, z) = e £t+i0y (2)
are orbitally stable solutions of (1):

i = (= + V)u + o|ul?Pu.

Questions: How far can we continue this manifold? Are there
any bifurcations along it and/or changes of stability? Are there
other ground-state manifolds not connected to this one?

Note: there are no nontrivial solutions near (0, Ex) for E« > Eqg
since the linear operator —A +V 4+ E4 is an isomorphism.
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Results for Attractive Nonlinearity ¢ < 0O :

o ifzcR, V() =V(—=x), and V is strictly increasing for x > 0
then the ground state branch bifurcating from Egy can be
uniquely continued for all E > Eg (Jeanjean & Stuart '99,
monotonicity methods).

o if V=Vs(x) =V(x1+s,20,...,2n) + V(—z1 + s,20,...,2n)
then there exists sy sufficiently large such that for all s > sy«
the ground state manifold suffers a pitchfork type bifurca-
tion at a finite Ex 2 Eg (KKP '11, see also KKSW '08 and

Heeyeon’s thesis all based on perturbative analysis valid for
small ground states or excited states).
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o ifx e R, V() =V(—x), and V is twice differentiable at x = 0
with V2V (0) < 0 then the ground state manifold suffers a
pitchfork type bifurcation at a finite Ex > Ey (KKP '11,
extends to x € R™).

o if x € R"™ then there is at least one ground state for each
E > Eg (Rose & Weinstein '88, variational methods).

e if V has more than one critical point then there are multipeak
ground states and multiple ground states as E — oo (Dancer
& Yan '01, Aschbacher & all '02, and more recently by T.-C.
Lin, variational methods).
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Global Bifurcation Theory

Topological Degree Method: If

S={(y,E) | F(y,E) =0, ¢ #0}
then

Sop = the connected component of S containing (0, Egp)

either reaches the boundary of the domain where DwF IS Fred-
holm or contains a solution (0, Eq), E1 # Ejp.

The method requires the introduction of a degree for F'(-, F) i.e.
certain compactness properties of the pre-images F_l(bounded set).
Such compactness result are not available for the attractive non-
linearity. For the repelling case see Jeanjean at all '99.
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Analytical Maps Method: If F' is real analytic then the branch
bifurcating from (0, FEp) can be analytically continued until it
forms a loop or reaches the boundary of the domain where DwF
iIs Fredholm. Requires relative compactness of the connected
component of the set of zeroes of F' containing (0, Ep) :

Theorem 1. (compactness): If (¢, ,En) are zeroes of F in the
connected component of (0, Ey) and

(g, Bn) TR (., By)

then there exists a subsequence (Vg ,FEn,) such that
np, k

o iMoo ll¥E, —vYEllg1 =0 and

[ F(¢E*,E*) — O
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New Results (valid in any space dimension):

e No bound-state manifold blows up in L2 (or H!) norm at
finite E. No ground state manifold goes to the left of Ej.

e \We know all ground-state manifolds near £ = oo in terms of
the critical points of the potential provided the latter are all
non-degenerate.

e In some situations we can establish how the ground-state
manifolds near EE = oo connect with the one near E = Ej,
and with each other via bifurcations, hence we can find all
ground-state branches.
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Ground state manifolds near £ = FEg and E = oo for the double
well potential (see Theorems 2 & 3)
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(Almost) all ground state manifolds
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Comments on the Example:

e the full picture depends on how manifolds near the boundary
of the Fredholm domain connect among themselves i.e., in
this example, how each symmetric ground state at £ = o
turns around at certain finite £ and connects to a different
symmetric ground state as it returns to £ = oo; it turns out
that these connections depend on the distance ‘s’ between
wells, see next numerical graph and animated picture thanks
to P. Kevrekidis and J. Lee (UMass):
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Conclusions:

e \We are on the verge of understanding the correlation between
critical points of the potential and the bifurcations along
the ground-state (and excited-state) manifolds. The missing
links are results on how multi-peak solutions, which approach
the same critical point in the limit £ — oo, connect, and
a classification of possible bifurcations in higher dimensions
when a multiple eigenvalue crosses zero.
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e Once all bound-state manifolds have been identified one can
approach the asymptotic completeness conjecture in NLS by
starting with the dynamics near the bifurcation points.

e [ he technique is rather general for Hamiltonian PDE’'s, re-
lying on energy estimates, analysis of the linearized opera-
tor, concentration compactness and properties of the limit-
ing equation (as the parameter approaches a certain limit).
Applications to general nonlinearities in NLS are almost fin-
ished (with V. Sadoveanu). Applications to rotating BEC's
and coupled wave equations are underway.

Thank you!
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