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Abstract

This paper presents a finite dimensional approach to stochastic approximation in infinite dimensional Hilbert space. The
problem motivated by applications in the field of stochastic programming wherein we minimize a convex function defined on
a Hilbert space. We define a finite dimensional approximation to the Hilbert space minimizer. A justification is provided for
this finite dimensional approximation. Estimates of the dimensionality needed are also provided. The algorithm presented is
a two time-scale Newton-based stochastic approximation scheme that lives in this finite dimensional space. Since the finite
dimensional problem can be prohibitively large dimensional, we operate our Newton scheme in a projected, randomly chosen
smaller dimensional subspace.
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1 Introduction

Let (Ω,F , µ) be a probability space, ξ be a random vari-
able taking values in an open bounded set B ⊂ < and
h : < × B → < be a non-negative measurable function
satisfying the following assumption.

Assumption 1.1 B has the cone property 3 . For each
z ∈ B the z-section of h, viz., h(·, z) is strictly convex
and twice continuously differentiable and has a (perforce
unique) minimum.

Denote by H , the Hilbert space of B → < functions
induced by the inner product

〈f, g〉 =
∫

Ω

f(ξ(ω))g(ξ(ω))dµ.
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We are interested in an algorithm for minimizing h in
the Hilbert space in a certain sense. The Hilbert space
minimizer of h is defined as follows.

Definition 1.1 (H −optimal minimizer) A random
variable f∗ ∈H is termed an H −optimal minimizer of
h if∫

Ω

h(f∗(ξ(ω)), ξ(ω))dµ ≤
∫

Ω

h(f(ξ(ω)), ξ(ω))dµ

for all f in H .

Equivalently,

inf
f∈H

IE[h(f)] := inf
f∈H

IE[h(f(ξ(ω)), ξ(ω))] = IE[h(f∗)].

Let H be spanned by a complete orthonormal basis
Φ = {ϕi}i∈N. (This is always possible if H is separa-
ble, i.e., has a countable dense set.) Definition 1.1 can be

rewritten by taking f∗(z) =
∞∑
i=1

x∗iϕi(z) for each z ∈ B.

We say that x∗ = {x∗(i)}i∈N is an H −optimal mini-
mizer of h if

IE
[
h
(∑

x∗(i)ϕi
)]
≤ IE

[
h
(∑

x(i)ϕi
)]

(1)
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for all x(i) ∈ <, i ∈ N, such that
∑
i∈N x(i)2 < ∞.

Throughout this paper we shall use f∗ and {x∗(i)} in-
terchangeably.

Suppose the values of h(·, ·) are observable only in a
noise-corrupted form and that the value of the second
argument is generated through samples that we cannot
control. The task we accomplish in this paper is (a) defin-
ing an approximation to f∗ and (b) develop an algorithm
whose iterates asymptotically approximate f∗. The al-
gorithm is a two time–scale stochastic approximation it-
eration based on a novel use of the Newton method and
subspace minimization.

The important contributions of this article are as follows.
Algorithmically, finding f∗ either in the sense of Defi-
nition 1.1 or (1) is not possible in any computer–coded
scheme. Thus defining a finite dimensional approxima-
tion to f∗ that is soundly justifiable is the first significant
contribution of this paper. Importantly, with our analy-
sis we can provide a quantitative measure of the goodness
of the approximation. The major contribution of this pa-
per is a novel, implementable approximation algorithm
for infinite dimensional stochastic approximation. The
nature of this problem, minimization in Hilbert space, is
quite different from that commonly tackled in stochas-
tic approximation literature. It is motivated from the
field of stochastic programming (surveyed below) where
such problems are natural and have been widely studied.
To our knowledge there exists no work that addresses
stochastic programming via stochastic approximation.
Yet another contribution of this paper lies in bridging
this gap.

The paper is organized in the following fashion. Section
2 covers the background of both stochastic program-
ming and stochastic approximation. Section 3 is devoted
to justifying a finite dimensional approach. Section 4
presents the algorithm, 5 discusses convergence and the
paper concludes in section 6.

2 Background

2.1 Stochastic programming

Let ξ be a random variable on a probability space
(Ω,F , µ). The general stochastic nonlinear program is
as stated below.

