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Networked cyber-physical systems (CPS)

Energy network

Supply-chain network

Transportation network

Smart city

To achieve reliable, robust, secure, and efficient performance
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Networked CPS: optimization challenges

Objective: reach optimizers
Path: algorithms with desirable properties

Challenges:

I size

I time-scales

I perturbations

I uncertainty

I privacy & security

Distributed algorithms:

I continuous-time stability analysis

I optimization theory

I algebraic graph theory

Problem

minimize
x

f (x)

subject to x ∈ F
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Networked CPS: challenges

Game theory

Objective: reach efficient equilibria
Path: utilities with desirable properties
Challenges:

I predicting xeq

I changing utilities for xeq = x∗

I all previous ones

Dynamic analysis of competition:
behaviour around Nash equilibrium

Game: strategic scenario

I players: 1, . . . , n

I actions: xi for player i

I utility: ui (x1, . . . , xn) for i

Players maximize their utility
Equilibrium xeq1 , . . . , xeqn

Social welfare

minimize
x

f (x)

subject to x ∈ F

Optimizer x∗1 , . . . , x
∗
n
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Electrical power network

Objectives:

I balance load and generation

I restore nominal frequency
I guarantee cost efficiency
I satisfy physical constraints
I ensure security & reliability
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Traditional approach: hierarchy of controllers

Tertiary Control Dispatch

Secondary Control Secondary
Control

Primary
Control

Primary
Control

Primary
Control

∼ 0.1 sec
generator level
droop control

∼ 1 min
area level

automatic generation

∼ 15 min
global level

economic dispatch

6/26



Tertiary control/dispatch: future challenges

Current practice:

I generators submit (closed) bids to the ISO

I ISO solves the following problem

Security constrained OPF

minimize
P

payment(P)

subject to P ∈ F

I ISO sends Pi to each generator i

ISO/RTO

Generators

Competition

Future challenge: Too many generators; shorter time-scales

I how to integrate them into the existing system?

I can we avoid market manipulation, congestion, failures?
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Coordination and competition in dispatch

I at the top-level, aggregators compete and
at the bottom-level, DERs coordinate

ISO/RTO

DERs

DERs

DERs

Aggregators

Coordination

Competition

CAISO. “Expanded metering and telemetry options phase 2 - distributed energy resource provider”, 2015.
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Coordination in Dispatch
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Coordinating the DERs

Economic Dispatch (ED) Problem

min
P

f (P) :=
n∑

i=1

fi (Pi )

s.t
n∑

i=1

Pi = 1>n P = `

Pm
i ≤ Pi ≤ PM

i , for all i

DERs

Coordination

1n =


1
1
...
1


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Coordinating the DERs

Economic Dispatch (ED) Problem

min
P

f (P)

s.t 1>n P = `

Pm
i ≤ Pi ≤ PM

i , for all i

DERs

Coordination

Objective: design distributed algorithm

I solves the ED problem globally

I able to handle time-varying loads

I handle plug-n-play

Communication network

I connected network

I gen i knows fi ; controls Pi

I gen i comm. with neighbors
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Laplacian-gradient dynamics

ED Problem

min f (P)

s.t 1>n P = `

Laplacian-gradient dynamics

Ṗ = −L∇f (P)

where

∇f (P)> = [∇f1(P1), . . . , ∇fn(Pn)]

(L is p.s.d n × n matrix with 1>n L = L1n = 0)

KKT conditions: ν∗1n = ∇f (P∗) and 1>n P
∗ = `

Consensus dynamics: ẋ = −Lx leads x(t)→ ν1n

where L is the Laplacian matrix
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ED Problem

min f (P)

s.t 1>n P = `

Laplacian-gradient dynamics

Ṗ = −L∇f (P)

where

∇f (P)> = [∇f1(P1), . . . , ∇fn(Pn)]

(L is p.s.d n × n matrix with 1>n L = L1n = 0)

Discrete-time algorithm:

I iteration: P(k + 1) = Algk(P(k))

I trajectory: P(1),P(2), . . . & P(k)→ P∗

Continuous-time algorithm:

I iteration: Ṗ = XAlg(P)

I evolution: t 7→ P(t) & P(t)→ P∗
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Laplacian-gradient dynamics

ED Problem

min f (P)

s.t 1>n P = `

Laplacian-gradient dynamics

Ṗ = −L∇f (P)

where

∇f (P)> = [∇f1(P1), . . . , ∇fn(Pn)]

