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Abstract—TD learning and its refinements are powerful tools In the special case of network scheduling and routing, it
for approximating the solution to dynamic programming prob- s known that the dynamic programming equations for the
lems. However, the techniques provide the approximate solion .~ htinuous-time model are closely related to the corresimn

only within a prescribed finite-dimensional function class Thus, - . . . . .
the question that always arises iow should the function class equations for the discrete-time model. This relationshég h

be chosen? The goal of this paper is to propose an approach P€en developed by one of the authors 1§][ [12], [2]] and

for TD learning based on choosing the function class using th the monographZ1]. Moreover, the fluid value function has
solutions to associated fluid and diffusion approximationsIn  peen used as part of a basis in the approximate dynamic
orde_r to illustrate thi_s new apprpach, the paper focuses on @ programming approaches oPd], [22]. In this paper we
application to dynamic speed scaling for power management. demonstrate that the solution to the dynamic programming

Keywords: Nonlinear control, adaptive control, machine larning, ~ €quations for the fluid, diffusion, and discrete-time mscdeie

optimal stochastic control, dynamic speed scaling. closely related in more general classes of models.
AMS subject classifications: Primary: 93E35, 49J15, 93C40 In order to provide a concrete illustration of the proposed
Secondary: 65C05, 93820 68M20 55 oximation techniques, the paper considers an exarfple o
|. INTRODUCTION stochastic control problem from the area of power managemen

Stochastic dynamic programming and, specifically, coin computer systems. Specifically, an important tradeoff in
trolled Markov chain models (MDPs) have become centralodern computer system design is between reducing energy
tools for evaluating and designing communication, computa&isage and maintaining good performance (small delays). To
and network applications. These tools have grown in pofitis end, an important technique d@ynamic speed scaling
ularity as computing power has increased; however, evgf), [36], [34], [13], which dynamically adjusts the processing
with increasing computing power, it is often impossible tspeed in response to changes in the workload — reducing
attain exact solutions. This is due to the so-called “curfse @ncreasing) the speed in times when the workload is small
dimensionality”, which refers to the fact that the comptexi (large). Dynamic speed scaling is now common in many chip
of dynamic programming equations often grows exponegtialflesigns, e.g.7], [1], and network environments, e.g. switch
with the dimension of the underlying state space. fabrics [L7], wireless communication3p], [8], and TCP

However, the “curse of dimensionality” is slowly dissolgin offload enginesq3]. Further, dynamic speed scaling has been
in the face of approximation techniques such as Q-learnidg athe focus of a growing body of analytic researc, [[5],
TD-learning R€], [6], [10]. These techniques are designed tfl1], [31]. Sec.lll provides the details about the speed scaling
approximate a solution to a dynamic programming equatiomodel and reviews related literature.
within a prescribed finite-dimensional function class. Avke For purposes of this paper, dynamic speed scaling is simply
determinant of the success of these techniques is theiseleca stochastic control problem — a single server queue with
of this function class. The question of how to select aa controllable service rate — and the goal is to understand
appropriate basis has been considered in specific conéegts, how to control the service rate in order to minimize the total
[27], [16]. However, despite the progress so far, determiningpst, which is a weighted sum of the energy cost and the
the appropriate function class for these techniques Isxstiite delay cost. In this context, this paper will illustrate how t
of an art than a science. use the solutions of the fluid and diffusion models in order

The goal of this paper is to illustrate that a useful functioto apply TD learning to determine an approximately optimal
class can be attained by solving the dynamic programmipglicy for control. Fluid and diffusion models for the dynam
equation for a highly idealized approximate model. Specifspeed scaling problem are analyzed in S&t. The results
cally, a useful function class is obtained by first consingct of applying TD learning to the speed scaling problem are
a fluid or diffusion approximation of the MDP model, andllustrated in Sec.V. These results highlight the usefulness
solving the corresponding dynamic programming equation fof the fluid and diffusion solutions for TD learning.
the simpler system. Fig. 1 illustrates the results obtained using TD learning in



