
A Grid-Computing Framework for
Quadratic Programming under Uncertainty

Ankur Kulkarni Albert Rossi Jay Alameda Uday V. Shanbhag

February 8, 2007

Abstract— Mathematical programming under uncertainty
concerns the optimal management of resources when there
is stochasticity in the data. Specifically, this requires making
a (first-period) decision before the realization of uncertainty.
In addition, recourse-based formulations react to the random-
ness by reacting through (second-period) recourse decisions.
Such formulations allow a decomposition into a master-worker
framework. We consider the solution of such problems by
developing grid-computing extensions of two algorithms for a
class of problems with quadratic objective functions and linear
constraints. A description of the framework for implementing
these algorithms on the TeraGrid is provided. Some preliminary
computational experience on a serial platform is reported.

I. INTRODUCTION

In this paper, we focus on the stochastic quadratic pro-
gram [13], [14], [3]:

SQP minx,yω
1
2
xT Qx + cT x + IEω[1

2
(yω)T Dωyω + dT

ωyω]

s/t
Ax = b

Aωx + Byω = bω

x, yω ≥ 0,

where ω is defined on a probability space (Ω,F , IP). In
addition, we assume that Q and Dω are positive definite
for all ω ∈ Ω and A,Aω and B are of full row-rank for all
ω ∈ Ω. Furthermore, we assume that the sample-space Ω is
finite with ω taking on K(= |Ω|) realizations.

The structure of SQP implies that we make a first-stage
decision x and then make recourse decisions yω based on
the realization of random variable ω. The recourse decisions
come at a cost and have to stay feasible with respect to
a set of random constraints. Such a formulation has been
employed for a variety of problems, ranging from asset-
management to inventory control to network design [10], [3]
with uncertanty often lying in the specification of demand
or price. 1 Such problems belong to the broader class of
decision-making problems called stochastic programs [6],
[2], [3], [10] and may take a variety of formulations. Our

Ankur Kulkarni and Uday V. Shanbhag are with the Department of
Industrial and Enterprise Systems Engineering at the University of Illinois
at Urbana-Champaign, e-mail akulkar3@uiuc.edu and udaybag@uiuc.edu

Albert Rossi and Jay Alameda are with the Middleware Research
Group, National Center for Supercomputing Applications (NCSA), e-mail
jalameda@ncsa.uiuc.edu and arossi@ncsa.uiuc.edu

1An example of a recourse-decision in the context of inventory manage-
ment would be to store excess production, under an assumption of random
demand.

interest is in the two-stage structure in which we make deci-
sions before the uncertainty reveals itself and subsequently
make recourse decisions, after the uncertainty is revealed.

The aim of this paper is to communicate our efforts to
solve SQP on a grid-computing environment. This entails
extending existing middleware structures to accommodate
specific concerns (such as asynchronicity) as they relate to
such problems.

This paper is organized in the following fashion. In
section II, we introduce two decomposition-based approaches
for solving the stochastic quadratic program. Section III
describes the grid-based implementation while section IV
provides some initial computational results. We conclude in
section V.

II. DESCRIPTION OF ALGORITHM

We suggest two algorithms for solving the stochastic
quadratic program, both of which are provably convergent.
These algorithms are based on the L-shaped method for
solving stochastic linear programs [15]. Chapter 5 in [3]
provides a complete explanation of the L-shaped method
for stochastic linear programs. The L-shaped method for
quadratic programs uses the same idea to reduce the SQP
above to a problem of the kind shown below.

SQP minx,θ
1
2xT Qx + cT x + θ

s/t
Ax = b

θ ≥ Q(x)
x, θ ≥ 0.

where Q(x) = IEωQ(x;ω), where Q(x;ω) is defined as

min
yω

[
1
2 (yω)T Dωyω + dT

ωyω|Aωx + Byω = bω, yω ≥ 0
]
. (1)

The L-shaped method approximates the nonlinear function
Q(x) by a series of cuts (linear inequality constraints) [3].
For stochastic quadratic programs, the recourse function
Q(x) can be shown to be convex for all x in the domain [13].
The approximations to Q(x) are achieved by means drawing
a series of tangents to Q(x) and creating thus an outer linear
approximation of Q(x). In effect, we replace this function
by a successively more accurate set of linear constraints.
The resulting quadratic program, called the master problem,
computes x. The determination of the cuts requires the
solution of K quadratic programs which may be solved in
parallel. We describe the computational architecture next.

