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Networked cyber-physical systems (CPS)

Supply-chain network

Smart city
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Networked cyber-physical systems (CPS)

Supply-chain network

Smart city

To achieve reliable, robust, secure, and efficient performance
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Networked CPS: optimization challenges

Objective: reach optimizers
Path: algorithms with desirable properties Problem

minimize f(x)

subject to x € F
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Networked CPS: optimization challenges

Objective: reach optimizers
Path: algorithms with desirable properties Problem
Challenges:

minimize f(x)
> size X

. subject to x € F
time-scales

>
» perturbations

» uncertainty

» privacy & security

Distributed algorithms:
» continuous-time stability analysis
» optimization theory

» algebraic graph theory
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Networked CPS: challenges

Game theory

Game: strategic scenario

> players: 1,...,n
» actions: x; for player i

> utility: wi(xa,...,xn) for i

Players maximize their utility
Equilibrium x;9, ..., x4

Social welfare

minimize f(x)

subject to x € F

Optimizer x{', ..., x;
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Networked CPS: challenges

Game theory

Objective: reach efficient equilibria

Path: utilities with desirable properties Game: strategic scenario
Challenges: > players: 1,...,n

» predicting x4 » actions: x; for player /

» changing utilities for x°4 = x* > utility: u;(xa,...,x,) for i

» all previous ones

Players maximize their utility
Equilibrium x;9, ..., x4
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Networked CPS: challenges

Game theory

Objective: reach efficient equilibria

Path: utilities with desirable properties Game: strategic scenario
Challenges: > players: 1,...,n

» predicting x4 » actions: x; for player /

» changing utilities for x°4 = x* > utility: ui(x1,...,x,) for i

> all previous ones o o
Players maximize their utility
Dynamic analysis of competition: Equilibrium x;9, ..., x4
behaviour around Nash equilibrium

Social welfare

minimize f(x)

subject to x € F

Optimizer x{', ..., x;
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Electrical power

Objectives:
» balance load and generation

> restore nominal frequency

» guarantee cost efficiency
» satisfy physical constraints
> ensure security & reliability

network
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Traditional approach: hierarchy of controllers

~ 15 min
global level
economic dispatch

~ 1 min
area level
automatic generation

~ 0.1 sec
generator level
droop control

Tertiary Control Dispatch
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Tertiary control/dispatch: future challenges

Current practice:
> generators submit (closed) bids to the ISO

» ISO solves the following problem

Security constrained OPF

mini;nize payment(P)

subjectto P € F

» ISO sends P; to each generator i

ISO/RTO
Competition

Generators

¢ o
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Tertiary control/dispatch: future challenges

Current practice:

. _ 1SO/RTO
> generators submit (closed) bids to the ISO

» |SO solves the following problem Competition

Security constrained OPF ‘ \il }

Generators

mini;nize payment(P)

subjectto P € F

» ISO sends P; to each generator i

Future challenge: Too many generators; shorter time-scales
» how to integrate them into the existing system?

» can we avoid market manipulation, congestion, failures?
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Coordination and competition in dispatch

ISO/RTO

Competition

¢ o0

4
> at the top-level, aggregators compete and R :
at the bottom-level, DERs coordinate \ 5 |
E/ o| ! Q.
/;)ERS . B‘/O
# DERs
.
{

O DERs | Coordination

CAISO. “Expanded metering and telemetry options phase 2 - distributed energy resource provider”, 2015.
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Coordination in Dispatch
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Coordinating the DERs

Economic Dispatch (ED) Problem A
mFin f(P):= Z fi(Pi) DERs
= Coordination

st iP,-:l,,TP:E
i=1

P" <P, <P foralli 1
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Coordinating the DERs

Economic Dispatch (ED) Problem =
min £ (P) - O
P DERs
st 1,P=¢ Coordination

P < P, < PM foralli
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Coordinating the DERs