' . , B. The fluid and diffusion models
3 100k —— Approximate relative value function /2" Ve ) ) ) . i
R e tocton The fluid model associated with the MDP model is defined
p'vm,w_’}(_"l.— S et I by the following mean flow equations,
: o La(t) = flz(t),u),  x(0)€X,
. ?gﬁ“" """ o where u evolves onU, and f(z,u) = E[f(z,u, W(1))].
e e " The generator for the fluid model is defined similarly. Given

Fig. 1: Simulation results for the dynamic speed scale madiil quadratic u(O) = U :C(O) =

cost. The plot on the left shows estimates of the coefficientthe optimal

approximation ofh* using the basis obtained from the fluid and diffusion DFuh (ZC) = %h(x(t))’ =Vh (95) : f(iU, U) 4)
models (seeJ6)). In the plot on the right the final approximatidw‘* is ) t:O- ) ) )
compared to the fluid value function and the relative valugcfion. The associated Total Cost Optimality Equation (TCOE) is
min (c(z,u) + D J* (z)) =0 (5)
u

this application. The three plots compared in the figure lae t; is solved with the value function,
fluid value function/* appearing in the Total Cost Optimality .
Equation b), the relative value function* appearing in the J*(x) = mf/ c(z(t), u(t)) dt, z(0)=zeX, (6)
Average Cost Optimality EquatiorB), and the approximate “ Jo
value function obtained from the TD learning algorithm. Therovided J* is finite valued, which requires assumptions on
basis obtained from analysis of the fluid and diffusion medethe cost and dynamics. Under these assumptions the optimal
results in a remarkably tight approximation fof. policy is any minimizer,

Although the paper focuses in large part on the application - . S
of TD learning to the dynamic speed scaling problem, the o (@) € arginm(c(z’u) +DuJ (x)) (7)
approach presented in this paper is general. The use of fluig,, many models, e.g. queueing networks, the applicability

and diffusion approximations to provide an appropriatéhasy the fluid model can be justified through a scaling argument
for TD learning is broadly applicable to a wide variety ofjmijar to the following: For a large initial condition, and

stochastic control problems. over a long time horizon, the sample paths of the stochastic
model can be approximated by a solution to the fluid model
. equations. Based on this approach, techniques have been
A. Markov Decision Processes (MDPs) developed that provide easily verified stability conditidior
In this paper we will consider the following general MDPstochastic networks based on the analysis of the fluid model.
model. LetX = RY denote the state space for the model. The Similar scaling arguments can be used to show #tHais
action space is denotéd In addition there is an i.i.d. processapproximated by/*. For history and further results se21].
W evolving onR" that represents a disturbance process. Felowever, this approaciails in the example considered in
a given initial conditionX (0) € X, and a sequendg evolving the current paper because the input is not bounded. Thus we
on U, the state procesX evolves according to the recursionneed a different motivation for considering the fluid model.
Here, motivation for approximate models comes from a Taylor
X(t+1) = X(O)+ f(X(),U@), W(t+1)), t>0. (1) series expansion. In particular, if the fluid value functidh
We restrict to inputs that are defined by a (possibly raf Smooth then we have the approximation,
domized) stationary policy. This defines a Markov Decision D, J* (x) ~ Ez_’u[VJ*(X(O))(X(l) _ X(O))]
Process (MDP) with controlled transition law U ()T (8)
- (l’)f(.%‘, u)
Pu(x,A) =Pl + f(z,u, W(1)) € A}, A € B(X). where the subscript indicates expectation conditional on
ni’(o) =z, U(0) = u. That is, D, J* ~ D;,J*, where the
pproximation depends on the smoothness of the funcotion
In the example treated in SebB/-A we obtain precise error
Dyh (2):=E[h(X (t+1))—h(X (¢))|X (t) = 2,U(t) = u] (2) bounds which illustrate thai* almost solves the ACOE for
) . _ the stochastic model.
A cost functione: X x U — R, is given, and our goal is 10 giffusion model is obtained similarly. We again choose its
find an optimal control based on this cost function. We foCYg hamics to reflect the behavior of the discrete-time model.
on the average cost problem, with associated Average Cegtcapture the state space constraint we opt for a reflected
Optimality Equation (ACOE): diffusion, defined by the Ito equation:

Il. PRELIMINARIES

We let D, denote the generator in discrete time. For a
functionh: R — R,

min(e(x, u) + Duh" (x)) = 7" @) ax) =FX@),U®)dt + o(U®)AN(t) + dI(t), (9)

The ACOE is a fixed point equation in thelative value where the proces®V is a standard Brownian motion dR’
functionh*, and the optimal cost for the MDF*. and I is a reflection process. That is, for eath< i < ¢,



the process/; is non-decreasing and is minimal subject teconditions on the Markov chain this is expressed as the
the constraint thafX;(¢) > 0 for eacht and eachi. This is conditional expectation,
captured through the sample path constraint,

Tpx—1

b Zc(x)=E c(X(t)) — X(0)==x
[ xann -0 1<i<e 10 () [;u () = 1 | X(0) = o]
0
For more on reflected diffusions se&d]. yvherex is any_flxed state with non-zero steady-state pro_bab|l—
In the dynamic speed scaling model we find that the ACOIE(’ andrg_ﬁ* > 1 is thg first entrance tl_me. The representat_lo_n of
2 is obtained in a Hilbert space setting, based on the adjbint o

associated with the diffusion model is approximately SdlVeZ. Let L, denote the usual Hilbert space of square-integrable

by a perturbation off*. This depends, of course, on the choic ; L -
of the variance terna-2(u) in (9). In Sec.IV-B we argue that ?uncgoLns, Ii/zzltttri]nmg?rdggo:tgct(r{éggdBinEt[géX(i?/Ze)g(X(O))]’
this should be chosen based on a second-order Taonr—seltié% z 9 J 9 ’

approximation of the ACOE for the primary discrete-time 2 = (Ze,bi) = (¢, ZTy)

model, much like the first-order Taylor series approxinmatio_ o ) ) )
(8) that motivated the generator for the fluid model. This representauon is useful for estmatlon because tjurad
can be expressed in terms of the stationary process on the two

C. TD learning sided time axis{X(t) : —oco < t < co}. Let 7. denote the

) . " . C
TD learning is a technique for approximating value funclf';lSt time prior to ¢ = 0 thatz* was visited. Then, for any

tions of MDPs within a linearly parameterized class. f € Ly with meanr; we have,
Specifically, we define{y); : 1 < i < d} as real-valued 7 (2) = E X (1)) — ‘X 0) =
functions onX and we leth” = > r;y; or, with ¢p: X — (@) [ Z FX®) = ng | X(0) }
R? the vector of basis functiong,” = r™). Suppose that a
stationary policyy is applied to the MDP model, and that theorovided the expectation exists and is finite-valued.
resulting Markov chain is ergodic with stationary marginal To estimate: we define the sequence eligibility vectors
w. Let h denote the solution to Poisson’s equatifph = B .
h — cg 4+ ng where Py(x, dy) = Py, (x,dy) is the resulting p(t+1) =) + {X(1) # 27 HP(X (1) — 0w (*)
transition law for the chairg,(x) = c(x, ¢(x)) is the cost as wherep(0) = (X (0)), andn, () the sample mean af. We
a function of state for this policy, angl, is the average cost. then define,
TD learning then takes the mean-square error criterion:

Er[(hCX () = 1 (X)) =} [ (o) ~ 17 (@) n(do).
Hence the optimal parameter satisfies the fixed point equati

Ex[(h(X(0)) — h"(X(0)))(X(0)] = 0. (11)

T« <t<0

1

|

T T
S = 2 S SXEWXD), 1= D X))
=1 t=1

N|=

Jhe LSTD learning algorithm for average cost defines esti-
mates ofr* in (12) via,

rr = EEIZT
In the rest of this section we assume that the control is fix
to beg(x). We usec(z) to denote the cost function,(x) and

