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Abstract— In multi-leader multi-follower games, a set of lead-
ers compete in a Nash game, while anticipating the equilibrium
arising from a game between a set of followers. Conventional
formulations are complicated by several concerns. First, since
follower equilibria need not be unique, conjectures made by
leaders regarding follower equilibria may not be consistent
at equilibrium. When the follower equilibrium is a physical
quantity to be exchanged, one is led to ask whether an
equilibrium without consistent conjectures is even sensible.
Second, these games are often irregular and nonconvex and
no general sufficiency conditions for existence of equilibria are
known. Third, no globally convergent algorithms for comput-
ing equilibria are known. We show that these concerns are
addressed en masse by a modified model we introduce in this
paper. In this model each leader makes conjectures while also
requiring that his conjectures are consistent with those made
by other leaders. If leader payoff functions admit a potential
function, then under mild conditions, this model admits an
equilibrium. At equilibrium, the conjectures of leaders are
necessarily consistent, and when there is a unique follower
equilibrium, the equilibria of the original model are equilibria
of the new model. Preliminary empirical evidence suggests that
such equilibria are also significantly easier to compute.

I. INTRODUCTION

This paper concerns hierarchical multi-leader multi-
follower games [1], where each leader is a Stackelberg leader
with respect to all followers, followers play a Nash game
amongst themselves taking the decisions of the leaders as
given, and leaders play a Nash game with other leaders
while anticipating the equilibrium of the game between
followers. We make no assumptions regarding how leaders
may influence followers; each follower may have in its
information set [2], the decision of all leaders.

Let N be the set of leaders andM be the set of followers.
Let zi ∈ Rmi be the action of follower i and xi ∈ Rni

denote the action of leader i. We denote follower i’s objective
function by fi : Rm+n → R, where m =

∑
i∈Mmi

and n =
∑
i∈N ni, and let Ci ⊆ Rmi denote the set of

feasible strategies for follower i. Then each follower solves
an optimization problem,

Fi(z−i;x) min
zi∈Ci

fi(zi; z
−i, x),

parametrized by the profile of leader strategies, x. Here we
have used the standard notation z , (z1, . . . , zM ), x ,
(x1, . . . , xN ) and z−i , (z1, . . . , zi−1, zi+1, . . . , zM ).
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Definition 1.1: Let x denote a strategy profile of the
leaders. A point z ∈ C ,

∏M
i=1 Ci. is a follower equilibrium

for x if for all i ∈M, fi(z;x) ≤ fi(z′i; z−i, x) ∀z′i ∈ Ci.
Suppose Ci is closed and convex for every i and for
all z−i, x, fi(•; z−i, x) is continuously differentiable and
convex. Then z is a follower equilibrium for the profile
of leader strategies x if and only if z solves the following
parametrized variational inequality problem [3]:

VI(G(•;x), C) : G(z;x)>(z′ − z) ≥ 0 ∀z′ ∈ C, (1)

where G(z;x) = (∇z1f1(z;x), . . . ,∇zN fN (z;x)).
Leader i’s payoff depends on its action xi, the tuple of

actions of other leaders, denoted by x−i, and the follower
equilibrium denoted by z. However, given x, the follower
equilibrium may not be unique, implying that the leader’s
payoff is not well defined unless one also specifies a par-
ticular follower equilibrium of interest. But since leaders
act prior to the followers, and may only anticipate their
response, the presumed follower equilibrium employed by
a leader to compute its payoff is necessarily a conjecture.

Suppose leader i’s objective is given by ϕi(xi, yi;x
−i)

where yi denotes leader i’s conjecture regarding the follower
equilibrium. Note – yi is not the equilibrium strategy of
the ith follower, but is instead the profile of strategies of
all followers, as conjectured by leader i. In the case of a
single leader, disambiguation of the follower equilibrium is
accomplished by adopting either an optimistic formulation or
a pessimistic formulation [4]. In an optimistic formulation,
leader i considers yi to be the follower equilibrium most
beneficial to it. Thus yi is an action of leader i; this
leader then solves the following parametrized mathematical
program with equilibrium constraints:

Li(x−i) min
xi∈Xi,yi

ϕi(xi, yi;x
−i)

s.t. yi ∈ SOL(G(•;x), C),

where SOL(G(•;x), C) denotes the solution set of the
parametrized VI(G(•;x), C). The resulting multi-leader
multi-follower game (or Stackelberg vs Stackelberg game
(following e.g., [5])) is denoted as E .1

