
Approximate Dynamic Programming using Fluid and Diffusion

Approximations with Applications to Power Management

Wei Chen∗, Dayu Huang∗, Ankur Kulkarni‡, Jayakrishnan Unnikrishnan∗, Quanyan Zhu∗,
Prashant Mehta†, Sean Meyn∗, and Adam Wierman§
∗Dept. of ECE and CSL, UIUC, Urbana, IL 61801, U.S.A.

†Dept. of MSE and CSL, UIUC, 1206 W. Green Street, Urbana, IL 61801
‡Dept. of Industrial and Enterprise Sys Engg (IESE), UIUC, 104 S. Mathews Avenue, Urbana, IL 61801

§Dept. of CS, California Inst. of Tech.. 1200 E. California Boulevard. Pasadena, CA, 91125.

Abstract—TD learning and its refinements are powerful tools
for approximating the solution to dynamic programming prob-
lems. However, the techniques provide the approximate solution
only within a prescribed finite-dimensional function class. Thus,
the question that always arises ishow should the function class
be chosen? The goal of this paper is to propose an approach
for TD learning based on choosing the function class using the
solutions to associated fluid and diffusion approximations. In
order to illustrate this new approach, the paper focuses on an
application to dynamic speed scaling for power management.

Keywords: Nonlinear control, adaptive control, machine learning,
optimal stochastic control, dynamic speed scaling.
AMS subject classifications: Primary: 93E35, 49J15, 93C40

Secondary: 65C05, 93E20 68M20

I. I NTRODUCTION

Stochastic dynamic programming and, specifically, con-
trolled Markov chain models (MDPs) have become central
tools for evaluating and designing communication, computer,
and network applications. These tools have grown in pop-
ularity as computing power has increased; however, even
with increasing computing power, it is often impossible to
attain exact solutions. This is due to the so-called “curse of
dimensionality”, which refers to the fact that the complexity
of dynamic programming equations often grows exponentially
with the dimension of the underlying state space.

However, the “curse of dimensionality” is slowly dissolving
in the face of approximation techniques such as Q-learning and
TD-learning [26], [6], [10]. These techniques are designed to
approximate a solution to a dynamic programming equation
within a prescribed finite-dimensional function class. A key
determinant of the success of these techniques is the selection
of this function class. The question of how to select an
appropriate basis has been considered in specific contexts,e.g.
[27], [16]. However, despite the progress so far, determining
the appropriate function class for these techniques is still more
of an art than a science.

The goal of this paper is to illustrate that a useful function
class can be attained by solving the dynamic programming
equation for a highly idealized approximate model. Specifi-
cally, a useful function class is obtained by first constructing
a fluid or diffusion approximation of the MDP model, and
solving the corresponding dynamic programming equation for
the simpler system.

In the special case of network scheduling and routing, it
is known that the dynamic programming equations for the
continuous-time model are closely related to the corresponding
equations for the discrete-time model. This relationship has
been developed by one of the authors in [19], [12], [20] and
the monograph [21]. Moreover, the fluid value function has
been used as part of a basis in the approximate dynamic
programming approaches of [28], [22]. In this paper we
demonstrate that the solution to the dynamic programming
equations for the fluid, diffusion, and discrete-time models are
closely related in more general classes of models.

In order to provide a concrete illustration of the proposed
approximation techniques, the paper considers an example of a
stochastic control problem from the area of power management
in computer systems. Specifically, an important tradeoff in
modern computer system design is between reducing energy
usage and maintaining good performance (small delays). To
this end, an important technique isdynamic speed scaling
[4], [36], [34], [13], which dynamically adjusts the processing
speed in response to changes in the workload — reducing
(increasing) the speed in times when the workload is small
(large). Dynamic speed scaling is now common in many chip
designs, e.g. [2], [1], and network environments, e.g. switch
fabrics [17], wireless communication [32], [8], and TCP
offload engines [23]. Further, dynamic speed scaling has been
the focus of a growing body of analytic research [3], [5],
[11], [31]. Sec.III provides the details about the speed scaling
model and reviews related literature.

For purposes of this paper, dynamic speed scaling is simply
a stochastic control problem – a single server queue with
a controllable service rate – and the goal is to understand
how to control the service rate in order to minimize the total
cost, which is a weighted sum of the energy cost and the
delay cost. In this context, this paper will illustrate how to
use the solutions of the fluid and diffusion models in order
to apply TD learning to determine an approximately optimal
policy for control. Fluid and diffusion models for the dynamic
speed scaling problem are analyzed in Sec.IV. The results
of applying TD learning to the speed scaling problem are
illustrated in Sec.V. These results highlight the usefulness
of the fluid and diffusion solutions for TD learning.

Fig. 1 illustrates the results obtained using TD learning in

J
∗

h

xn

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Approximate relative value function

Fluid value function

0 1 2 3 4 5 6 7 8 9 10 x 10
4

−2

−1

0

1

2

3

4

h
∗

Relative value function

Fig. 1: Simulation results for the dynamic speed scale modelwith quadratic
cost. The plot on the left shows estimates of the coefficientsin the optimal
approximation ofh∗ using the basis obtained from the fluid and diffusion
models (see (36)). In the plot on the right the final approximationhr

∗

is
compared to the fluid value function and the relative value function.

this application. The three plots compared in the figure are the
fluid value functionJ∗ appearing in the Total Cost Optimality
Equation (5), the relative value functionh∗ appearing in the
Average Cost Optimality Equation (3), and the approximate
value function obtained from the TD learning algorithm. The
basis obtained from analysis of the fluid and diffusion models
results in a remarkably tight approximation ofh∗.