SNLP min
x,y

f(x) + IE [h(x, y(ξ(ω)), ξ(ω))]

s. t.

u(x) = 0

a(x, y(ξ(ω)), ξ(ω)) = 0

b(y(ξ(ω)), ξ(ω)) = 0

x, y(ξ(ω)) ≥ 0, ∀ ω ∈ Ω

This formulation emerged out of Dantzig’s model for de-
cision making under uncertainty [11] (also independently
suggested by Beale [3]). Usually a simplification is made
in the above problem as:

h(x, y(ξ(ω)), ξ(ω)) 7→ h(y(ξ(ω)), ξ(ω))
a(x, y(ξ(ω)), ξ(ω)) 7→ a(x, ξ(ω)) + d(y(ξ(ω)), ξ(ω))

Solving (SNLP) amounts to finding a deterministic vari-
able x and a random variable y. Finding x is routine
and can be done using any conventional optimization
techniques. Solving for a function y makes this problem
challenging and unique. The canonical problem that is
usually used to motivate this model is the “news ven-
dor problem” which we present below. The reader may
consult [5] for a thorough introduction to stochastic pro-
gramming.

2.1.1 News vendor problem

On a given day, a news vendor buys x newspapers at a
cost c(x) before the demand for newspapers is known.
The newspapers are sold after the materialization of
demand, dξ(ω), which differs according to scenario (or
sample point) ω ∈ Ω. Sales, also dependent on ω and
denoted by y(ξ(ω)), result in a revenue qξ(ω)(y(ξ(ω))).
The unsold newspapers, w(ξ(ω)) (= x − y(ξ(ω))), are
returned back to the supplier at a rate rξ(ω). The de-
cision x is called the first stage decision and the tu-
ple (y(ξ(ω)), w(ξ(ω))) constitutes the second stage de-
cision for scenario ω. If we assume risk neutrality of
the newsvendor, then our objective is to maximize the
newsvendor’s expected profit. The newsvendor looks to
optimize his profit over the two stages by finding a suit-
able x and a collection (y(ξ(ω)), w(ξ(ω)))ω∈Ω so as max-
imize the expected profit, subject to the constraints of
demand.

NV min
x,y,w

c(x)− IE
[
qξ(ω)(y(ξ(ω))) + rξ(ω)w(ξ(ω))

]
s. t.

y(ξ(ω)) + w(ξ(ω)) = x

y(ξ(ω)) ≤ dξ(ω)

x, y(ξ(ω)), w(ξ(ω)) ≥ 0, ∀ω ∈ Ω.

A popular direction of research in stochastic program-
ming has been via the assumption of finite Ω. For finite
Ω, the problem NV is merely a large nonlinear optimiza-
tion problem in variables

(x, y(ξ(1)), w(ξ(1)), . . . , y(ξ(|Ω|)), w(ξ(|Ω|))),

but with a nice structure. Most of previous research has
been directed towards exploiting this structure to gen-
erate algorithms that are scalable with respect to |Ω|.
This direction of work suppresses the stochasticity of
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stochastic programming, which is indeed its most inter-
esting aspect. The earliest work in stochastic program-
ming assumed an infinite probability space [34,25] and
laid the groundwork by giving meaning to ‘optimality’
under uncertainty. Since then, this question has only re-
cently been revisited in [18]. Another approach to solv-
ing stochastic programs with infinite Ω has been by using
sample average approximations (or empirical expecta-
tion) to the IE[ · ] term in the objective [27,28,30,16,29].

It can be argued that applying stochastic approximation
to stochastic programming is a sensible endeavour. Pos-
ing the news vendor’s problem as above implicitly as-
sumes the knowledge of functional form of qξ(ω), ∀ ω ∈ Ω
on the part of the news vendor. In reality a news vendor
learns the form of his profit curve through his experience
of past scenarios – samples of demand which are exoge-
nously controlled. The inspiration for applying stochas-
tic approximation to decision making under uncertainty
arises from this very standpoint. Using stochastic ap-
proximation we allow the learning of the objective func-
tion by the decision maker and thus solve the stochastic
program.

2.2 Stochastic approximation

The typical approximation scheme to find the extremum
of a function g follows the iteration

xn+1 = xn + an[∇g(xn) +Mn+1], (2)

where Mn is a martingale difference sequence and the
steps an satisfy∑

an =∞
∑

a2
n <∞.

Robbins and Monro first introduced the stochastic ap-
proximation procedure on the Hilbert space < [24] to
locate the deterministic zero of a function using its
noisy measurements. An alternative stochastic approxi-
mation scheme was presented by Kiefer and Wolfowitz
[17] with a finite difference approximation replacing
the term ∇g(xn). Apart from being able to deal with
noisy measurements, stochastic approximation schemes
offer several other advantages. Stochastic approxima-
tion methods are robust; in the sense that they have
very good convergence properties. The first scheme
of Robbins and Monro showed mean square conver-
gence. Stronger convergence results were subsequently
obtained by Wolfowitz [35] and Blum [6]. Stochastic
approximation is also light on memory usage, requir-
ing the storage of only the previous iterate. From the
point of view of analysis of the algorithm, under certain
conditions the stochastic approximation algorithm is
known to asymptotically resemble the behavior of the
trajectory of the ODE

ẋ(t) = ∇g(x). (3)

Hence the iteration in (2) can be analyzed conveniently
using the corresponding ODE in (3). The reader is in-
vited to see chapter 1,2 of [7] for a quick summary.