E to denote the expectation under this stationary policy. [1l. POWER MANAGEMENT VIA SPEED SCALING

The TD are LSTD learning algorithms are techniques for This paper proposes a general technique for choosing a basis

computing the optimal parameter. we refer_ the fe"%def % 1D learning. However, in order to ground the proposed
Chapter 11 of 21] for details of the LSTD learning algorithm approach, we focus on a specific example of a stochastic

“Seq in the numerical results_ d_escribed in this paper aegntrol problem that is of particular importance to modern
provide only a high-level description of the LSTD algonthrq:Omputer system desigdynamic speed scaling
here. : '

When the parameterization is linear therl)(implies that
the optimal parameter can be expressed

eI‘Fﬂs is consistent providegt and h are square integrable.

Dynamic speed scaling is an increasingly common approach
to power management in computer system design. The goal
is to control the processing speed so as to optimally balance
=12 with ¥ = E,[(X(0))(X(0))] energy and delay costs - reducing (increasing) the speed in

+ = E (X (0)h(X (0)] (12) times when the workload is small (large).
T ' We model the dynamic speed scaling problem as a a single
The matrix¥ can be estimated using sample path averagesrver queue with controllable service rate. Specificailg,
of {¢(X(¢))¥(X(t))'}. The same is true for, following a assume that jobs arrive to a single processor and are peatess
transformation. at a rate determined by the current power. The primary model

This transformation requires some machinery: First, it is described in discrete time: For eath- 0,1,2,... we let
known that the solution to Poisson’s equation can be expdessA(t) denote the job arrivals in this time sldd,(¢) the number
h = Zc, whereZ is thefundamental kernelUnder appropriate of jobs awaiting service, ant'(¢) the number of services. It



is assumed thadl is i.i.d. Hence the MDP model is describedA. The fluid model
as the controlled random walk, The fluid model corresponding to the speed scaling model

QU+1)=QE) —UW®) +At+1), t>0 (@13 (I isgvenby:

d
This is an MDP model of the formlj with X = Q. The ard(t) = —ult) + o, (17)
cost function we consider balances the cost of delay with thgherea is the mean ofd(t), and the controk(¢) and buffer
energy cost associated with the processing speed: contentsq(¢) are assumed to be non-negative valued.
It is assumed here that the cost function vanishes at the
o(z,u) = = + fP(u), (14) " equilibrium¢(t) = 0, u(#) = «. In this case the total cost’

whereP denotes the power required as a function of the spe@@fined in @) is finite for eache. The infimum in ) is over all
u, and 8 > 0. This form of cost function is common in thefeasibleu. Feasibility means that(t) > 0 for eacht, and the
literature, e.g.,11], [5], [31]. resulting state trajectoryg is also non-negative valued. In this

The remaining piece of the model is to define the form &ection we consider two classes of normalized cost funstion
P — an appropriate form is highly application dependent. In Polynomial cost ¢(x,u) = = + B([u — a] )@
this paper, we _consu_nler two particular application areaer_wh Exponential coste(z, u) = = + e — 5], (18)
speed scaling is an important approach: processor desijn an
wireless transmission. where [-]. = max(0, -), and the parameter§, x,o are
In the domain of processor design, prior literature hapsitive. The normalization is used to ensure #ata) = 0.
typically assumedP is a polynomial, specifically a cubic. Observe that the cost is also zero for< o whenz = 0.
That is because the dynamic power of CMOS is proportiondpwever, it can be shown that thethat achieves the infimum
to V2f, whereV is the supply voltage and is the clock in (6) is never less than.
frequency ]5. Operating at a higher frequency requires We now return to §) to show that the fluid value function
dynamic voltage scaling (DVS) to a higher voltage, nominallprovides a useful approximation to the solution to the ayera
with V' o f, yielding a cubic relationship. However, recen€ost optimality equations. We construct a cost functidthat
work, e.g. B1], has found that the dynamic power usage gipproximates;, along with a constany® > 0 such thatJ~
real chips is well modeled by a polynomial scaling of speeghtisfies the ACOE for this cost function:
:ﬁigz\g;, Vt?/:tt::lz:polynowal is closer to quadratic. Thus, i Oggp{g@(z,u) P (2)) = (@) + 1. (19)