Although the paper focuses in large part on the application
of TD learning to the dynamic speed scaling problem, the
approach presented in this paper is general. The use of fluid
and diffusion approximations to provide an appropriate basis
for TD learning is broadly applicable to a wide variety of
stochastic control problems.

II. PRELIMINARIES

A. Markov Decision Processes (MDPs)

In this paper we will consider the following general MDP
model. LetX = R

ℓ
+ denote the state space for the model. The

action space is denotedU. In addition there is an i.i.d. process
W evolving onR

w that represents a disturbance process. For
a given initial conditionX(0) ∈ X, and a sequenceU evolving
on U, the state processX evolves according to the recursion,

X(t+1) = X(t)+ f(X(t), U(t),W (t+1)), t ≥ 0. (1)

We restrict to inputs that are defined by a (possibly ran-
domized) stationary policy. This defines a Markov Decision
Process (MDP) with controlled transition law

Pu(x,A) := P{x+ f(x, u,W (1)) ∈ A}, A ∈ B(X).

We let Du denote the generator in discrete time. For any
functionh : R → R,

Duh (x):=E[h(X(t+1))−h(X(t))|X(t) = x, U(t) = u] (2)

A cost functionc : X × U → R+ is given, and our goal is to
find an optimal control based on this cost function. We focus
on the average cost problem, with associated Average Cost
Optimality Equation (ACOE):

min
u

(

c(x, u) + Duh∗ (x)
)

= η∗ (3)

The ACOE is a fixed point equation in therelative value
functionh∗, and the optimal cost for the MDPη∗.

B. The fluid and diffusion models

The fluid model associated with the MDP model is defined
by the following mean flow equations,

d
dtx(t) = f(x(t), u(t)), x(0) ∈ X,

where u evolves on U, and f(x, u) := E[f(x, u,W (1))].
The generator for the fluid model is defined similarly. Given
u(0) = u, x(0) = x,

DF
uh (x) = d

dth(x(t))
∣

∣

∣

t=0
= ∇h (x) · f(x, u). (4)

The associated Total Cost Optimality Equation (TCOE) is

min
u

(

c(x, u) + DF
uJ

∗ (x)
)

= 0 (5)

It is solved with the value function,

J∗(x) = inf
u

∫ ∞

0

c(x(t), u(t)) dt, x(0) = x ∈ X, (6)

providedJ∗ is finite valued, which requires assumptions on
the cost and dynamics. Under these assumptions the optimal
policy is any minimizer,

φF∗(x) ∈ argmin
u

(

c(x, u) + DF
uJ

∗ (x)
)

(7)

In many models, e.g. queueing networks, the applicability
of the fluid model can be justified through a scaling argument
similar to the following: For a large initial condition, and
over a long time horizon, the sample paths of the stochastic
model can be approximated by a solution to the fluid model
equations. Based on this approach, techniques have been
developed that provide easily verified stability conditions for
stochastic networks based on the analysis of the fluid model.

Similar scaling arguments can be used to show thath∗ is
approximated byJ∗. For history and further results see [21].
However, this approachfails in the example considered in
the current paper because the input is not bounded. Thus we
need a different motivation for considering the fluid model.
Here, motivation for approximate models comes from a Taylor
series expansion. In particular, if the fluid value functionJ∗

is smooth then we have the approximation,

DuJ∗ (x) ≈ Ex,u

[

∇J∗(X(0))(X(1) −X(0))
]

= ∇J∗ (x)f (x, u)
(8)

where the subscript indicates expectation conditional on
X(0) = x, U(0) = u. That is,DuJ∗ ≈ DF

uJ
∗, where the

approximation depends on the smoothness of the functionJ∗.
In the example treated in Sec.IV-A we obtain precise error
bounds which illustrate thatJ∗ almost solves the ACOE for
the stochastic model.

A diffusion model is obtained similarly. We again choose its
dynamics to reflect the behavior of the discrete-time model.
To capture the state space constraint we opt for a reflected
diffusion, defined by the Ito equation:

dX(t) = f(X(t), U(t))dt+ σ(U(t))dN(t) + dI(t), (9)

where the processN is a standard Brownian motion onRℓ

and I is a reflection process. That is, for each1 ≤ i ≤ ℓ,

the processIi is non-decreasing and is minimal subject to
the constraint thatXi(t) ≥ 0 for eacht and eachi. This is
captured through the sample path constraint,

∫ ∞

0

Xi(t) dIi(t) = 0, 1 ≤ i ≤ ℓ (10)

For more on reflected diffusions see [30].
In the dynamic speed scaling model we find that the ACOE

associated with the diffusion model is approximately solved
by a perturbation ofJ∗. This depends, of course, on the choice
of the variance termσ2(u) in (9). In Sec.IV-B we argue that
this should be chosen based on a second-order Taylor-series
approximation of the ACOE for the primary discrete-time
model, much like the first-order Taylor series approximation
(8) that motivated the generator for the fluid model.