An alternative iteration to (2) is to use a “Newton-type”
approach; an approach that we shall adopt in a certain
form that will be made clear later. The Newton iteration
looks like this:

xn+1 = xn − an
[
∇2g(xn)−1∇g(xn) +Mn+1

]
.

These methods have also received considerable atten-
tion in literature. Their drawback/unattractiveness lies
in the O(N2) computations needed for Hessian calcu-
lation. Hence research in Newton methods has largely
followed the Kiefer-Wolfowitz regime via attempts to re-
duce the computational burden. A fairly extensive sum-
mary and an idea of Newton-type approaches is available
in [4] and the references therein.

Since Robbins-Monro and Kiefer-Wolfowitz, finite di-
mensional stochastic approximation in Euclidean space
has been a topic of copious theoretical and applied re-
search. Infinite dimensional stochastic approximation is
not as rich in its history as its finite dimensional cousin.
The reader may see Dvoretsky [13] for the earliest work
and Révész [22,23], Walk [32,33] for some related work.

There are broadly two approaches to infinite dimensional
stochastic approximation: parametric and nonparamet-
ric. The nonparametric or abstract approach applies (2)
on objects xn ∈ H that have no parametric specifica-
tion. Such an approach has the obvious deficiency of be-
ing inapplicable to any realistic computer implementa-
tion, but is immune to misspecification of parameters.
The interested reader may look at [9] for a discussion on
the pros and cons of parametric and nonparametric ap-
proaches. The convergence analysis for nonparametric
stochastic approximation follows from analysing the re-
lated H −valued ODE as in [8] or by using probabilistic
inequalities as in [22,23].

Alternatively, one may follow a parametric approach us-
ing a complete basis as in Eq (1). A popular idea in
such a pursuit has been to use a ‘sieve’ type approach.
This idea applies the classical Robbins-Monro (or Kiefer-
Wolfowitz) technique to nested finite dimensional sub-
spaces of H of growing dimension. See Goldstein [14],
Nixdorf [19] and Chen and White [9] for examples of
such a modus operandi. Any algorithm with perpetually
growing bases also suffers from the problem of requiring
infinite storage space; and is thus practically unimple-
mentable. Of course one may choose to solve the prob-
lem approximately by limiting the size of the subspace
to be searched in by a priori selecting finitely many ba-
sis vectors ϕi and then perform the classical stochastic
approximation procedure on Eq (1) on finitely many xi.
But usually it is difficult to justify an a priori knowl-
edge of adequate finitely many basis vectors in infinite
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dimensional problems – indeed one of our contributions
is providing such a justification.

Here we propose to resolve the issue of implementabil-
ity in infinite dimensional stochastic approximation (an
issue which is also inherited by large finite dimensional
stochastic approximation) by obtaining an N dimen-
sional approximation to (1), N < ∞, via a stochastic
approximation scheme that runs mostly in k dimensions,
k ≈ O(logNε−2), where ε is a degree of accuracy. We
now provide a precise definition of this concept and a
description of the algorithm.

3 The stochastic approximation algorithm

Recall our intention of incorporating learning in the
news vendor problem via exogenously controlled sam-
ples. Suppose we are provided with a stream of i.i.d. sam-
ples {ξn}, where for each n, ξn : Ω→ B is measurable.

The iterates of our algorithm live in a finite dimensional
subspace of H . A justification for this relaxation fol-
lows in the next section; here we outline the approach.
Suppose for the moment that we are provided with a
very large finite set of basis vectors Φ̂ = {ϕi}Ni=1. From
here on N = |Φ̂|. Let Ĥ =

{∑N
i=1 αiϕi |αi ∈ <

}
. The

stochastic approximation is to ensue in Ĥ . To simplify
matters we use the notation

ĥ : <N → < where ĥ(x) = h

∑
i≤N

x(i)ϕi(ξ(ω)), ξ(ω)

 .

Definition 3.1 (Finite dimensional approximation)
The N−dimensional approximation to f∗, denoted by
x∗ is defined as the minimizer of IE

[
ĥ
]
.