P(u) o< u? (15)  This construction is based on the two error functions,

wherep > 1, but we often focus on the case of= 2. E(x,u) = c(x,u) — J*(x) + P,J" (x)

In the case of wireless transmissions, the form7ifu) E(z) = min E(z,u) (20)
differs significantly. In particular, considering an adcht Osusa
white Gaussian noise modeidd] gives, for somex > 0, The constant)® € R, is arbitrary, and the perturbation of the

cost function is defined as
P(u) x e (16)

) ) ) ) (z,u) = e(x,u) — E(x) +1°
There is a large literature on the dynamic speed scaling

problem, beginning with Yao et al3f]. Much of the work Based on the definition &, we conclude thatl(d) is satisfied.
focuses on models with either fixed energy budg@g, [[7], To demonstrate the utility of this construction it remaios t
[35] or job completion deadline2f], [3]. In the case where obtain bounds on the difference betweeand .

the performance metric is the weighted sum of energy andWe begin with some structural results for the fluid value
delay costs (as in the current paper), a majority of the reseafunction. Proofs are omitted due to lack of space. Note that
is in a deterministic, worst-case setting],[[5]. Most closely part (i) is obtained from bounds on the “Lambg¥t function”
related to the current paper arél], [31], which consider [14].

the MDP described above. However, neither of these PaP®i$position 1. For any of the cost functions defined (h8),

consider either the fluid or diffusion approximations of thg,e fid value function* is increasing, convex, and its second
speed scaling model; nor do they discuss the application dgrivativeVQJ* is non-increasing. Moreover,

TD learning. (i) For polynomial cost the value function and optimal policy
IV. APPROXIMATE MODELS are given by, respectively,
In this section we study the fluid and diffusion approxi- JHz) = et e ( 1 )Q—El 21)
mations of the speed scaling model describedlif).(The 20— 1\f(o—1)

solutions to these approximate models will later serve as th Y
basis for applying TD learning to determine an approxinyatel o () )) ¢ +a, zeR,. (22)

x
optimal control of the speeds. (/3(9 -1



(i) For exponential cost the value function satisfies thejives V2J*(z) = O(1/y/z). The bound 25 then gives
following upper and lower bounds: On settify= ge"*  £(z) = O(V/x). O
and & = x — [, there are constantg’_,C, such that,

whenevers > 5(62 4 1), Lemma4 is an extension to the case of exponential cost.

There is no space here for a proof.
~2

R xZ
_+ = < JH(x) < Oy + —=i? Lemma 4. For exponential cost{18), with 5 = 1, we have
2e(3 log(%) — (ke + 1) 265 E(x) < rlog(x)? for all x sufficiently large. For such: we
Part (i) of the above proposition exposes a connectitiavec(r,u) < c°(x,u) — n° + log(z)2. O

between the fluid control policy and prior results about spee

scaling obtained in the literature on worst-case algor#herg.  Hence, for quadratic or exponential cost, the fluid value
[5]. In particular, the optimal fluid control corresponds to gunction J* can be interpreted as the relative value function
speed scaling scheme that is known to have a small competitigr a cost function that approximategr, u).
ratio.

Next, we can derive a lower bound on the differeacec> B. The diffusion model
relatively easily. We next consider the diffusion model introduced ). (
We motivate the model using the second order Taylor series
approximation 24). This continuous-time model will be used
Proof: Convexity of J* gives the bound, to obtain additional insight regarding the structurehof

* * * The ACOE for the diffusion model is similar to the total
J t+1))—-J t)) >VJ t)) - t+1)—Q(t
Q¢+ 1)) QW) 2 VIHQM) - (@t +1) - Q1)) cost DP equation for the fluid model:

Lemma 2. £(x,u) > 0 everywhere, giving > ¢° — n°.