Fig. 1. Inexact-Cut (Upper) and Trust-region (lower) L-shaped Decompo-
sition Methods

A. Master-worker structure

The minimization problem in (1) is completely decom-
posable into scenario-based subproblems. Thus the SQP can
now be decomposed into a master problem in (x, θ) and
K subproblems in yω, each parameterized by x and ω,
making it amenable for solving on a computational grid. For
both algorithms that we present here, the master problem is
assigned to one node of the cluster, the master node. Each
worker gets assigned a set of subproblems parametrized by
the subproblem numbers. This assignment is kept constant
throughout the execution of the algorithm.

B. L-shaped Method with Inexact Cuts

For explaining our algorithms for solving the SQP, it is
useful to define the dual of the ωth subproblem as

max
πω,zω

[
(bω −Aω)T

zω −
1
2
πT

ω Dωπω| −Dωπω + BT zω ≤ dω

]
.

Following on the lines of Zakeri et al. [16], the L-shaped
method was extended to stochastic QPs by Shanbhag et
al. [13], [14] by using inexact cuts. Suppose each dual
problem is solved to feasibility, with an optimality tolerance
of ε. The resulting constraint is an ε-inexact cut (GT

I x +
gI + ε > Q(x)), where GI := IEω

[
−zT

ω Aω

]
and gI :=

IEω

[
zT
ω bω − 1

2πω
T Dωπω

]
.

The algorithm:

• Set n = 1 and choose an update parameter u. Upper
bound = ∞ and lower bound = −∞. Pick εn

• Solve the master problem exactly to get (xn, θn). Up-
date the lower bound.

• Using xn, solve all K subproblem-duals to εn tolerance
• Add cut (GI

n, gI
n) to the family of optimality cuts

• Update the upper bound. Check for termination
• εn+1 = εn/u, n = n + 1

The inexact cuts form a weaker outer-linearization of
Q(x)(relative to what would be obtained from using exact
cuts). The ε tolerance is reduced steadily as the iterations
proceed. It can be shown that as n →∞, θn → Q(xn), and
xn → x∗ [13], [14].

C. Trust-Region L-shaped Method

Linderoth and Wright have discussed a trust region based
approach to solving stochastic linear programs [12]. This
idea was extended to stochastic quadratic programs by
Kulkarni and Shanbhag [11]. This method is essentially
an extension of the L-shaped method with a trust region
appended to the constraints of the master problem as follows.

Master-TR minx,θ
1
2xT Qx + cT x + θ

s/t

Ax = b
θ ≥ GT

i x + gi i = 1, ...,m
−∆n,le ≤ x− xn ≤ ∆n,le

x, θ ≥ 0.

where (Gi, gi) is the set of cuts that approximate Q(x), n
is the major iterate index, l is the minor iterate index and
∆n,l is the box-shaped trust region around xn.

The algorithm [11]:
• Choose starting point x0, initial trust region ∆0,0, initial

approximation (G0, g0)
• Solve Master-TR to get minor iterate xn,l

• Solve all subproblems duals to optimality using xn,l

• Add cut (Gn, gn) to the family of optimality cuts
• Check if the sufficient descent condition [11] is satisfied.

– If not, update model to get mn,l+1. Update ∆n

– If yes, get new major iterate xn+1 = xn,l. Update model
mk+1, and ∆k+1

• Terminate if termination condition is satisfied

III. GRID-BASED PARALLEL IMPLEMENTATION

Computational grids are geographically-distributed het-
erogenous networked computing resources. For instance, the
TeraGrid has more than 11,000 processors that it can access
with a total computational power of more than 45 Teraflops
while the National Center for Supercomputing Applications
(NCSA) has a grid with 1774 processors. Grid-computing
in the context of optimization problems has largely been re-
stricted to Condor-based implementations, which we describe
next. We follow a different path, leveraging the middleware
research done in NCSA. This is described in section III-B.

A. Condor-based Implementations

Most of the attempts to use grid-based methods to solve
large-scale optimization problems have used the Condor
system. In this system, a set of collections of processors
are managed. These processors may be nodes of a su-
percomputer or could merely be accessible PCs. Condor
processes communicate through PVM [7] and a set of shared
files. The implementation of a Master-Worker paradigm on
computational grids is achieved through a set of runtime
libraries.