(L is p.s.d n × n matrix with 1>n L = L1n = 0)

I distributed implementation: Ṗi = −∑j∈Ni
aij(∇fi (Pi )−∇fj(Pj))

I load condition conserved: d
dt (1>n P) = −1>n L∇f (P) = 0

I f nonincreasing: d
dt f (P(t)) = −∇f (P)>L∇f (P) ≤ 0
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Centralized global solution

Ṗ = −L∇f (P)+
1

n
(`− 1>n P)1n

0

0.5

10 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

I mismatch dynamics: d
dt (`− 1>n P) = −(`− 1>n P)

I on load satisfaction, it reduces to Laplacian-gradient dyn

I conv. analysis using refined LaSalle Invaraince (Arsie and Ebenbauer ’10)

I V1(P) = (`− 1>n P)2

I V2(P) = f (P)
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How to get a distributed solution?

Laplacian-gradient dyn.

Ṗi = (−L∇f (P))i + ν1zi

dynamic average consensus (dac)[
ż
v̇

]
= A(α, β)

[
z
v

]
+ ν2

[
`er − P

0

]

I Each unit i has estimator
zi ∈ R tracking average
signal t 7→ 1

n (`− 1>n P(t))

Interconnected systems

I bottom component estimates
evolving load mismatch given
generation

I top component adjusts
generation levels based on
optimization of objective &
estimate of load mismatch

Load mismatch
estimate

z1, z2, . . . , zn

Generation
levels

P1, . . . ,Pn
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Theoretical guarantees of L∇+dac dynamics

Theorem (Convergence of L∇+dac dynamics)

For α, β, ν1, ν2 > 0 satisfying an inequality:

1. the P-component of trajectories of L∇+dac dynamics starting with
1>n v = 0 converge to a solution of the ED problem

2. load-mismatch dynamics is exponentially stable

[A. Cherukuri & J. Cortés, Automatica, 2016]

Performance guarantees (L∇+dac dynamics)

I global convergence

I load mismatch dynamics is ISS

I dynamic loads tracked with ultimate bound

I robust to intermittent generation
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Network optimization

Convex optimization

min f (x)

s.t g(x) ≤ 0

Ax = b

I Lagrangian: L(x , y , z) = f (x) + y>g(x) + z>(Ax − b)
I Primal-dual optimizers ⇔ saddle points of L (over Rn × Rp

≥0 × Rm)
I L(x∗, y , z) ≤ L(x∗, y∗, z∗) ≤ L(x , y∗, z∗) for all x , z and y ≥ 0

Saddle-point dynamics

ẋ = −∇xL(x , y , z)

ẏ = [∇yL(x , y , z)]+y

ż = ∇zL(x , y , z)

[a]+b =

{
a if a ≥ 0 or b > 0

0 otherwise

This dynamics is distributed for additive cost and local constraints!
When does this dynamics converge?

[A. Cherukuri & B. Gharesifard & J. Cortés, SICON, 2017]
[A. Cherukuri & E. Mallada & J. Cortés, SCL, 2016]

[A. Cherukuri & E. Mallada & S. Low & J. Cortés, TAC, 2018]
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Data-driven distributed optimization
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Problem statement

Stochastic Optimization

inf
x∈Rd

EP[f (x , ξ)]

I f : Rd × Rm → R, (x , ξ) 7→ f (x , ξ)
I continuously differentiable
I convex-concave in (x , ξ)

I uncertainty ξ with prob. dist. P (unknown)

Multiagent setup:

I n agents, communicating via an undirected graph (V, E)

I each agent gathers i.i.d samples collected in Ξ̂i , Ξ̂i ∩ Ξ̂j = ∅
I total data Ξ̂ = ∪ni=1Ξ̂i = {ξ̂ k}Nk=1

{ξ1, ξ2}

{ξ3, ξ4, ξ5}

{ξ6}

{ξ7, ξ8)
{ξ9, . . . , ξN}
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I total data Ξ̂ = ∪ni=1Ξ̂i = {ξ̂ k}Nk=1

{ξ1, ξ2}

{ξ3, ξ4, ξ5}

{ξ6}

{ξ7, ξ8)
{ξ9, . . . , ξN}

Goal for agents: find, in a distributed manner, approximate optimizer x̂N ∈ Rd

having guaranteed performance bounds
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Background: Data-driven stochastic optimization

I f : Rn × Rm → R cont. diff.