Consequently, for each € R, ,u € Ry we have the lower

bound, min{c(z, u) + Duh” (x)} = 1" (26)
P,J"(x) = J"(x) + Ez o [T (Q(1)) — J*(Q(0))] wheren* is the average cost* is called the relative value
> J*(2) + Ex.o [V (Q(0)) - ((Q(1)) — Q(0))] function, andD,, denotes the usual differential generator. This
— J*(z) + VI (2) - (—u + ) is defined forC* functionsg: R, — R via,
2
From the definition 20) this gives, Dyg (z) = dig (@)(—u+a) + %Uz(u)%g (2)
X X
E(z,u) 2 ez,u) + VI (2) - (~u+ a) However, for areflecteddiffusion the domain of the differen-
Non-negativity follows from the TCOES]. o tial generator is restricted to tho&& functions satisfying the

) . boundary condition,
Further, we can derive an upper bound ©r ¢° in two

simple steps. We first write, dig(x) -0 (27)
X =0
E(w) < E(z, ¢ () (23) This is imposed so that the reflection term vanishes in the Ito

where ¢ (z) is the optimal policy for the fluid model given formula:

in (7). Next we apply the second order Mean Value Thoerem d
to bound€. GivenQ(0) = z andU(0) = u we haveQ(1) = dg(Q(1)) = fo(Q(t), U(?)) dt + U(U(t))@
x —u + A(1). For some random variabl@ betweenz and with f, (2, 1) = Dug ().

v —u+ A(1) we have The variance term is selected so that the action of the
Dy J* (z) :=Ey o[ J*(Q(1)) — J*(Q(0))] differential generator on a smooth function will be simitar
— VJ (2) - (—u+ ) (24) that of the discrete generator. The second order Tayloesseri

+3E[VPT"(Q) - (—u+ A(1))?] expansion Z4) suggests the value:

2 _ 21 .2 2
Propositionl states that the second derivative .6f is non- 0" (u) = E[(u — A(1))"] = u” = 2au +m3,
increasing. Hence we can combirizd( with (23) to obtain,

9(Q))dN (t)

wherem? is the second moment of(1). We adopt this form

E(z) < LE[V2I* (2 — 67 (2)) - (0™ (2) + A(1))?] . (25) in the remainder of this section.
Further, for the remainder of the section, we restrict to the
Lemma 3 provides an implication of this bound in thecase of quadratic cost:

special case of quadratic cost.

. 1 c(z,u) =z + 3u?, (28)
Lemma 3. For polynomial cost(18) with o = 2, 8 = 3, we

have&(z) = O(y/z), and hence:(z,u) < ¢°(z,u) + O(y/x). In this case the minimizer in2¢) is given by,

Proof: The optimal policy is given in 32), giving .« Vh*(z) +aV2h*(x)
o™ (x) = O(y/z) in this special case. The formul21) ¢"(@)= 14+ V2h*(z)

(29)
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Fig. 2: The convergence of value iteration for the quadreist function 28).
The error||hn+1 — hnl| converges to zermuch fasterwhen the algorithm
is initialized using the fluid value function.

It can be shown that* is convex. Consequently, subject to th
boundary conditionq7), it follows that ¢*(x) > 0 for each
x. Substituting 29) into (26) gives the fixed point equation
(aV2h* +Vh*)2
2o+ vene)
Although the cost functior2®) does not satisfy(0, «) = 0,
the TCOE b) for the fluid model admits the solution,

J*(x) = az + 32z + a?)3? — o)

T+ aVh* + im4 V2" — (30)

(31)

Furthermore, the functioh®(z) = J*(x)+ 4 approximately
solves the dynamic programming equation for the diffusion.
fact, it is straightforward to show thaf («) solves the ACOE
for the diffusion exactly under a modified cost function:

1
®(x,u) = e(z,u) + 3
wherec? =m? — a2, andy := (2z + o?)%. The constant®
is again arbitrary. Regardless of its value, the optimalaye
cost ofc® is equal ton°. It is also easy to see that’ (z, u) —
¢(x,u)| is uniformly bounded over and w.
The only issue that remains is the fact th&{z) does not
satisfy the boundary conditior2{) since
Vhe(zx) T 200+ 3.
This gap is resolved through an additional perturbatioec8p
ically, fix ©# > 0, and introduce the decaying exponential,

h°® = h°(z) — (2a + &)de™/?

The gradient vanishes at the origin following this perttidra
This function solves the ACOE for the diffusion for a functio
¢®° which retains the property that*°(z,u) — c(z,u) is
uniformly bounded.

Based on this form we are motivated to enlarge the ba
to approximate the relative value function wigh = J* and

i (z) = .

V. EXPERIMENTAL RESULTS

In this section we present results from experiments cog;,

ducted for the speed scaling model described in Sedtion
Each of the value function approximations used in the

experiments were based on insights obtained from the flu

and diffusion models.

In all of the numerical experiments described here thealrriv
processA is a scaled geometric distribution,

A(t) = AaG(t),  t>1, (32)

where Ay > 0 and G is geometrically distributed on

{0,1,...} with parametep 4. The mean and variance df(¢)
are given by, respectively,
pa 2 Y2 2
my =A , 04 = ———=A%. 33
A A 1— pA A (1 — pA)Q A ( )

A. Value iteration

We begin by computing the actual solution to the average
cost optimality equation using value iteration. This po®s
€ .
a reference for evaluating the proposed approach for TD
learning. We restrict to the special case of the quadratit co
function given in £8) due to limited space. The arrival process
is taken of the form32), with p4 = 0.96 and A4 chosen so

that the meamn 4 is equal to unity:

1l=maqa=A4 and AA=1/24 (34)

1—pa
The state space is truncated for practical implementation
of value iteration. In the experiments that follow we take
X ={Agm:m =0,..., Ny} with N, = 480. The model
becomes,

QUE+1)=[Q)-U®)+ At + 1),

where[ - | represents projection to the interyé) 20], andU ()
is restricted to non-negative integer multiples/vof; .

Let V,, denote thesth value function obtained. The approx-
imate solution to the ACOE at stage is taken to be the
normalized value functiotk, (z) = V,,(z) — V,,(0), € X.
The convergence ofh,,} to h* is illustrated in Fig.2. The
comparison of/* andh* shown in Fig.1 was computed using
this algorithm. Shown in Fig3 is the optimal policy and
the (c, J*)-myopic policy, ¢’ (z) = argming,, <, {c(z,u) +
P,J* (z)}. -

t>0,

1601 Stochastic optimal policy
1401

120

........ Fluid optimal policy

xT

20

§;:|i§- 3: The optimal policy compared to the, J*)-myopic policy for the
quadratic cost function2g).

B. TD learning

We are now ready to apply TD learning to approximate
e relative value function in the case of a specific policy.
The policies considered here are taken to be the following
?%mslation of the optimal policy for the fluid model,

(z) = [min(z, 6™ (x))],

=
>



where herer is restricted to the lattice on whicQ evolves, The policy iteration algorithm (PIA) is a method to construc

and |a| indicates the nearest point on this lattice foe R,.. an optimal policy through the following steps. The algaritis

In the next section we show how to combine TD learning ariditialized with a policy¢” and then the following operations

policy improvement in order to determine an approximatebre performed in théth stage of the algorithm:

optimal solution. (i) Given the policy ¢*, find the solutionh* to Poisson’s
We consider only polynomial costs due to space constraint%quationpwhk = h*—cp+nr, wherecg (z) = c(z, ¢F (z)),

Additionally, we maintain the arrival distribution defindly  andy, is the average cost.