There has been significant effort by several researchers to
extend optimization algorithms to the grid-computing frame-
work. We discuss two successful implementations using the
master-worker framework (MW) [9], [8] in brief:

1) Stochastic Linear Programming: Linderoth et al.
[12] extend a decomposition method[15] for stochastic
linear programming to the grid-computing framework.
An asyncrhronous variant of the algorithm is devel-
oped and implemented on the Condor system. The
authors aim to solve a problem in which the stochas-
ticity is given by 10,000,000 scenarios. If the problem
were to be solved as a large-scale linear program, the
resulting size of the matrix would be of the order
of 1022. By decomposing the problem over 1,345
processors, the total CPU time was 1.03 years while
the real time (after parallelizing) was approximately 32
hours.

2) Quadratic Assignment Problems: The quadratic as-
signment problem is a optimization problem with
discrete variables. In [1], the authors set out to solve
NUG30, an instance of the problem that would possibly
take between 5-10 years on a fast workstation. Through
the use of grid-computing methods, the problem was
solved in less than 7 days by using approximately 655
machines.

B. Middleware at NCSA

A general method for running distributed processes would
be to construct scripts that are run on each of the available
nodes. By sending across input data in a file-based form, the
scripts can be executed. The jobs are then monitored and
the output is moved back to the originating processor when
the jobs have completed. Such an approach tends to place a
significant responsibility on the user and relies significantly
on robust scripts which are often not reusable. Our approach
relies on the following middleware:

• VIZIER: This service allows one to ensure that the con-
figuration for every node is automatically controlled ev-
ery time it is used. Furthermore configurational changes
may be restored and reused.

• TROLL: This service launches jobs and is also respon-
sible for monitoring the status of every job. It also
determines the requirements of each user.

• ELF: The ELF utility allows for every application to be
wrapped in an XML wrapper. This allows for flexibility
in the type of application being executed and would
render a Matlab program indistinguishable from a C
executable. Such a wrapper would also manage input,
output, execution and error messages.

• SIEGE: The user remains protected from the complex-
ity of the inner workings of the system by working
entirely through the SIEGE utility. The service-oriented
architecture that has been used in the system has the
desktop client, Siege, which interacts with the Troll
ensemble broker stack and Vizier information services,

TABLE I
COMPUTATIONAL EFFORT BY SIZE OF DISTRIBUTION (n = NUMBER OF

PROBLEMS PER WORKER)

|Ω| n = 1 n = 10 n = 25 n = 50 n = 100 n = |Ω|
400 31 135 307 595 1170 4062
625 40 166 376 726 1426 7087
900 49 188 420.5 808 1583 11714

1000 60 267 612 1187 2337 14046
1225 59 226 503 966 1891 18067
1331 73 262 577 1102 2152 22485
1681 973 1286 1807 2676 4413 32800
2187 190 730 1630 3130 6130 99631
6561 595 1954 4219 7994 15544 834482

15625 1617 7416 17081 33190 65406 3912376
16384 1735 4255 8455 15455 29455 2580980
19683 1831 6448 14143 26968 52618 4128329
32768 2667 7752 16227 30352 58602 8581700
46656 2570 9270 20438 39050 76275 18686359

to deploy applications controlled by the remote applica-
tion container, ELF, which implements our own script-
ing language, OgreScript. The system is tied together
with the notification systems, currently using the Java
Messaging Service (JMS) [JMS] channel ActiveMQ
[ActiveMQ], and a metadata system.

Such a system is modular, generalizable and can be extended
easily to work with systems like Condor. It has a more
robust methodology for notifying the use of errors and has
a comprehensive (SIEGE) interface for usage.

IV. COMPUTATIONAL EXPERIENCE

In table I, we provide some preliminary computational
results for a large-scale stochastic quadratic program [5] in
which the number of scenarios is varied from 400 to close
to 50,000. The current set of results are obtained by using
the exact-cut L-shaped method [15] on a single processor
machine (Intel Xeon CPU, 3.40GHz 64-bit processor, 2GB of
RAM) using KNITRO (http://www.ziena.com/ [4])
as the quadratic programming solver. The first column of
table 1 shows the number of scenarios in the second-
stage distribution while n specifies the number of scenarios
allocated to each worker. In effect, n = 1 implies that there
are assumed to be as many workers as there are scenarios
(the best-case situation) while n = |Ω| implies that all the
scenarios are computed on a single worker. The interspersed
columns show similar results for higher levels of granularity.
Since, the current implementation is on a single node, we
have provided an indication of how parallelization would
impact the computational effort. An important characteristic
of the behavior of the algorithm is that the effort grows
linearly with size (and not faster).