Definition 1.2: An equilibrium of game E is a tuple
(x, y) ∈ F such that ϕi(xi, yi;x−i) ≤ ϕi(x

′
i, y
′
i;x
−i), for

all (x′i, y
′
i) ∈ Ωi(x

−i), where Ωi(x
−i) is the set of feasible

strategies for the leader’s problem Li(x−i):

Ωi(x
−i) , {(xi, yi)|xi ∈ Xi, yi ∈ S(x)}, (2)

1This notation derives itself from mathematical programming where the
game is called an equilibrium problem with equilibrium constraints [5].



Ω(x) ,
∏
i∈N Ωi(x

−i), X =
∏
i∈N Xi where

S(x) , SOL(VI(G(·;x), C)), SN (x) ,
N∏
i=1

S(x), (3)

and F , {(x, y)|x ∈ X, y ∈ SN (x)}. (4)
It can be easily seen that F = {(x, y)|(x, y) ∈ Ω(x)}, the
set of fixed points of Ω.

A. Challenges

What we have described above is the conventional formu-
lation of multi-leader multi-follower games. This paper is
motivated by two concerns regarding the equilibria of E :
(i) Meaningfulness: That the follower equilibrium is only
a conjecture that a leader makes gives rise to an unusual
predicament. The nonuniqueness of the follower equilibrium
leads to the possibility that at an equilibrium, leaders may not
agree on the conjectures made regarding the follower equilib-
rium. In practical settings such as in power markets [6], the
follower equilibrium represents a physical settlement to be
implemented. If the equilibrium is a point at which leaders
disagree on the settlement level, one is led to question if this
equilibrium is indeed sensible.
(ii) Existence: For Stackelberg v/s Stackelberg games, no
robust theory of existence of equilibria is known; in fact one
can find simple examples where equilibria do not exist. To
quote from Pang and Fukushima [5]: “In practice, the multi-
dominant firm problem is of greater importance; and yet, as
a Nash game, the latter problem can have no equilibrium
solution in the standard sense.” Pang and Fukushima [5]
provide the following example with no equilibrium. The
game has two leaders with objectives defined as follows:

ϕ1(x1, y1) = 1
2x1 + y1 andϕ2(x2, y2) = − 1

2x2 − y2. (5)

The leader strategy sets are denoted by X1 = X2 , [0, 1],
while a single follower solves the following problem:

min
z≥0

(
z(−1 + x1 + x2) + 1

2z
2
)

= max {0, 1− x1 − x2} .

Mathematically, the analysis of the Stackelberg v/s Stack-
elberg game described above is hindered by two key diffi-
culties which hinder the application of fixed-point theorems.
First, the feasible region of each leader’s problem is highly
nonconvex. Note that there exist results that guarantee the
convexity of the solution set of a variational inequality [3].
However, what is needed here is the convexity of the graph
of the set-valued map xi 7→ SOL(VI(G(•, xi;x−i), C)), a
property that is hard to guarantee. The second difficulty is the
lack of continuity in the map x−i 7→ Ωi(x

−i); solution sets
of parametrized variational inequalities are rarely continuous
(as set-valued maps) with respect to the parameter. As a
consequence, the reaction map [2] that is obtained by the best
response of a leader i as a function of x−i, is neither convex-
valued not upper-semicontinuous. Thus, the hypothesis of
standard fixed-point theorems, such as those of Brouwer and
Kakutani are not met, and existence of equilibria is difficult
to guarantee. For a more thorough discussion of these issues,
we refer the reader to our recent submission [7].

These analytical obstructions also lead to computational
challenges. Since the problem described in Definition 1.2
is fundamentally nonconvex and irregular, it is exceedingly
hard to devise reliable convergent computational schemes
for it. To quote [5], “... although the multi-leader-follower
problem is a sensible mathematical model with a well-defined
solution concept, its high level of complexity and technical
hardship make it a computationally intractable problem.”