Economic Dispatch (ED) Problem A
min £ (P) gl O
P DERs
st 1,P=/ Coordination

PP <P <P foralli

Objective: design distributed algorithm Communication network

» solves the ED problem globally » connected network
» able to handle time-varying loads » gen i knows f;; controls P;
» handle plug-n-play » gen i comm. with neighbors
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Laplacian-gradient dynamics

ED Problem

KKT conditions: v*1, = Vf(P*) and 1/P*=/

Consensus dynamics: x = —Lx leads x(t) — v1,
where L is the Laplacian matrix
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Laplacian-gradient dynamics

Laplacian-gradient dynamics

P = —LVf(P)

ED Problem

where

VF(P)T =[VA(PL), ..., Vi (P)]
(Lis p.s.d n x n matrix with 17L = L1, = 0)
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Laplacian-gradient dynamics

Laplacian-gradient dynamics

ED Problem P=-LVi(P)

where

VF(P)T =[VA(PL), ..., Vi (P)]
(Lis p.s.d n x n matrix with 17L = L1, = 0)

Discrete-time algorithm:

» iteration: P(k + 1) = Alg, (P(k))

> trajectory: P(1),P(2),... & P(k) — P*
Continuous-time algorithm:

> iteration: P = Xy14(P)

» evolution: t+— P(t) & P(t) — P*
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Laplacian-gradient dynamics

Laplacian-gradient dynamics

P = —LVf(P)

ED Problem

where

VF(P)T =[VA(PL), ..., Vi(P))]
(Lis p.s.d n x n matrix with 17L = L1, = 0)

» distributed implementation: P; = — djeN: a,-j(Vf-(P-) VHi(Pj))
> load condition conserved: (17 P) = —1]LVf(P) =
» f nonincreasing: %f(P(t)) = —Vf(P)TLVf(P) <0
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Centralized global solution
P= —LVf(P)+%(1:‘ -1)P)1,

» mismatch dynamics: &({—17P)=—((—1]P)
> on load satisfaction, it reduces to Laplacian-gradient dyn
» conv. analysis using refined LaSalle Invaraince (Arsie and Ebenbauer '10)
~ Vi(P) = (¢~ 1] P)
> Vao(P) =£(P)
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How to get a distributed solution?

Laplacian-gradient dyn.

P,' = (—LVf(P)), + 11z

Generation

Load mismatch
levels estimate
Pi,...,Pn 21,22, -5 2Zn

dynamic average consensus (dac)

(] =ren ][0

» Each unit i has estimator
z; € R tracking average
signal t — (¢ =17 P(t))

Interconnected systems

» bottom component estimates
evolving load mismatch given
generation

> top component adjusts
generation levels based on
optimization of objective &
estimate of load mismatch
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Theoretical guarantees of LV+dac dynamics

Theorem (Convergence of LV+dac dynamics)

For o, B,v1,v2 > 0 satisfying an inequality:

1. the P-component of trajectories of LV +dac dynamics starting with
1, v = 0 converge to a solution of the ED problem

2. load-mismatch dynamics is exponentially stable

[A. Cherukuri & J. Cortés, Automatica, 2016]

Performance guarantees (LV+dac dynamics)
» global convergence
» load mismatch dynamics is ISS
» dynamic loads tracked with ultimate bound
>

robust to intermittent generation
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Network optimization

Convex optimization

min  f(x)
st g(x) <0
Ax =b

» Lagrangian: L(x,y,z) = f(x)+y"g(x)+ z"(Ax — b) |
» Primal-dual optimizers < saddle points of L (over R” x RZ  x R™)
> L(xe,y,2) < L(Xe,¥u,2) < L(X, yx, ) forall x, zand y > 0
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Network optimization

Convex optimization

min  f(x)
st g(x) <0
Ax =b

» Lagrangian: L(x,y,z) = f(x)+y"g(x)+ z"(Ax — b) '
» Primal-dual optimizers < saddle points of L (over R” x RZ  x R™)
> L(xe,y,2) < L(Xe,¥u,2) < L(X, yx, ) forall x, zand y > 0

Saddle-point dynamics

. ifa>
X = -V.L(xy,2) [l = {; 'f:—9°rb>°
: otherwise

v =[VyLx,y,2)l)

z=V.L(x,y,z)
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Network optimization