C. TD learning

TD learning is a technique for approximating value func-
tions of MDPs within a linearly parameterized class.

Specifically, we define{ψi : 1 ≤ i ≤ d} as real-valued
functions onX and we lethr =

∑

riψi or, with ψ : X →
R
d the vector of basis functions,hr = rTψ. Suppose that a

stationary policyφ is applied to the MDP model, and that the
resulting Markov chain is ergodic with stationary marginal
π. Let h denote the solution to Poisson’s equationPφh =
h− cφ + ηφ wherePφ(x, dy) = Pφ(x)(x, dy) is the resulting
transition law for the chain,cφ(x) = c(x, φ(x)) is the cost as
a function of state for this policy, andηφ is the average cost.
TD learning then takes the mean-square error criterion:

1
2Eπ[(h(X(0))− hr(X(0)))2] := 1

2

∫

(h(x) − hr(x))2 π(dx).

Hence the optimal parameter satisfies the fixed point equation,

Eπ[(h(X(0)) − hr(X(0)))ψ(X(0)] = 0. (11)

In the rest of this section we assume that the control is fixed
to beφ(x). We usec(x) to denote the cost functioncφ(x) and
E to denote the expectation under this stationary policy.

The TD are LSTD learning algorithms are techniques for
computing the optimal parameter. We refer the reader to
Chapter 11 of [21] for details of the LSTD learning algorithm
used in the numerical results described in this paper and
provide only a high-level description of the LSTD algorithm
here.

When the parameterization is linear then (11) implies that
the optimal parameter can be expressed

r∗ = Σ−1z with Σ = Eπ[ψ(X(0))ψ(X(0))T]

z = Eπ[ψ(X(0))h(X(0))].
(12)

The matrixΣ can be estimated using sample path averages
of {ψ(X(t))ψ(X(t))T}. The same is true forz, following a
transformation.

This transformation requires some machinery: First, it is
known that the solution to Poisson’s equation can be expressed
h = Zc, whereZ is thefundamental kernel. Under appropriate

conditions on the Markov chain this is expressed as the
conditional expectation,

Zc (x) = E

[

τx∗−1
∑

t=0

[c(X(t)) − η]
∣

∣

∣
X(0) = x

]

wherex∗ is any fixed state with non-zero steady-state probabil-
ity, andτx∗ ≥ 1 is the first entrance time. The representation of
z is obtained in a Hilbert space setting, based on the adjoint of
Z. Let L2 denote the usual Hilbert space of square-integrable
functions, with inner product〈f, g〉 = E[f(X(0))g(X(0))],
f, g ∈ L2. LettingZ† denote the adjoint ofZ gives,

zi = 〈Zc, ψi〉 = 〈c, Z†ψi〉

This representation is useful for estimation because the adjoint
can be expressed in terms of the stationary process on the two-
sided time axis,{X(t) : −∞ < t < ∞}. Let τ−x∗ denote the
last time prior to t = 0 that x∗ was visited. Then, for any
f ∈ L2 with meanηf we have,

Z†f (x) = E

[

∑

τ−

x∗
<t≤0

[f(X(t)) − ηf]
∣

∣

∣
X(0) = x

]

provided the expectation exists and is finite-valued.
To estimatez we define the sequence ofeligibility vectors,

ϕ(t+ 1) = ϕ(t) + I{X(t) 6= x∗}(ψ(X(t)) − ηψ(t))

whereϕ(0) = ψ(X(0)), andηψ(t) the sample mean ofψ. We
then define,

ΣT =
1

T

T
∑

t=1

ψ(X(t))ψT(X(t)) , zT =
1

T

T
∑

t=1

c(X(t))ϕ(t)

The LSTD learning algorithm for average cost defines esti-
mates ofr∗ in (12) via,

rT = Σ−1
T zT

This is consistent providedψ andh are square integrable.

III. POWER MANAGEMENT VIA SPEED SCALING

This paper proposes a general technique for choosing a basis
for TD learning. However, in order to ground the proposed
approach, we focus on a specific example of a stochastic
control problem that is of particular importance to modern
computer system design:dynamic speed scaling.

Dynamic speed scaling is an increasingly common approach
to power management in computer system design. The goal
is to control the processing speed so as to optimally balance
energy and delay costs – reducing (increasing) the speed in
times when the workload is small (large).

We model the dynamic speed scaling problem as a a single
server queue with controllable service rate. Specifically,we
assume that jobs arrive to a single processor and are processed
at a rate determined by the current power. The primary model
is described in discrete time: For eacht = 0, 1, 2, . . . we let
A(t) denote the job arrivals in this time slot,Q(t) the number
of jobs awaiting service, andU(t) the number of services. It

is assumed thatA is i.i.d. Hence the MDP model is described
as the controlled random walk,

Q(t+ 1) = Q(t) − U(t) +A(t+ 1), t ≥ 0. (13)

This is an MDP model of the form (1) with X ≡ Q. The
cost function we consider balances the cost of delay with the
energy cost associated with the processing speed:

c(x, u) = x+ βP(u), (14)

whereP denotes the power required as a function of the speed
u, andβ > 0. This form of cost function is common in the
literature, e.g., [11], [5], [31].