B. Contributions and outline

A possible resolution of the “meaningfulness” concern is
through tightening the equilibrium concept itself: one may
ask that in addition to Definition 1.2, an equilibrium also
satisfy yi = yj ∀i, j ∈ N . However, the challenge with
imposing such an ex-post requirement is that equilibria in the
sense of Definition 1.2 do not exist in the simplest of cases.
In the light of this, we instead resort to modifying the model.
We present a modified model of hierarchical competition in
which each leader makes its conjecture about the follower
equilibrium while also requiring that its conjectures are
consistent with the conjectures made by other leaders. As a
consequence, a number of the above concerns get addressed.
(i) Consistency of conjectures: Any equilibrium of this new
game satisfies the consistency in leaders’ conjectures regard-
ing the follower equilibrium, regardless of any uniqueness
requirement on the follower equilibrium.
(ii) Retention of equilibria of original formulation: Further-
more, if for each profile of leader strategies there is a unique
follower equilibrium, then any equilibrium of the original
game is an equilibrium of the modified game.
(iii) Existence of equilibria: The new formulation has a
constraint structure called shared constraints. Consequently,
if leaders’ objectives admit a potential function, existence
of equilibria can be guaranteed under fairly general assump-
tions. In particular, a modified formulation of the Pang and
Fukushima example admits an equilibrium (Section III-C).
(iv) Computation of equilibria: Finally, equilibria of the new
formulation appear to be significantly easier to compute. We
show empirical evidence to support the claim that a Gauss-
Siedel heuristic is well behaved on this problem.

A possible insight that can be distilled from these results
is the following: it appears that the lack of consistency in the
conjectures of leaders exhibited by the original formulation
may be making the problem mathematically irregular, in ad-
dition to being responsible for the ambiguity of the follower
equilibrium in physical settings. The enforcement of consis-
tency of conjectures not only ensures the meaningfulness of
the equilibrium, but also has a regularizing influence on both
the existence and computation of equilibria. To the best of
our knowledge these results are new as is this insight.

The paper is organized as follows. In Section II we cover
some background and motivation for this work. In Section
III we present the modified model with consistency require-
ments and explain its associated properties and existence
results. In Section IV we present the numerical results and
conclude in Section V.



II. BACKGROUND AND PRELIMINARIES
A. Examples and motivation

Multi-leader multi-follower games were first investigated
by Sherali [1] and have thereafter been applied to various
settings in power markets [8], [9]. We describe one such
setting next. Suppose N players compete in the forward
market (as leaders) and then in the spot market (as followers)
with decisions given by {xi}Ni=1 and {zi}Ni=1, respectively
(since the same set of players participate in both markets,
N =M). In the spot market, player i solves the following
parametrized problem:

Si(z−i;x) min
zi≥0

cizi − p (z̄) (zi − xi)

where cizi is the linear cost of producing zi units in the
spot-market and p(z̄) denotes the price of electricity based
on the aggregate spot sales, given by z̄ ,

∑
i∈N zi.

Let yi be the vector of conjectures of leader i regarding
follower equilibrium, let yi,j represent its conjecture about
the jth follower’s equilibrium decision (thus yi,i is its own
anticipated spot-market decision). In the forward market,
firm i’s profit is given by −pfxi − p(ȳi)(yi,i − xi)− ciyi,i,
where pf denotes the forward price and ȳi =

∑
j∈N yi,j .

Condition of no-arbitrage requires that pf = p(ȳi) and firm
i’s forward market problem reduces to the following:

Li(x−i) min
xi,yi

ciyi,i − p(ȳi)yi,i
s.t. yi,j ∈ SOL(S(y−ji , xi, x

−i)), ∀ j.

B. Existence of equilibria

To the best of our knowledge there are no general existence
results for hierarchical games with two levels of hierarchy,
let alone multiple levels. On the other hand, there are
numerous simple counterexamples, such as that of Pang and
Fukushima [5]. Known existence results are model-specific
[1], [10] and often rely on eliminating the second-level
problem by explicit substitution of the solution map (which
is required to be single-valued) and are dependent on the
favorable structure of the underlying model to allow all of
these properties.

In our recent paper [7] we present what is perhaps the first
general existence result for the following class of games.

Definition 2.1 (Quasi-potential games [7]): The game E
is referred to as a quasi-potential game if the following hold:

(i) For i ∈ N , there exist functions φ1(x), . . . , φN (x) and
a function h(x, yi) such that each player i’s objective
ϕi(·) is given as ϕi(xi, yi;x−i) ≡ φi(x) + h(x, yi).