V. SUMMARY AND FUTURE RESEARCH

This paper considers the solution of a two-period stochas-
tic programming problem. Direct solutions of such problems
is impossible since the sizes run well into the hundreds of
thousands in variables and constraints. Instead, we describe
two decomposition methods of which a variant of one has
been applied and tested on a serial platform. Our next step
would be to extend the implementation to the TeraGrid,

focusing specifically on making algorithmic enhancements
to allow for asynchronous worker computations.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Richard Waltz and Todd
Plantenga of Ziena Optimization Inc. for providing us with
the nonlinear programming solver KNITRO.

REFERENCES

[1] K. ANSTREICHER, N. BRIXIUS, J.-P. GOUX, AND J. LINDEROTH,
Solving large quadratic assignment problems on computational grids,
Math. Program., 91 (2002), pp. 563–588. ISMP 2000, Part 1 (Atlanta,
GA).

[2] E. M. L. BEALE, On minimizing a convex function subject to linear
inequalities, J. Roy. Statist. Soc. Ser. B., 17 (1955), pp. 173–184;
discussion, 194–203. (Symposium on linear programming.).

[3] J. R. BIRGE AND F. LOUVEAUX, Introduction to Stochastic Program-
ming: Springer Series in Operations Research, Springer, 1997.

[4] R. H. BYRD, J. NOCEDAL, AND R. A. WALTZ, KNITRO: An inte-
grated package for nonlinear optimization, in Large-scale nonlinear
optimization, vol. 83 of Nonconvex Optim. Appl., Springer, New York,
2006, pp. 35–59.

[5] X. CHEN AND R. S. WOMERSLEY, Random test problems and
parallel methods for quadratic programs and quadratic stochastic
programs, Optim. Methods Softw., 13 (2000), pp. 275–306.

[6] G. B. DANTZIG, Linear programming under uncertainty, Management
Sci., 1 (1955), pp. 197–206.

[7] A. GEIST, A. BEGUELIN, J. DONGARRA, R. MANCHEK, AND
V. SUNDERAM, PVM:Parallel Virtual Machine, The MIT Press, Cam-
bridge, MA, 1994.

[8] J. GOUX, J. LINDEROTH, AND M. YODER, Metacomputing and
the master-worker paradigm, Tech. Rep. Preprint MCS/ANL-P792-
0200, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., February 2000.

[9] J.-P. GOUX, S. KULKARNI, J. LINDEROTH, AND M. YODER, Master-
worker : An enabling framework for master-worker applications on
the computational grid, Cluster Computing, 4 (2001), pp. 63–70.

[10] G. INFANGER, Planning Under Uncertainty, Boyd and Fraser Pub-
lishing Co., 1994.

[11] A. KULKARNI AND U. SHANBHAG, Decomposition methods for
convex programming under uncertainty, To be submitted.

[12] J. LINDEROTH AND S. WRIGHT, Decomposition algorithms for
stochastic programming on a computational grid, Comput. Optim.
Appl., 24 (2003), pp. 207–250. Stochastic programming.

[13] U. V. SHANBHAG, Decomposition and Sampling Methods for Stochas-
tic Equilibrium Problems, PhD thesis, Department of Management
Science and Engineering (Operations Research), Stanford University,
2006.

[14] U. V. SHANBHAG, G. INFANGER, AND P. W. GLYNN, An interior
sampling method for stochastic quadratic programs, To be submitted,
(2006).

[15] R. M. VAN SLYKE AND R. WETS, L-shaped linear programs with
applications to optimal control and stochastic programming, SIAM J.
Appl. Math., 17 (1969), pp. 638–663.

[16] G. ZAKERI, A. B. PHILPOTT, AND D. M. RYAN, Inexact cuts in
Benders decomposition, SIAM J. Optim., 10 (2000), pp. 643–657.