The remaining piece of the model is to define the form of
P — an appropriate form is highly application dependent. In
this paper, we consider two particular application areas where
speed scaling is an important approach: processor design and
wireless transmission.

In the domain of processor design, prior literature has
typically assumedP is a polynomial, specifically a cubic.
That is because the dynamic power of CMOS is proportional
to V 2f , whereV is the supply voltage andf is the clock
frequency [15]. Operating at a higher frequency requires
dynamic voltage scaling (DVS) to a higher voltage, nominally
with V ∝ f , yielding a cubic relationship. However, recent
work, e.g. [31], has found that the dynamic power usage of
real chips is well modeled by a polynomial scaling of speed
to power, but this polynomial is closer to quadratic. Thus, in
this case we take:

P(u) ∝ u̺ (15)

where̺ > 1, but we often focus on the case of̺ = 2.
In the case of wireless transmissions, the form ofP(u)

differs significantly. In particular, considering an additive
white Gaussian noise model [32] gives, for someκ > 0,

P(u) ∝ eκu (16)

There is a large literature on the dynamic speed scaling
problem, beginning with Yao et al. [33]. Much of the work
focuses on models with either fixed energy budgets [25], [7],
[35] or job completion deadlines [24], [3]. In the case where
the performance metric is the weighted sum of energy and
delay costs (as in the current paper), a majority of the research
is in a deterministic, worst-case setting [3], [5]. Most closely
related to the current paper are [11], [31], which consider
the MDP described above. However, neither of these papers
consider either the fluid or diffusion approximations of the
speed scaling model; nor do they discuss the application of
TD learning.

IV. A PPROXIMATE MODELS

In this section we study the fluid and diffusion approxi-
mations of the speed scaling model described in (13). The
solutions to these approximate models will later serve as the
basis for applying TD learning to determine an approximately
optimal control of the speeds.

A. The fluid model

The fluid model corresponding to the speed scaling model
(13) is given by:

d
dtq(t) = −u(t) + α, (17)

whereα is the mean ofA(t), and the controlu(t) and buffer
contentsq(t) are assumed to be non-negative valued.

It is assumed here that the cost function vanishes at the
equilibrium q(t) = 0, u(t) = α. In this case the total costJ∗

defined in (6) is finite for eachx. The infimum in (6) is over all
feasibleu. Feasibility means thatu(t) ≥ 0 for eacht, and the
resulting state trajectoryq is also non-negative valued. In this
section we consider two classes of normalized cost functions,

Polynomial cost c(x, u) = x+ β([u− α]+)̺

Exponential costc(x, u) = x+ β[eκu − eκα]+
(18)

where [·]+ = max(0, ·), and the parametersβ, κ, ̺ are
positive. The normalization is used to ensure thatc(0, α) = 0.
Observe that the cost is also zero foru < α when x = 0.
However, it can be shown that theu that achieves the infimum
in (6) is never less thanα.

We now return to (8) to show that the fluid value function
provides a useful approximation to the solution to the average
cost optimality equations. We construct a cost functionc◦ that
approximatesc, along with a constantη◦ > 0 such thatJ∗

satisfies the ACOE for this cost function:

min
0≤u≤x

{c◦(x, u) + PuJ
∗ (x)} = J∗(x) + η◦. (19)

This construction is based on the two error functions,

E(x, u) = c(x, u) − J∗(x) + PuJ
∗ (x)

E(x) = min
0≤u≤x

E(x, u) (20)

The constantη◦ ∈ R+ is arbitrary, and the perturbation of the
cost function is defined as

c◦(x, u) = c(x, u) − E(x) + η◦

Based on the definition ofE , we conclude that (19) is satisfied.
To demonstrate the utility of this construction it remains to
obtain bounds on the difference betweenc andc◦.

We begin with some structural results for the fluid value
function. Proofs are omitted due to lack of space. Note that
part (ii) is obtained from bounds on the “LambertW function”
[14].

Proposition 1. For any of the cost functions defined in(18),
the fluid value functionJ∗ is increasing, convex, and its second
derivative∇2J∗ is non-increasing. Moreover,

(i) For polynomial cost the value function and optimal policy
are given by, respectively,

J∗(x) = x
2̺−1

̺
̺

2̺− 1

(1

β(̺− 1)

)

̺−1

̺

(21)

φF∗(x) =
(x

β(̺− 1)

)1/̺

+ α, x ∈ R+. (22)

(ii) For exponential cost the value function satisfies the
following upper and lower bounds: On setting̃β = βeκα

and x̃ = x − β̃, there are constantsC−, C+ such that,
wheneverx ≥ β̃(e2 + 1),

C− +
κ

2eβ

x̃2

log(x̃) − (κα+ 1)
≤ J∗(x) ≤ C+ +

κ

2eβ̃
x̃2

Part (i) of the above proposition exposes a connection
between the fluid control policy and prior results about speed
scaling obtained in the literature on worst-case algorithms, e.g.
[5]. In particular, the optimal fluid control corresponds to a
speed scaling scheme that is known to have a small competitive
ratio.

Next, we can derive a lower bound on the differencec− c◦

relatively easily.