(ii) There exists a function π such that for all i ∈ N , and
for all x ∈ X and x′i ∈ Xi, we have

φi(xi;x
−i)− φi(x′i;x−i) = π(xi;x

−i)− π(x′i;x
−i).

The function π + h is called the quasi-potential function.
We consider the following optimization problem,

Pquasi min
x,w

π(x) + h(x,w)

s.t. (x,w) ∈ Fquasi,

where Fquasi , {(x,w) ∈ Rn | xi ∈ Xi, i ∈ N , w ∈ S(x)} ,
and relate its minimizers to equilibria of E .

Theorem 2.1 (Existence of global equilibria of E [7]):
Let E be a quasi-potential multi-leader multi-follower game.
Suppose Fquasi is a nonempty set and ϕi is a continuous
function for i = 1, . . . , N . A minimizer of Pquasi is an
equilibrium of E . Consequently, if the minimizer of Pquasi

exists (for example, if either π is coercive over Fquasi or if
Fquasi is compact), then E admits an equilibrium.

C. Shared constraint games

A shared constraint game is a generalization of the clas-
sical Nash game. The underlying assumption in a classical
Nash game is that while a player’s payoff is dependent on the
strategies of other players, the set of feasible strategies are
independent of the strategies of other players. In contrast,
the strategy set of a player in a shared constraint game
is dependent on adversarial strategies with this dependence
taking on a prescribed form. Let ui ∈ Rni and u−i denote
a strategy of player i and the tuple of adversarial strategies,
respectively. Let Ki(u

−i) denote the strategy set of player
i and let the set-valued mapping K be defined as K(u) ,∏
Ki(u

−i). Then K is a shared constraint if there exists a
set S ⊆ Rn, n =

∑
ni such that

ui ∈ Ki(u
−i) ⇐⇒ (ui, u

−i) ∈ S, ∀i, (6)

and the resulting games are called shared constraint games.
Shared constraint games were introduced by Rosen [11] and
are an area of active recent research (e.g., [12], [13], [14]).

III. CONSISTENCY OF CONJECTURES

In Stackelberg v/s Stackelberg games one may impose a
requirement that at equilibrium the conjectures of the leaders
be consistent: i.e., we may ask that if (x, y) is an equilibrium,
then yi = yj for all i, j ∈ N . It is not immediately clear if
such consistency should be an ex-post requirement on the
game or an ex-ante one. As mentioned in Section I, an ex-
post requirement runs into the hurdle of the lack of equilibria
satisfying Definition 1.2.

We consider an ex-ante requirement that imposes that each
player chooses its conjectures under the requirement that
yj = yi for all i, j ∈ N . More specifically, we impose the
requirement that yi = yj , for all j ∈ N as a part of each
leader i’s optimization problem. Imposing this requirement
modifies the game; the optimization problem of leader i is
no more Li described in Section I. In the new game leader
i solves the following problem.

Lcc
i (x−i, y−i) min

xi,yi
ϕi(xi, yi;x

−i)

s.t.
xi ∈ Xi,
yi ∈ S(x)
yi = yj , j ∈ N .

We denote this game by Ecc. Before proceeding, let us ask
a basic question: why would a rational leader impose an
additional consistency constraint? In other words, would the
game Ecc emerge organically? While this remains unclear,



what should be noted however is that in the absence of such
constraints, the resulting problem might admit equilibria that
are difficult to interpret if the conjectures of the follower de-
cisions at equilibrium are inconsistent. We see this modified
formulation as one that recognizes the physical nature of the
follower problem and attempts to remove the ill-posedness
of the problem.

Also note that the leader problems in isolation are infea-
sible if the decisions of other players y−i are not identical.
Our goal however is to examine the properties at equilibrium,
where this cannot occur. Comparing Li with Lcc

i we see that
xi satisfies the same constraints in both problems, but yi
is constrained more in Lcc

i . Let Ωcc
i (x−i, y−i) denote the

feasible region of Lcc
i (x−i, y−i) and

Ωcc ,
N∏
i=1

Ωcc
i , Fcc , {(x, y) | (x, y) ∈ Ωcc(x, y)},

where Fcc is the set of fixed points of Ωcc.
Definition 3.1: An equilibrium of Ecc is a point (x, y) ∈

Fcc, such that for all i ∈ N ,

ϕi(xi, yi;x
−i) ≤ ϕi(x̄i, ȳi;x−i) ∀ (x̄i, ȳi) ∈ Ωcc

i (x−i, y−i).