.. n
Convex optimization > additive cost: f(x) =3, fi(xi)
» local constraints:

sl g9 > g depends on some x; and {x;}jen;
st g(x)<0 » (Ax)k depends on some x; and {x;}jen;
Ax =b

» Lagrangian: L(x,y,z) = f(x)+y"g(x)+ z"(Ax — b)
» Primal-dual optimizers < saddle points of L (over R” x RZ  x R™)
> L(xe,y,2) < L(Xe,¥u,2) < L(X, yx, ) forall x, zand y > 0

Saddle-point dynamics

X = —Vil(x,y,2) [a];:{; 'f329°rb>°
. otherwise

Yy = [VYL(X7y7Z)]}J/r

z=V,L(x,y,z)

This dynamics is distributed for additive cost and local constraints!
When does this dynamics converge?
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Network optimization

.. n
Convex optimization > additive cost: f(x) =3, fi(xi)
» local constraints:

sl g9 > g depends on some x; and {x;}jen;
st g(x)<0 » (Ax)k depends on some x; and {x;}jen;
Ax =b

» Lagrangian: L(x,y,z) = f(x)+y"g(x)+ z"(Ax — b)
» Primal-dual optimizers < saddle points of L (over R” x RZ  x R™)
> L(xe,y,2) < L(Xe,¥u,2) < L(X, yx, ) forall x, zand y > 0

Saddle-point dynamics

X = —Vil(x,y,2) [a];:{; 'f329°rb>°
. otherwise

Yy = [VYL(X7y7Z)]}J/r

z=V,L(x,y,z)

[A. Cherukuri & B. Gharesifard & J. Cortés, SICON, 2017]
[A. Cherukuri & E. Mallada & J. Cortés, SCL, 2016]
[A. Cherukuri & E. Mallada & S. Low & J. Cortés, TAC, 2018]
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Data-driven distributed optimization
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Problem statement

Stochastic Optimization

inf Ep[f(x,¢)]
xERA

» f:RY X R™ = R, (x,€) = f(x,€)
» continuously differentiable
» convex-concave in (x, &)

> uncertainty & with prob. dist. P (unknown)
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Problem statement

Stochastic Optimization {&o, - 6} (6r.65)
inf Ep[f(x,&)]
x€ERI
» F:RIXR™ 5 R, (x,€) = f(x,8) (6.6} {6}

» continuously differentiable
» convex-concave in (x, &)

> uncertainty & with prob. dist. P (unknown) 6 dads}

Multiagent setup:
> n agents, communicating via an undirected graph (V, €)
» each agent gathers i.i.d samples collected in g,-, g,- n /E\j =0

> total data = = U}’Ilgi = {gk}ﬁlzl
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Problem statement

Stochastic Optimization {&o, - 6} (6r.65)
inf Ep[f(x,&)]
x€ERI
» F:RIXR™ 5 R, (x,€) = f(x,8) (6.6} {6}

» continuously differentiable
» convex-concave in (x, &)

> uncertainty & with prob. dist. P (unknown) 6 dads}

Multiagent setup:
> n agents, communicating via an undirected graph (V, €)
» each agent gathers i.i.d samples collected in g,-, g,- NS =
> total data = = U"_,=; = {EKN_

Goal for agents: find, in a distributed manner, approximate optimizer Xy € R
having guaranteed performance bounds
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Background: Data-driven stochastic optimization

f:R"xR™ — R cont. diff.
& ~ P (unknown)
> N i.idsamples = := {Ek}Q’Zl are given XiennngJP’[f(X, 3]

» =isar.v,; support (R™N and dist. PN

v

Stochastic Optimization

v
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Background: Data-driven stochastic optimization

f:R"xR™ — R cont. diff.
& ~ P (unknown)
N i.i.d samples = := {Ek}Q’Zl are given xien]lngP[f(X’ 3]

» =isar.v,; support (R™N and dist. PN

v

Stochastic Optimization

v

v

Goal: find a (data-driven) solution Xy having:

» finite-sample guarantee:
P (sl (o, )] < ) > 18

Jy is the certificate and 1 — f is the reliability (3 € (0,1))

» tractability: solving for Xy is a convex program
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Background: Ambiguity sets and DRO

Approach:
» find an ambiguity set 73,\/ of prob. dist. that contains P with high prob.
» solve the distributionally robust optimization (DRO)

Jy = inf sup Eg[f(x,€)]
xeR Q673N
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Background: Ambiguity sets and DRO

Approach:
» find an ambiguity set Py of prob. dist. that contains P with high prob.
» solve the distributionally robust optimization (DRO)

Iy = inf sup Eg[f(x,&)]
x€eR QEﬁN

Proposition (Adapted from Esfahani & Kuhn '17)

Let P € M(R™), dist. with finite second moment. Let Py := %22’:1 Ok

Puv 1= Bey()(Pn) = {Q € M(R™) | dw, (Bw, Q) < en(B)}-

Then, we have PN(P € Py) > 1— .

—1y\ 1 4, -1
(= )) [t e > gl ),
EN(,B) =

log(c; 871\ 1/2 : log(c; 571)
(B =) if N < el ),
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Background: Ambiguity sets and DRO

Approach:
» find an ambiguity set Py of prob. dist. that contains P with high prob.
» solve the distributionally robust optimization (DRO)

Iy = inf sup Eg[f(x,&)]
x€eR QE'ﬁN

Theorem (Finite-sample guarantee)

Let P € M(R™) be a light-tailed distribution and 3 € (0,1). Let
Pn = Bey(s)(Pn). Then, the finite-sample guarantee holds:

P (Eelf (o, €)] < Jw) > 1- 5.
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Background: Ambiguity sets and DRO

Approach:
» find an ambiguity set Py of prob. dist. that contains P with high prob.
» solve the distributionally robust optimization (DRO)

Iy = inf sup Eg[f(x,&)]
x€eR QEﬁN

Theorem (Tractability (Adapted from Esfahani & Kuhn '17))

In addition to the previous hypotheses, assume f to be convex-concave. Then,
solving DRO is same as

N
ot D)+ > maxcear (Fo €)= Xl = E4P) }.
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Distributed reformulation

Data-driven centralized problem

N
nf Do+ %g maxeczn (F(x,€)=Allg — €I ) *)

Distributed problem: agent i’s estimates x' and \’

2 T
min 6N(:B)ln )\v

X3 Av=>0n n

1 - Vi Vi k2
+N;maxﬁem¢m<f(x =N E-EF)

subject to LA, =0, and (L®ly)x = 0n

(Here x, = (x% ... x"), Ay = (M5 .. A™)
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Lagrangian and its augmented version

N

> maxeern (F(x,€) = X4 - €12

k=1
+r LA+ (L@ lg)x

2 1 DW
6N(ﬁ) n 4

L(XV7 )\va v, 77) =
n
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Lagrangian and its augmented version

N

> maxeern (F(x,€) = X4 - €12

k=1
+ LA + 7T (L@ lg)x,

2 1 DW
6N(ﬁ) n +

L(XV7 )\Vﬂ V7 77) =
n

Zero-duality gap:

inf sup L(xy, A\v,v,m) =sup inf  L(x, Ay, v,n).

X0, Av >0, v,m v,n XA >0,
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Lagrangian and its augmented version

N

> maxeern (F(x,€) = X4 - €12

k=1
+ LA + 7T (L@ lg)x,

2 ()11 N,
6N(ﬁ) n +

L(XV7)\V3V7 77) = n

Zero-duality gap:

inf L(xy, A = inf  L(x,A .
Mo, SO Arm) =i, il HO A )

Augmented Lagrangian: (for better convergence properties)

1 1
Laug(Xva Avs an) = L(XV7 Avs v, 7]) + EX\;F(L ® Id)Xv + EA\/TL)‘V
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Lagrangian and its augmented version

N

> maxcern (£(x*,€) = A€ — &)

k=1
+r A +1 (L@ lg)x

2 T
L(XV7)\V,V, n) = EN(/‘@%)\V +

Zero-duality gap:

inf sup L(xy, A\v,v,m) =sup inf  L(x, Ay, v,n).