Lemma 2. E(x, u) ≥ 0 everywhere, givingc ≥ c◦ − η◦.

Proof: Convexity ofJ∗ gives the bound,

J∗(Q(t+ 1)) − J∗(Q(t)) ≥ ∇J∗(Q(t)) · (Q(t+ 1) −Q(t))

Consequently, for eachx ∈ R+, u ∈ R+ we have the lower
bound,

PuJ
∗(x) = J∗(x) + Ex,u[J

∗(Q(1)) − J∗(Q(0))]

≥ J∗(x) + Ex,u[∇J∗(Q(0)) · ((Q(1)) −Q(0))]

= J∗(x) + ∇J∗(x) · (−u+ α)

From the definition (20) this gives,

E(x, u) ≥ c(x, u) + ∇J∗(x) · (−u+ α)

Non-negativity follows from the TCOE (5). ⊓⊔
Further, we can derive an upper bound onc − c◦ in two

simple steps. We first write,

E(x) ≤ E(x, φF∗(x)) (23)

whereφF∗(x) is the optimal policy for the fluid model given
in (7). Next we apply the second order Mean Value Thoerem
to boundE . GivenQ(0) = x andU(0) = u we haveQ(1) =
x − u + A(1). For some random variableQ betweenx and
x− u+A(1) we have

DuJ∗(x) := Ex,u[J
∗(Q(1)) − J∗(Q(0))]

= ∇J∗(x) · (−u+ α)

+ 1
2E

[

∇2J∗ (Q) · (−u+A(1))2
]

(24)

Proposition1 states that the second derivative ofJ∗ is non-
increasing. Hence we can combine (24) with (23) to obtain,

E(x) ≤ 1
2E

[

∇2J∗(x − φF∗(x)) · (−φF∗(x) +A(1))2
]

. (25)

Lemma 3 provides an implication of this bound in the
special case of quadratic cost.

Lemma 3. For polynomial cost(18) with ̺ = 2, β = 1
2 , we

haveE(x) = O(
√
x), and hencec(x, u) ≤ c◦(x, u)+O(

√
x).

Proof: The optimal policy is given in (22), giving
φF∗(x) = O(

√
x) in this special case. The formula (21)

gives ∇2J∗(x) = O(1/
√
x). The bound (25) then gives

E(x) = O(
√
x). ⊓⊔

Lemma4 is an extension to the case of exponential cost.
There is no space here for a proof.

Lemma 4. For exponential cost(18), with β = 1, we have
E(x) ≤ κ log(x)2 for all x sufficiently large. For suchx we
havec(x, u) ≤ c◦(x, u) − η◦ + κ log(x)2. ⊓⊔

Hence, for quadratic or exponential cost, the fluid value
function J∗ can be interpreted as the relative value function
for a cost function that approximatesc(x, u).

B. The diffusion model

We next consider the diffusion model introduced in (9).
We motivate the model using the second order Taylor series
approximation (24). This continuous-time model will be used
to obtain additional insight regarding the structure ofh∗.

The ACOE for the diffusion model is similar to the total
cost DP equation for the fluid model:

min
u≥0

{c(x, u) + Duh∗ (x)} = η∗ (26)

whereη∗ is the average cost,h∗ is called the relative value
function, andDu denotes the usual differential generator. This
is defined forC2 functionsg : R+ → R+ via,

Dug (x) =
d

dx
g (x)(−u+ α) + 1

2σ
2(u)

d2

dx2
g (x)

However, for areflecteddiffusion the domain of the differen-
tial generator is restricted to thoseC2 functions satisfying the
boundary condition,

d

dx
g(x)

∣

∣

∣

x=0
= 0 (27)

This is imposed so that the reflection term vanishes in the Ito
formula:

dg(Q(t)) = fg(Q(t), U(t)) dt+ σ(U(t))
d

dx
g(Q(t))dN(t)

with fg(x, u) = Dug (x).
The variance term is selected so that the action of the

differential generator on a smooth function will be similarto
that of the discrete generator. The second order Taylor series
expansion (24) suggests the value:

σ2(u) = E[(u−A(1))2] = u2 − 2αu+m2
A,

wherem2
A is the second moment ofA(1). We adopt this form

in the remainder of this section.
Further, for the remainder of the section, we restrict to the

case of quadratic cost:

c(x, u) = x+ 1
2u

2, (28)

In this case the minimizer in (26) is given by,

φ∗(x) :=
∇h∗(x) + α∇2h∗(x)

1 + ∇2h∗(x)
(29)

5 10 15 20

Initialization:

Initialization: V0 ≡ 0

hn

n

− hn−1

V0 = J
∗

0

50

100

150

200

250

Fig. 2: The convergence of value iteration for the quadraticcost function (28).
The error‖hn+1 − hn‖ converges to zeromuch fasterwhen the algorithm
is initialized using the fluid value function.