A. Properties of the formulation

Having introduced the formulation, we now take note of
some important properties that this formulation enjoys.

Proposition 3.1: Consider the multi-leader multi-follower
game defined by Ecc. Then the following hold:

(i) Ωcc is a shared constraint mapping satisfying (6).
Furthermore, if S(·) is single-valued, then we have:

(ii) F = Fcc, and
(iii) Every equilibrium of E is an equilibrium of Ecc.

Proof: (i) It can be observed that for any i and any
x−i, y−i such that yj = yk, xj ∈ Xj , for all k, j 6= i,

Ωcc
i (x−i, y−i) = {xi, yi|xi ∈ Xi, yi = yj ,∀j ∈ N ,

yi ∈ S(x)},
= {xi, yi | xi ∈ Xi, yi = yj , yj ∈ S(x),∀j ∈ N}.

But, yj ∈ S(x), j = 1, . . . , N implies that y ∈ SN (x). Let
A ⊆ RmN be the set

A , {y | yj = y1, j = 2, . . . , N}. (7)

It follows that

Ωcc
i (x−i, y−i) = {xi, yi | x ∈ X, y ∈ Y, y ∈ SN (x), y ∈ A}

= {xi, yi | x ∈ X, (x, y) ∈ G, y ∈ A},

where G = {(x, y)|y ∈ SN (x)} is the graph of SN . Hence,

(xi, yi) ∈ Ωcc
i (x−i, y−i) ⇐⇒ (x, y) ∈ (X ×A) ∩ G.

Since this holds for each i ∈ N , Ωcc is a shared constraint
of the form required by (6).

(ii) From (i) it follows that Fcc = (X×A)∩G, from which
it follows that that Fcc ⊆ (X × RmN ) ∩ G. But from (4)
we have that F = (X × RmN ) ∩ G, whereby Fcc ⊆ F . So
it suffices to show that F ⊆ Fcc. Let (x, y) be an arbitrary

tuple in F . Since S is single-valued, y belongs to A and
consequently (x, y) ∈ Fcc. Hence F ⊆ Fcc.

(iii) Let (x, y) be an equilibrium of E . Clearly (x, y) ∈
F , and so by (ii), (x, y) ∈ Fcc. Since Ωcc

i (x−i, y−i) ⊆
Ωi(x

−i, y−i), the result follows.
Of particular importance in these properties are (i) and

(iii). One can easily check that the original mapping Ω is
not a shared constraint in the sense of (6). But (i) shows that
the addition of the consistency requirement on conjectures
makes the resulting constraint Ωcc a shared constraint. This
is perhaps the single most important conceptual difference
between the formulations E and Ecc. Furthermore, (iii) shows
that Ecc captures all equilibria (if any) of E in the event that
S(·) is single-valued. In this case, one may say that Ecc is
a weaker formulation than E ; existence of an equilibrium
of Ecc is a necessary condition for the existence of an
equilibrium of E .
B. Existence of equilibria

In this section, we use Proposition 3.1 to present a general
existence result for Ecc. This result relies on the concept of
potential games, which is defined next.

Definition 3.2 (Potential game): The game Ecc is called a
potential game if the objectives ϕi, i ∈ N are such that there
exists a function π, called potential function, such that for
all i ∈ N , for all (xi, x

−i) ∈ X, (yi, y−i) ∈ RmN and for
all x′i ∈ Xi, y

′
i ∈ Rm

ϕi(xi, yi;x
−i, y−i)− ϕi(x′i, y′i;x−i, y−i)

= π(xi, yi;x
−i, y−i)− π(x′i, y

′
i;x
−i, y−i). (8)

Our main result relates the equilibria of Ecc and the global
minimizers of the potential function over Fcc, i.e., of the
following optimization problem:

Pcc min
x,y

π(x, y)

s.t. (x, y) ∈ Fcc.