(39, and the specificatiops = 0.96 used in the previous (jiy Update the policy viagk+!(z) € argmin, {c(z,u) +

subsection. We consider several values’of to investigate  p p* (2)}.

the impact of varianc_e on the estimation algorithm. In order to combine TD learning with PIA, the TDPIA
We take the following as the basis for TD learning algorithm considered replaces the first step with an appdica
bi(@) = J*(x), Po(z) =1, x> 0. (36) of the LSTD algorithm, resulting in an approximatiari*

to the functionh*. The policy in (ii) is then taken to be

In the special case of quadratic cost, witly, u) = = + Ju?, ¢F+1(z) € argmin, {c(z,u) + P,h™%(z)}.

this choice is motivated by the diffusion approximations-pr

sented in SedV-B. We begin with results in this special case.

Recall that the case of quadratic costs models the scenfario o st Average cost at stage 7

speed scaling in microprocessors. -

The fluid value function/* associated with the quadratic
cost function 28) is given in @1). Fig. 1 shows a result
obtained after 100,000 iterations of the LSTD algorithmeTh L
initial condition was taken to be(0) = (0,0)". The value 2}
of the coefficientr; corresponding to); = J* was found
to be close to unity. Hence the approximate relative value ) ) ) ) )
function A" is approximated by/*, wherer* is the final Fig. 5: Simulation result for TDPIA with the quadratic cosnttion £8), and

basis , ={J*, z}.
value obtained from the LSTD algorithm. This conclusion is fon vz =470

plainly illustrated in Fig.1 where a plot of the function" We illustrate this approach in the case of the quadratic cost
is compared to the fluid value functiofi and the solution to ¢, ion (89), using the basis given ir86). The initial policy
the ACOER". ) ) ) was taken to bep’(r) = min(z,1), * > 0. Fig. 5 shows

We next turn to a different polynomial cost function. Aspe estimated average cost in each of the twenty iteratiéns o

a contrasting example we choose8 with 0 = 15 and e gigorithm. The algorithm results in a policy that is hear
B = o~ '. Shown on the left hand side of Fig. are plots optimal after just a few iterations.
showing the evolution of the parameter estimates based on

the LSTD algorithm with basis3g). The policy applied was VI. CONCLUDING REMARKS
the translation of the optimal policy for the fluid model give
in (35). Shown on the right hand side is a comparison of thﬁ
resulting approximation to Poisson’s equation, and thed flu
value function 21).

5 10 15 20 25 n

The main message of this paper is that idealized models
uid and diffusion approximations) are useful choices whe
determining the function class for TD learning. This appitoa

is applicable for control synthesis and performance approx

. mation of Markov models in a wide range of applications. The
— ::Z:.::::z:e;remm.on W motivation for this approach is a simple Taylor series argnm

that can be used to bound the difference between the relative
value functionh* and the fluid value functiod™®. Further, this

0 t‘#"’;\"’"’w?;(n,f B appro_ximation can be r.efir?ed using a diffusion model.

L B To illustrate the application of this approach for TD learn-
ing, this paper focuses on a power management problem:

: ¢ ° : oot s+ & s owowowow o o= dynamic speed scaling. This application reveals that this

Fig. 4: The experiment illustrated in Fig.was repeated for the cost function approach to approximation yields results that are reméykab

c(w,u) =@+ [u—ali?/15. accurate. In particular, numerical experiments revediatl (i)

value iteration initialized using the fluid approximatiasults

in much faster convergence, and (ii) policy iteration ceudpl

with TD learning quickly converges to an approximately epti
So far, the TD learning algorithm was used to compute amal policy when the fluid and diffusion models are considered

approximation of the relative value function for the specifiin the construction of a basis. Further, the results stuglttie

policy given in @5). In this section, we construct a policyfluid model provided an interesting connection to worstecas

using TD learning and policy improvement. analyses of the speed scaling problem.

C. TD learning with policy improvement



Immediate extensions of this work to Q learniridg], [29]
and to approximate dynamic programming based on linea
programming @], [10] are currently under investigation.
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