X0, Av >0, v,m v,n %A >0,

Augmented Lagrangian: (for better convergence properties)

1 1
Lawg(Xv, Avs 1) i= L(x, Av, v, m) + EX\;F(L ® lg)x, + EAVTL)\V

Lemma (Lagrangians have same saddle points)

(X, Ay, v*,n*) saddle point of L over (R x R%,) x (R""") if and only
if saddle point of L., over same domain
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Modified Lagrangian

Get rid of the inner maximization

Lawg(Xus Avs v, 1) = maxgery Zaug(x\,7 Ao, v, 1, {€F))

where

. 217N |
Lusg o 1641) = WO S (e )y - 247)

k=1

1 1
+ v LA+ (L@ lg)x, + 5xVT(L ® lg)x, + EAVTLA\,
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Modified Lagrangian

Get rid of the inner maximization

Lawg(Xus Avs v, 1) = maxgery Zaug(x\,7 Ao, v, 1, {€F))
Saddle points of L, exists implying

miny, x,>0, MaXy,y Lag(Xv:Av, v, ) = max,, , minyg x>0, Laug(Xv; Avs 25 7)

Substituting

Miny, x>0, MaXy,, MaXexy Laug(-) = max,,,, miny, »,>o0, maxgexy Laug(+)
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Modified Lagrangian

Get rid of the inner maximization

Laug(xv’ sV, 1) = max ek} Za“g(XW Avs V510, {gk})
Saddle points of L, exists implying

minx\,,)\vzon maXy, n Laug(XVaAV7 v, 77) = max, , minxv,)\VZO,, Laug(xw /\V7 v, 77)

Interchange and now,

Miny, x>0, Max, , (ek} Laug(*) = mMax, ) (ex) Ming, x>0, Laug(*)

Proposition (Correspondence between optima and saddle points)

IF (x5, AL v*, ™, {(€%)%}) is saddle point of Laug over A, > 0,, then
(X7, Ay, v, m*) is primal-dual opt of (xx)
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Distributed algorithm
Saddle-point dynamics for Zaug is distributed

dxy 7

E = _va Laug(Xva )\Vy V7 777 {gk})
dX, v

dt = [—VAV Laug(XV7 >\v7 1/7 7]7 {Ek})]i_v

dv -

E = vyLaug(Xv, )\v; v,n, {Ek})

dn ¥

E = anaug(Xva )\V7 v, {gk})

dek ~ k
F = v£kLaug(XVa Av, v,n, {5 })7 Vk € {1’ Tt N}

Theorem (Asymptotic convergence)

Assume 3 primal-dual opt. (x;, \J,v",n") with \j # 0. Then, starting from
Av(0) > 0,, trajectory converges asymptotically to saddle point of Laug over
Av > 0, and (x, Av, v, m) converges to primal-dual optimizer

[A. Cherukuri & J. Cortés, TAC, Submitted 2018]
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Summary

In this talk:
» hierarchical dispatch framework

» coordination of DERs in dispatch

Aggregators/DERPs

—0O '

» data-driven distributed optimization
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Summary

1SO/RTO

In this talk:

» hierarchical dispatch framework
» coordination of DERs in dispatch

! Aggregators/DERPs

» data-driven distributed optimization

Future work:
» energy-efficient implementations of distributed algorithms
» data-driven chance-constrained optimization

> finite and streaming data guarantees
> distributed implementation
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system

Intelligent transportation

Coordination

Infrastructure entities

] Ueers V2V and V2| communication
A4
users | Competition

» For human driven vehicles
> infrastructure entities coordinate and users compete

» For autonomous vehicles
» infrastructure entities as well as users (vehicles) coordinate

Research directions:
» design of incentives using data: information or pricing

» data-driven coordination of traffic lights, ramp meters, variable speed limits
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Thank you: Questions or Comments?
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