It can be shown thath∗ is convex. Consequently, subject to the
boundary condition (27), it follows that φ∗(x) ≥ 0 for each
x. Substituting (29) into (26) gives the fixed point equation,

x+ α∇h∗ + 1
2m

2
A∇2h∗ − (α∇2h∗ + ∇h∗)2

2(1 + ∇2h∗)
= η∗. (30)

Although the cost function (28) does not satisfyc(0, α) = 0,
the TCOE (5) for the fluid model admits the solution,

J∗(x) = αx+ 1
3 [(2x+ α2)3/2 − α3] (31)

Furthermore, the functionh◦(x) = J∗(x)+ 1
2x approximately

solves the dynamic programming equation for the diffusion.In
fact, it is straightforward to show thath◦(x) solves the ACOE
for the diffusion exactly under a modified cost function:

c◦(x, u) = c(x, u) +
1

8

(y

y + 1
− 4

σ2
A

y

)

+ η◦,

whereσ2
A = m2

A−α2, andy := (2x+α2)
1

2 . The constantη◦

is again arbitrary. Regardless of its value, the optimal average
cost ofc◦ is equal toη◦. It is also easy to see that|c◦(x, u)−
c(x, u)| is uniformly bounded overx andu.

The only issue that remains is the fact thath◦(x) does not
satisfy the boundary condition (27) since

∇h◦(x)
∣

∣

∣

x=0
= 2α+ 1

2 .

This gap is resolved through an additional perturbation. Specif-
ically, fix ϑ > 0, and introduce the decaying exponential,

h◦◦ = h◦(x) − (2α+ 1
2)ϑe−x/ϑ

The gradient vanishes at the origin following this perturbation.
This function solves the ACOE for the diffusion for a function
c◦◦ which retains the property thatc◦◦(x, u) − c(x, u) is
uniformly bounded.

Based on this form we are motivated to enlarge the basis
to approximate the relative value function withψ1 = J∗ and
ψ2(x) ≡ x.

V. EXPERIMENTAL RESULTS

In this section we present results from experiments con-
ducted for the speed scaling model described in SectionIII .
Each of the value function approximations used in these
experiments were based on insights obtained from the fluid
and diffusion models.

In all of the numerical experiments described here the arrival
processA is a scaled geometric distribution,

A(t) = ∆AG(t), t ≥ 1, (32)

where ∆A > 0 and G is geometrically distributed on
{0, 1, . . .} with parameterpA. The mean and variance ofA(t)
are given by, respectively,

mA = ∆A
pA

1 − pA
, σ2

A =
pA

(1 − pA)2
∆2
A. (33)

A. Value iteration

We begin by computing the actual solution to the average
cost optimality equation using value iteration. This provides
a reference for evaluating the proposed approach for TD
learning. We restrict to the special case of the quadratic cost
function given in (28) due to limited space. The arrival process
is taken of the form (32), with pA = 0.96 and∆A chosen so
that the meanmA is equal to unity:

1 = mA = ∆A
pA

1 − pA
and ∆A = 1/24 (34)

The state space is truncated for practical implementation
of value iteration. In the experiments that follow we take
X = {∆Am : m = 0, . . . , Nℓ} with Nℓ = 480. The model
becomes,

Q(t+ 1) = [Q(t) − U(t) +A(t+ 1)], t ≥ 0,

where[·] represents projection to the interval[0, 20], andU(t)
is restricted to non-negative integer multiples of∆A.

Let Vn denote thenth value function obtained. The approx-
imate solution to the ACOE at stagen is taken to be the
normalized value functionhn(x) = Vn(x) − Vn(0), x ∈ X.
The convergence of{hn} to h∗ is illustrated in Fig.2. The
comparison ofJ∗ andh∗ shown in Fig.1 was computed using
this algorithm. Shown in Fig.3 is the optimal policy and
the (c, J∗)-myopic policy,φJ (x) = argmin0≤u≤x{c(x, u) +
PuJ

∗ (x)}.

x
0 2 4 6 8 10 12 14 16 18 20

−20

0

20

40

60

80

100

120

140

160 Stochastic optimal policy

Fluid optimal policy

Di!erence

Fig. 3: The optimal policy compared to the(c, J∗)-myopic policy for the
quadratic cost function (28).

B. TD learning

We are now ready to apply TD learning to approximate
the relative value function in the case of a specific policy.
The policies considered here are taken to be the following
translation of the optimal policy for the fluid model,

φF∗
⋄ (x) = ⌊min(x, φF∗(x))⌋, x ∈ R+ (35)

where herex is restricted to the lattice on whichQ evolves,
and⌊a⌋ indicates the nearest point on this lattice fora ∈ R+.
In the next section we show how to combine TD learning and
policy improvement in order to determine an approximately
optimal solution.

We consider only polynomial costs due to space constraints.
Additionally, we maintain the arrival distribution definedby
(32), and the specificationpA = 0.96 used in the previous
subsection. We consider several values of∆A to investigate
the impact of variance on the estimation algorithm.

We take the following as the basis for TD learning

ψ1(x) = J∗(x), ψ2(x) = x, x ≥ 0. (36)

In the special case of quadratic cost, withc(x, u) = x+ 1
2u

2,
this choice is motivated by the diffusion approximations pre-
sented in Sec.IV-B. We begin with results in this special case.
Recall that the case of quadratic costs models the scenario of
speed scaling in microprocessors.