I ξ ∼ P (unknown)

I N i.i.d samples Ξ̂ := {ξ̂ k}Nk=1 are given

I Ξ̂ is a r.v.; support (Rm)N and dist. PN

Stochastic Optimization

inf
x∈Rd

EP[f (x , ξ)]

Goal: find a (data-driven) solution x̂N having:

I finite-sample guarantee:

PN
(
EP[f (x̂N , ξ)] ≤ ĴN

)
≥ 1− β

ĴN is the certificate and 1− β is the reliability (β ∈ (0, 1))

I tractability: solving for x̂N is a convex program
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Background: Ambiguity sets and DRO

Approach:

I find an ambiguity set P̂N of prob. dist. that contains P with high prob.

I solve the distributionally robust optimization (DRO)

ĴN := inf
x∈Rn

sup
Q∈P̂N

EQ[f (x , ξ)]
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I find an ambiguity set P̂N of prob. dist. that contains P with high prob.

I solve the distributionally robust optimization (DRO)

ĴN := inf
x∈Rn

sup
Q∈P̂N

EQ[f (x , ξ)]

Proposition (Adapted from Esfahani & Kuhn ’17)

Let P ∈M(Rm), dist. with finite second moment. Let P̂N := 1
N

∑N
k=1 δξ̂ k ,

P̂N := BεN (β)(P̂N) = {Q ∈M(Rm) | dW2(P̂N ,Q) ≤ εN(β)}.

Then, we have PN(P ∈ P̂N) ≥ 1− β.

εN (β) :=


(

log(c1β
−1)

c2N

)1/max{4,m}
, if N ≥ log(c1β

−1)
c2

,(
log(c1β

−1)
c2N

)1/a
, if N <

log(c1β
−1)

c2
.
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I find an ambiguity set P̂N of prob. dist. that contains P with high prob.

I solve the distributionally robust optimization (DRO)

ĴN := inf
x∈Rn

sup
Q∈P̂N

EQ[f (x , ξ)]

Theorem (Finite-sample guarantee)

Let P ∈M(Rm) be a light-tailed distribution and β ∈ (0, 1). Let

P̂N = BεN (β)(P̂N). Then, the finite-sample guarantee holds:

PN
(
EP[f (x̂N , ξ)] ≤ ĴN

)
≥ 1− β.
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Background: Ambiguity sets and DRO

Approach:

I find an ambiguity set P̂N of prob. dist. that contains P with high prob.

I solve the distributionally robust optimization (DRO)

ĴN := inf
x∈Rn

sup
Q∈P̂N

EQ[f (x , ξ)]

Theorem (Tractability (Adapted from Esfahani & Kuhn ’17))

In addition to the previous hypotheses, assume f to be convex-concave. Then,
solving DRO is same as

inf
λ≥0,x

{
λε2N(β) +

1

N

N∑
k=1

maxξ∈Rm

(
f (x , ξ)− λ‖ξ − ξ̂ k‖2

)}
.
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Distributed reformulation

Data-driven centralized problem

inf
λ≥0,x

{
λε2N(β)+

1

N

N∑
k=1

maxξ∈Rm

(
f (x , ξ)−λ‖ξ − ξ̂k‖2

)}
(?)

Distributed problem: agent i ’s estimates x i and λi

min
xv,λv≥0n

ε2N(β)1>n λv

n
+

1

N

N∑
k=1

maxξ∈Rm

(
f (xvk , ξ)−λvk ‖ξ − ξ̂k‖2

)
subject to Lλv = 0n and (L⊗ Id)xv = 0nd

(??)

(Here xv = (x1; . . . ; xn), λv = (λ1; . . . ;λn))
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Lagrangian and its augmented version

L(xv, λv, ν, η) :=
ε2N(β)1>n λv

n
+

N∑
k=1

maxξ∈Rm

(
f (xvk , ξ)− λvk‖ξ − ξ̂k‖2

)
+ ν>Lλv + η>(L⊗ Id)xv

Zero-duality gap:

inf
xv,λv≥0n

sup
ν,η

L(xv, λv, ν, η) = sup
ν,η

inf
xv,λv≥0n

L(xv, λv, ν, η).

Augmented Lagrangian: (for better convergence properties)

Laug(xv, λv, ν, η) := L(xv, λv, ν, η) +
1

2
x>v (L⊗ Id)xv +

1

2
λ>v Lλv

Lemma (Lagrangians have same saddle points)

(x∗v , λ
∗
v , ν
∗, η∗) saddle point of L over (Rnd × Rn

≥0)× (Rn+nd) if and only
if saddle point of Laug over same domain
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inf
xv,λv≥0n

sup
ν,η

L(xv, λv, ν, η) = sup
ν,η

inf
xv,λv≥0n

L(xv, λv, ν, η).