Theorem 3.2 (Minimizers of Pcc and Equilibria of Ecc):
Suppose Fcc is nonempty and ϕi, i ∈ N are continuous.
Let Ecc be a potential game with a potential function π.
Then any global minimizer of π over Fcc is an equilibrium
of Ecc. Thus if the leader objectives are coercive or if Fcc

is compact, Ecc admits an equilibrium.
Proof: Let (x, y) ∈ Fcc be a global minimum of π

over Fcc. Then π(x, y) ≤ π(x′, y′), for all (x′, y′) ∈ Fcc.
Fix i ∈ N and let (x′, y′) = (ui, x

−i, vi, y
−i) ∈ Fcc. Then,

π(xi, yi, x
−i, y−i)− π(ui, vi, x

−i, y−i) ≤ 0

∀ (ui, vi) : (ui, vi, x
−i, y−i) ∈ Fcc. But, (ui, vi, x

−i, y−i) ∈
Fcc if and only if (ui, vi) ∈ Ωcc

i (x−i, y−i), since Ωcc is a
shared constraint (cf. Proposition 3.1 (i)). Using this, together
with the fact that π is a potential function, we obtain that
for each i ϕi(xi, yi;x

−i, y−i) − ϕi(ui, vi;x
−i, y−i) ≤ 0,

for all (ui, vi) ∈ Ωcc
i (x−i, y−i). Since this holds for each

i ∈ N , we get that given (x−i, y−i), the point (xi, yi) is
a best response for leader i. So (x, y) is an equilibrium of
Ecc. If ϕi, i ∈ N are coercive or Fcc is compact, Pcc has a
solution and thus Ecc has an equilibrium.



C. Pang and Fukushima example with consistent conjectures

As an example of the effect that introducing consistency
in conjectures has on the game, we consider the game of
Pang and Fukushima [5]. From (5) it is obvious that this
game admits a potential function given by:

π(x, y) = ϕ1(x1, y1) + ϕ2(x2, y2) = 1
2x1 + y1 − 1

2x2 − y2.

Therefore this game is a potential game with no equilibria.
Consider the modification in the form of Ecc.

Lcc
1 (x2, y2) min

x1,y1
ϕ1(x1, y1) = 1

2x1 + y1

s.t.
x1 ∈ [0, 1], y1 = max{0, 1− x1 − x2},
y1 = y2.

Lcc
2 (x1, y1) min

x2,y2
ϕ2(x2, y2) = − 1

2x2 − y2

s.t.
x2 ∈ [0, 1], y2 = max{0, 1− x1 − x2},
y1 = y2.

The set Fcc is given by,

Fcc =
{

(x, y)|x ∈ [0, 1]2, y1 = y2 = max(0, 1− x1 − x2)
}

and so the global minimizer of π over Fcc is

arg min
(x,y)∈Fcc

1
2x1 + y1 − 1

2x2 − y2 = ((0, 1), (0, 0)),

To see why ((x1, x2), (y1, y2)) = ((0, 1), (0, 0)) is an equi-
librium of this modified game, consider the objectives of
the two leaders at equilibrium. For Leader 1, ϕ1(0, 0) = 0
whereas for leader 2 ϕ2(1, 0) = − 1

2 . The value 0 is the
global minimum for leader 1, and is clearly his optimal.
Leader 2’s strategy set at equilibrium is a singleton contain-
ing only his equilibrium strategy: y2 is already fixed = y1 =
0, and the conditions 0 = max{0, 1 − x2} and x2 ∈ [0, 1]
imply x2 = 1. We therefore see that the requirement of
consistency of conjectures constrains the leaders’ problems
in such a way that it ensures the existence of an equilibrium.

We emphasize that enforcing consistency is not an avenue
for creating equilibria; instead, we believe that this approach
rids such games of some inherent ill-posedness, and perhaps
thereby allows for the emergence of equilibria.

D. Ex-post and ex-ante consistency of conjectures

We now note certain subtle but important points about the
consistency of conjectures of follower equilibria made by
leaders. Throughout we assume that S is single-valued.