The fluid value functionJ∗ associated with the quadratic
cost function (28) is given in (31). Fig. 1 shows a result
obtained after 100,000 iterations of the LSTD algorithm. The
initial condition was taken to ber(0) = (0, 0)T. The value
of the coefficientr∗1 corresponding toψ1 = J∗ was found
to be close to unity. Hence the approximate relative value
function hr

∗

is approximated byJ∗, where r∗ is the final
value obtained from the LSTD algorithm. This conclusion is
plainly illustrated in Fig.1 where a plot of the functionhr

∗

is compared to the fluid value functionJ∗ and the solution to
the ACOEh∗.

We next turn to a different polynomial cost function. As
a contrasting example we choose (18) with ̺ = 15 and
β = ̺−1. Shown on the left hand side of Fig.4 are plots
showing the evolution of the parameter estimates based on
the LSTD algorithm with basis (36). The policy applied was
the translation of the optimal policy for the fluid model given
in (35). Shown on the right hand side is a comparison of the
resulting approximation to Poisson’s equation, and the fluid
value function (21).

0 2 4 6 8 10
 0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20

x−2

−1

0

1

2

3

J
∗

hApproximate relative value function

Fluid value function

n

x 10
4

Fig. 4: The experiment illustrated in Fig.1 was repeated for the cost function
c(x, u) = x+ [u− α]15+ /15.

C. TD learning with policy improvement

So far, the TD learning algorithm was used to compute an
approximation of the relative value function for the specific
policy given in (35). In this section, we construct a policy
using TD learning and policy improvement.

The policy iteration algorithm (PIA) is a method to construct
an optimal policy through the following steps. The algorithm is
initialized with a policyφ0 and then the following operations
are performed in thekth stage of the algorithm:

(i) Given the policyφk, find the solutionhk to Poisson’s
equationPφkhk = hk−ck+ηk, whereck(x) = c(x, φk(x)),
andηk is the average cost.

(ii) Update the policy viaφk+1(x) ∈ arg minu{c(x, u) +
Puh

k (x)}.

In order to combine TD learning with PIA, the TDPIA
algorithm considered replaces the first step with an application
of the LSTD algorithm, resulting in an approximationhTDk

to the functionhk. The policy in (ii) is then taken to be
φk+1(x) ∈ argminu{c(x, u) + Puh

TDk(x)}.

Average cost at stage n

n
0 5 10 15 20 25

2

3

Fig. 5: Simulation result for TDPIA with the quadratic cost function (28), and
basis{ψ1, ψ2} ≡ {J∗, x}.

We illustrate this approach in the case of the quadratic cost
function (28), using the basis given in (36). The initial policy
was taken to beφ0(x) = min(x, 1), x ≥ 0. Fig. 5 shows
the estimated average cost in each of the twenty iterations of
the algorithm. The algorithm results in a policy that is nearly
optimal after just a few iterations.

VI. CONCLUDING REMARKS

The main message of this paper is that idealized models
(fluid and diffusion approximations) are useful choices when
determining the function class for TD learning. This approach
is applicable for control synthesis and performance approxi-
mation of Markov models in a wide range of applications. The
motivation for this approach is a simple Taylor series argument
that can be used to bound the difference between the relative
value functionh∗ and the fluid value functionJ∗. Further, this
approximation can be refined using a diffusion model.

To illustrate the application of this approach for TD learn-
ing, this paper focuses on a power management problem:
dynamic speed scaling. This application reveals that this
approach to approximation yields results that are remarkably
accurate. In particular, numerical experiments revealed that (i)
value iteration initialized using the fluid approximation results
in much faster convergence, and (ii) policy iteration coupled
with TD learning quickly converges to an approximately opti-
mal policy when the fluid and diffusion models are considered
in the construction of a basis. Further, the results studying the
fluid model provided an interesting connection to worst-case
analyses of the speed scaling problem.

Immediate extensions of this work to Q learning [18], [29]
and to approximate dynamic programming based on linear
programming [9], [10] are currently under investigation.

ACKNOWLEDGMENT

Financial support from the National Science Foundation
(ECS-0523620 and CCF-0830511), ITMANET DARPA RK
2006-07284, and Microsoft Research is gratefully acknowl-
edged.1

REFERENCES

[1] IBM PowerPC.
[2] Intel Xscale.
[3] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for

flow time minimization. InLecture Notes in Computer Science (STACS),
volume 3884, pages 621–633, 2006.

[4] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage
energy and temperature.J. ACM, 54(1):1–39, March 2007.

[5] Nikhil Bansal, Kirk Pruhs, and Cliff Stein. Speed scaling for weighted
flow times. InProc. ACM-SIAM SODA, pages 805–813, 2007.

[6] D.P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Atena
Scientific, Cambridge, Mass, 1996.

[7] David P. Bunde. Power-aware scheduling for makespand and flow. In
Proc. ACM Symp. Parallel Alg. and Arch., 2006.

[8] Ranveer Chandra, Ratul Mahajan, Thomas Moscibroda, Ramya
Raghavendra, and Paramvir Bahl. A case for adapting channelwidth
in wireless networks. InProc. ACM SIGCOMM, Seattle, WA, August
2008.

[9] D. P. de Farias and B. Van Roy. The linear programming approach to
approximate dynamic programming.Operations Res., 51(6):850–865,
2003.