Augmented Lagrangian: (for better convergence properties)

Laug(xv, λv, ν, η) := L(xv, λv, ν, η) +
1

2
x>v (L⊗ Id)xv +

1

2
λ>v Lλv

Lemma (Lagrangians have same saddle points)

(x∗v , λ
∗
v , ν
∗, η∗) saddle point of L over (Rnd × Rn

≥0)× (Rn+nd) if and only
if saddle point of Laug over same domain
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Modified Lagrangian

Get rid of the inner maximization

Laug(xv, λv, ν, η) = max{ξk} L̃aug(xv, λv, ν, η, {ξk})

where

L̃aug(xv, λv, ν, η, {ξk}) :=
ε2N(β)1>n λv

n
+

N∑
k=1

(
f (xvk , ξk)−λvk‖ξk − ξ̂k‖2

)
+ ν>Lλv + η>(L⊗ Id)xv +

1

2
x>v (L⊗ Id)xv +

1

2
λ>v Lλv
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Modified Lagrangian

Get rid of the inner maximization

Laug(xv, λv, ν, η) = max{ξk} L̃aug(xv, λv, ν, η, {ξk})

Saddle points of Laug exists implying

minxv,λv≥0n maxν,η Laug(xv,λv, ν, η) = maxν,η minxv,λv≥0n Laug(xv, λv, ν, η)

Substituting

minxv,λv≥0n maxν,η max{ξk} L̃aug(·) = maxν,η minxv,λv≥0n max{ξk} L̃aug(·)
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Modified Lagrangian

Get rid of the inner maximization

Laug(xv, λv, ν, η) = max{ξk} L̃aug(xv, λv, ν, η, {ξk})

Saddle points of Laug exists implying

minxv,λv≥0n maxν,η Laug(xv,λv, ν, η) = maxν,η minxv,λv≥0n Laug(xv, λv, ν, η)

Interchange and now,

minxv,λv≥0n maxν,η,{ξk} L̃aug(·) = maxν,η,{ξk}minxv,λv≥0n L̃aug(·)

Proposition (Correspondence between optima and saddle points)

If ((x∗v , λ
∗
v , ν
∗, η∗, {(ξ∗)k}) is saddle point of L̃aug over λv ≥ 0n, then

(x∗v , λ
∗
v , ν
∗, η∗) is primal-dual opt of (??)
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Distributed algorithm
Saddle-point dynamics for L̃aug is distributed

dxv
dt

= −∇xv L̃aug(xv, λv, ν, η, {ξk})
dλv
dt

= [−∇λv L̃aug(xv, λv, ν, η, {ξk})]+λv

dν

dt
= ∇ν L̃aug(xv, λv, ν, η, {ξk})

dη

dt
= ∇ηL̃aug(xv, λv, ν, η, {ξk})

dξk

dt
= ∇ξk L̃aug(xv, λv, ν, η, {ξk}), ∀k ∈ {1, . . . ,N}

Theorem (Asymptotic convergence)

Assume ∃ primal-dual opt. (x∗v , λ
∗
v , ν
∗, η∗) with λ∗v 6= 0. Then, starting from

λv(0) ≥ 0n, trajectory converges asymptotically to saddle point of L̃aug over
λv ≥ 0n and (xv, λv, ν, η) converges to primal-dual optimizer

[A. Cherukuri & J. Cortés, TAC, Submitted 2018]
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Summary

In this talk:

I hierarchical dispatch framework

I coordination of DERs in dispatch

I data-driven distributed optimization

ISO/RTO

DERs

DERs

DERs

Aggregators/DERPs

Future work:

I energy-efficient implementations of distributed algorithms

I data-driven chance-constrained optimization
I finite and streaming data guarantees
I distributed implementation
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Intelligent transportation system

. . .

. . .

. . .

Users

Users

Users

Infrastructure entities

Competition

Coordination

V2V and V2I communication

I For human driven vehicles
I infrastructure entities coordinate and users compete

I For autonomous vehicles
I infrastructure entities as well as users (vehicles) coordinate

Research directions:

I design of incentives using data: information or pricing

I data-driven coordination of traffic lights, ramp meters, variable speed limits
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Thank you: Questions or Comments?
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