Let (x∗, y∗) be an equilibrium of the conventional for-
mulation E . By Proposition 3.1 (ii), (x∗, y∗) lies in Fcc.
Consider an arbitrary point feasible point (x, y) in Ω(x∗, y∗).
The key claim we want to make is that even though
(x∗, y∗) satisfies consistency of y∗, a feasible point (x, y)
may not (i.e. y may not belong to A). The reason is
as follows: (x, y) ∈ Ω(x∗, y∗) implies that for each i,
decisions xi, yi satisfy yi = S(xi;x

∗,−i). But the terms
y1 = S(x1, x

∗,−1), . . . , yN = S(xN , x
∗,−N ) may not all

be equal. Therefore y is not necessarily in A.
The situation is different in the formulation Ecc. Any

point (x̄, ȳ) ∈ Ωcc(x∗, y∗) (i.e., one that is feasible for

individual problems {Lcc
i }i∈N ) necessarily satisfies the con-

sistency requirement. This is because Ecc is a more restrictive
formulation: Ωcc(x∗, y∗) is nonempty only for those y∗ that
belong to A. Furthermore any (x̄, ȳ) ∈ Ωcc(x∗, y∗) must
satisfy ȳ = y∗ and thus must satisfy ȳ ∈ A.

In summary, there is a distinction between the consistency
of conjectures at equilibrium alone (as in E with single-
valued S) and the stronger requirement of consistency of
conjectures in the optimization problem of each leader (as
espoused by Ecc). The former is an ex-post consistency that
holds only for the equilibrium (or “resolution”) of the game;
it is ensured by the single-valuedness of S in the conventional
formulation. The latter, is an ex-ante consistency that is
explicitly enforced as a part of the “rules” of the game.

At this juncture, it is worth reflecting on the meaning
of the formulation Ecc. One possible view is that Ecc is
an alternative model of hierarchical competition in which
leaders have stronger informational requirements; specifi-
cally, leaders are cognizant of the conjectures made by their
adversaries. Another possible view is that the original game
E is the only “right” formulation. An equilibrium of Ecc is
then a weaker equilibrium notion for E (when S is single-
valued, cf. Proposition 3.1 (iii)).

IV. COMPUTATIONAL IMPLICATIONS

Multi-leader multi-follower games do not admit tractable
sufficiency conditions which can then be collectively em-
ployed for equilibrium computation. The Gauss-Seidel
scheme for computation of equilibria sequentially solves
the agent problems and cycles through the agents, till no
improvement can be determined [9]. Such schemes are not
guaranteed to converge in theory and display markedly
unpredictable behavior in practice. In this section, we demon-
strate the role of the ex-ante consistency of conjectures
in stabilizing the behavior of the Gauss-Seidel heuristic
on a problem formulated in the form Ecc, even while the
heuristic does not converge on the corresponding problem E
formulated in the conventional way. We do this for a two-
settlement spot-forward market under uncertainty studied
in [9]. This game is essentially a stochastic multi-leader
multi-follower game in which the leader is faced by an
uncertain spot-market (follower equilibrium), captured by a
set of scenario-specific linear complementarity problems [3]:

0 ≤ zξ ⊥Mξzξ +Nf + qξ ≥ 0, (9)

where ξ ∈ Ξ is the realization of the uncertainty, f denotes
the vector of forward decisions made by the leaders, Ξ
denotes a sample space of finite cardinality, and Mξ, N and
qξ are defined in [9, Sec. 3]. The forward market participants
are viewed as leaders with respect to the followers in the
spot-market game. The firm problem in the forward market
may be compactly stated as follows:

(Li(f−i)) max
fi,yi

E
(

1
2 (yξi )

TQξyξi + (rξ)T yξi

)
0 ≤ yξi ⊥M

ξyξi +Nf + qξ ≥ 0, ∀ξ ∈ Ξ,



where yi , {yji }
|Ξ|
j=1 denotes leader i’s conjecture regarding

the spot-market equilibrium and Qξ, rξ, ξ ∈ Ξ are constants.
For computing an equilibrium of Ecc if one uses a Gauss-

Seidel heuristic, the solution is stuck at the initial values of
the follower decision since the leader problems are required
to satisfy the consistency requirement. To obviate this prob-
lem, we introduce an exact penalization on the consistency
constraints across follower decisions and denote firm i’s
problem by (ELi(f−i, y−i; ρ)), defined as follows:

max
fi,yi

E
(

1
2 (yξi )

TQξyξi + (rξ)T yξi

)
+ pEi (yi; y−i, ρ)

0 ≤ yξi ⊥M
ξyξi +Nf + qξ ≥ 0, ∀ξ ∈ Ξ,

where pEi (yi; y
−i, ρ) ,

{
ρ
∑N
j=2 ‖yj − y1‖1, i = 1

ρ‖yi − y1‖1, i > 1.