[10] D. P. Pucci de Farias and B. Van Roy. A cost-shaping linear program
for average-cost approximate dynamic programming with performance
guarantees.Math. Oper. Res., 31(3):597–620, 2006.

[11] Jennifer M. George and J. Michael Harrison. Dynamic control of a
queue with adjustable service rate.Operations Research, 49(5):720–
731, September 2001.

[12] S. G. Henderson, S. P. Meyn, and V. B. Tadić. Performance evaluation
and policy selection in multiclass networks.Discrete Event Dynamic
Systems: Theory and Applications, 13(1-2):149–189, 2003. Special issue
on learning, optimization and decision making (invited).

[13] Sebastian Herbert and Diana Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. InProc. ISLPED, page 6,
2007.

[14] A. Hoorfar and M. Hassani. Inequalities on the lambertw function
and hyperpower function.Journal of Inequalities in Pure and Applied
Mathematics (JIPAM), 9(2), 2008.

[15] Stefanos Kaxiras and Margaret Martonosi.Computer Architecture
Techniques for Power-Efficiency. Morgan and Claypool, 2008.

[16] S. Mannor, I. Menache, and N. Shimkin. Basis function adaptation
in temporal difference reinforcement learning.Annals of Oper. Res.,
134(2):215–238, 2005.

[17] Lykomidis Mastroleon, Daniel O’Neill, Benjamin Yolken, and Nick
Bambos. Power aware management of packet switches. InProc. High-
Perf. Interconn., 2007.

[18] P. Mehta and S. Meyn. Machine learning and Pontryagin’sMinimum
Principle. Submitted to the 48th IEEE Conference on Decision and
Control, December 16-18 2009.

[19] S. P. Meyn. Stability and optimization of queueing networks and their
fluid models. In Mathematics of stochastic manufacturing systems
(Williamsburg, VA, 1996), pages 175–199. Amer. Math. Soc., Provi-
dence, RI, 1997.

[20] S. P. Meyn. Workload models for stochastic networks: Value functions
and performance evaluation.IEEE Trans. Automat. Control, 50(8):1106–
1122, August 2005.

[21] S. P. Meyn. Control Techniques for Complex Networks. Cambridge
University Press, Cambridge, 2007.

1Any opinions, findings, and conclusions or recommendationsexpressed in
this material are those of the authors and do not necessarilyreflect the views
of NSF, DARPA, or Microsoft.

[22] C.C. Moallemi, S. Kumar, and B. Van Roy. Approximate anddata-
driven dynamic programming for queueing networks. Submitted for
publication., 2006.

[23] S. Narendra et al. Ultra-low voltage circuits and processor in 180 nm
to 90 nm technologies with a swapped-body biasing technique. In Proc.
IEEE Int. Solid-State Circuits Conf, page 8.4, 2004.

[24] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Woeginger. Getting
the best response for your erg. InScandinavian Worksh. Alg. Theory,
2004.

[25] Kirk Pruhs, Rob van Stee, and Patchrawat Uthaisombut. Speed scaling of
tasks with precedence constraints. InProc. Workshop on Approximation
and Online Algorithms, 2005.

[26] R.S. Sutton and A.G. Barto. Reinforcement Learning: An In-
troduction. MIT Press, Cambridge, MA, on-line edition at
http://www.cs.ualberta.ca/˜sutton/book/the-book.html edition, 1998.

[27] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference
learning with function approximation.IEEE Trans. Automat. Control,
42(5):674–690, 1997.

[28] M. H. Veatch. Approximate dynamic programming for networks: Fluid
models and constraint reduction, 2004. Submitted for publication.

[29] C. J. C. H. Watkins and P. Dayan.Q-learning. Machine Learning,
8(3-4):279–292, 1992.

[30] W. Whitt. Stochastic-process limits. Springer Series in Operations
Research. Springer-Verlag, New York, 2002.

[31] A. Wierman, L. Andrew, and A. Tang. Power-aware speed scaling in
processor sharing systems. InProc. of INFOCOM, 2009.

[32] L. Xie and P. R. Kumar. A network information theory for wireless
communication: scaling laws and optimal operation.IEEE Trans. on
Info. Theory, 50(5):748–767, 2004.

[33] Francis Yao, Alan Demers, and Scott Shenker. A scheduling model for
reduced CPU energy. InProc. IEEE Symp. Foundations of Computer
Science (FOCS), pages 374–382, 1995.

[34] Lin Yuan and Gang Qu. Analysis of energy reduction on dynamic
voltage scaling-enabled systems.IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., 24(12):1827–1837, December 2005.

[35] Sushu Zhang and K. S. Catha. Approximation algorithm for the
temperature-aware scheduling problem. InProc. IEEE Int. Conf. Comp.
Aided Design, pages 281–288, November 2007.

[36] Yifan Zhu and Frank Mueller. Feedback EDF scheduling ofreal-time
tasks exploiting dynamic voltage scaling.Real Time Systems, 31:33–63,
December 2005.

	Introduction
	Preliminaries
	Markov Decision Processes (MDPs)
	The fluid and diffusion models
	TD learning

	Power management via speed scaling
	Approximate models
	The fluid model
	The diffusion model

	Experimental results
	Value iteration
	TD learning
	TD learning with policy improvement

	Concluding remarks
	References