Note that when ρ is small, the scheme closely resembles the
standard Gauss-Seidel scheme on the original (unmodified)
problem. When the parameter is large, the scheme is akin to
a Gauss-Seidel type scheme applied on the Ecc modification
(but via a penalization as above).

N |Ξ| iter ‖fk−fk−1‖∞
(1+‖fk‖2)

inc
∑
‖y∗∗i − y∗i ‖∞

2 5 10 1.56e-07 3.76e+04 5.96e+03
2 10 31 1.66e-04 1.03e+05 2.27e+04
2 15 31 1.66e-04 1.78e+05 4.76e+04
2 20 31 8.63e-01 1.80e+05 1.77e+05
2 25 31 1.90e-04 2.17e+05 4.69e+04
2 30 31 5.71e-04 4.40e+05 2.75e+05
2 35 31 6.47e-02 3.31e+05 8.79e+04
2 5 10 1.56e-07 3.76e+04 5.96e+03
3 5 31 2.63e-01 8.91e+04 2.47e+04
4 5 31 2.41e-03 1.10e+05 1.76e+04

TABLE I
PERFORMANCE OF EXACT PENALTY SCHEME WITH ρ = 1e−3

N |Ξ| iter ‖fk−fk−1‖∞
(1+‖fk‖2)

inc
∑
‖y∗∗i − y∗i ‖∞

2 5 16 3.06e-07 1.05e-05 1.40e-03
2 10 2 6.14e-07 8.76e+01 1.62e+00
2 15 12 4.15e-07 1.94e-05 1.17e-04
2 20 8 1.89e-07 6.23e-04 4.48e-04
2 25 11 7.55e-07 3.24e-05 1.01e-04
2 30 11 9.51e-07 2.64e-05 1.55e-04
2 35 4 1.27e-07 1.52e-01 1.01e-01
2 5 16 3.06e-07 1.05e-05 1.40e-03
3 5 5 6.72e-08 1.30e-02 4.91e-03
4 5 4 3.48e-07 3.73e-02 9.94e-03

TABLE II
PERFORMANCE OF EXACT PENALTY SCHEME WITH ρ = 1e3

Tables I and II show the results obtained. In each ta-
ble, we have shown iter (the number of cycles that the
Gauss-Seidel scheme proceeds through before termination),
‖fk−fk−1‖∞

(1+‖fk‖2)
(the scaled difference in forward decisions upon

termination; the scheme terminates when this is small or
when an iteration limit is reached), inc=

∑
‖y∗1 − y∗i ‖∞

(the inconsistency in conjectures of follower equilibrium),
and

∑N
i=1 ‖y∗∗i − y∗i ‖∞ (the deviation of y∗i from y∗∗i , the

solution of the best-response problem derived from solving
Lcc
i (y−i,∗)). Note that if y∗∗i differs significantly from y∗i , it

suggests that y∗i may not be an equilibrium.

When employing a small penalty parameter, the scheme
does not display convergence within a 30 iteration limit. In
particular, neither the disparity in leader decisions nor the
consistency in follower decisions are seen to converge to
zero when ρ is small. In more detailed tests, we observed
that the Gauss-Seidel scheme with small penalty parameter
converged infrequently, as in Table I. However, with a larger
penalty parameter, the scheme is seen to converge within 16
iterations. The Gauss-Seidel scheme converged in almost all
runs, as seen in Table II. Whenever the scheme did converge,
in most instances, the follower decisions were consistent.

V. CONCLUSIONS
This paper was motivated by two concerns associated with

multi-leader multi-follower games: (i) leaders’ conjectures
about the follower equilibrium may be inconsistent and such
equilibria may not be sensible in physical settings; and (ii)
there are no general existence results. We presented a mod-
ified formulation where leader problems were constrained
by a consistency requirement across leader-specific conjec-
tures of follower equilibria. We showed that this resolves
concerns (i) and (ii). In particular, if leader payoffs admit a
potential function, the modified game admits equilibria under
mild conditions. Finally, preliminary evidence suggests that
equilibria appear significantly easier to compute for such a
model.
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