Let xn denote the ‘current point’ of the iteration. We
randomly select a k−dimensional subspace of Ĥ and
generate iterates {yn} that minimize a quadratic model
of ĥ at xn in this subspace. Simultaneously, but through
a small increment, we move xn to xn+1. Occasionally we
stop the iteration in current subspace and proceed with
another minimization along a freshly selected random
subspace. These fresh selections are made increasingly
infrequent as the iteration matures. At any time if the
iterates escape a prescribed closed convex bounded set,
we project them back. This method can be identified as a
variant of the classical Newton-type approach. It differs
from the classical in two features:

(1) The space of operation changes from time to time,
while it does not in usual Newton-type methods.

(2) Classical methods wait for the inner iteration to
complete before changing to a new point. We in-

stead run both iterations in tandem but with differ-
ent stepsizes. A similar idea in the Newton context
is present in [4].

The reason for changing the subspace in (1.) is to re-
duce the computational burden – N can be extremely
large and stochastic approximation on all N values can
be computationally expensive. Our iteration requires an
update and computation of only k values at each step.
The reason for choosing a random subspace is the lack
of any other clues to guide our choice. Ideas for this arise
from the field of random projection [31] and we shall
heavily employ results obtained from there.

The ideas for (2) are chiefly from chapter 6 of [7].
Since stochastic approximation iterations converge only
asymptotically, it is impractical to let the quadratic
minimization ‘finish’ and then shift the current point.
The same effect can be simulated via a simultaneous
iteration with different stepsizes.

The following proposition follows from Assumption 1.1.

Proposition 3.1 IE[ĥ(x)] is strictly convex in x.

Due to the Newton-type approach, the algorithm makes
a descent at each step. Suppose f0 ∈ Ĥ is the initial
point of the iteration. Hence f∗ lies in the level set

S = {f ∈H | IE[h(f(ξ(ω)), ξ(ω))]
≤ IE[h(f0(ξ(ω), ξ(ω)))]}.

By Assumption 1.1, h(·, ξ(ω)) has bounded level sets.
As a consequence S is closed and bounded. The desired
‘solution’

∑
i≤N x

∗(i)ϕi lies in

Ŝ = S ∩ Ĥ .

Let x ∈ <N . Consider

F̂ (x) = x− a
[
∇ĥ(x)

]
, (4)

with ’∇’ denoting the gradient operation with respect
to x = [x(1), . . . , x(N)]T . x∗ is then a fixed point of
IE
[
F̂
]
. Let xn be an estimate of x∗ and let the linear

approximation of F̂ at xn be

Fn(x) = F̂ (xn) +∇F̂ (xn)(x− xn). (5)

Suppose xn∗ is the fixed point of Fn. It’s easy to see that
xn∗ − xn = −∇2ĥ(xn)−1∇ĥ(xn). That is xn∗ can be
likened to a ‘Newton step’ on ĥ(x) [20]. Our problem in
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fact allows us more structure. Specifically, observe that,

∇2ĥ(xn) = h′′(f)


ϕ1ϕ1 . . . ϕ1ϕN

. . .

ϕNϕ1 . . . ϕNϕN

 = h′′(f)Ψ.

Notably, N can be so large that it is still impractical to
implement an algorithm in N variables. We apply the
ideas of [2] to F̂ , whereby, the matrix ∇F̂ (xn) is pro-
jected on to a dimension k = O(logNε−2), ε denoting
a degree of accuracy. The fixed point of Fn in this re-
duced space is denoted by yn∗. It is shown in [2] that yn∗
lies close to xn∗ with a high probability. In the following
section we recapitulate these ideas briefly.

3.1 Random projection

This section recalls some background material on ran-
dom projections, based on Chapter 8 in [31] and [2]. Let
M be a N×N real matrix. We may decompose M using
its singular values as

M =
r∑
1

σiuiv
T
i ,

where r is the rank of M and ui and vi are orthonormal
with respect to the usual inner product in <N . σi are the
so called ‘singular values’ of M . Say σ1 ≥ σ2 ≥ . . . ≥
σr > 0. Here we demonstrate a rank k approximation
to M , called M̃k. Now suppose R is a uniform random

`×N matrix (` ≥ k). Denote P =

√
d

`
RMT . Using its

singular values P can be expressed as

P =
t∑
1

λiaib
T
i ,

where t is the rank of P ; ai ∈ <`, bi ∈ <N . Let

Π =
k∑
1

bib
T
i (6)

Observe that Π is a N × N matrix with rank k. Let
Mk ∈ <N×N denote the following approximation to M :

Mk =
k∑
1

σiuiv
T
i .

This is the best approximation toM w.r.t. the Frobenius
norm: ‖A‖F := (

∑
i,j a

2
ij)

1
2 for A = [[aij ]]. A lower rank

approximation (of rank k) to M is taken to be

M̃k = ΠM ∈ <d×d

The following is Theorem 8.5 in [31].

Theorem 1 ([31]) Let ε be prescribed. If ` > C log d
ε2 for

large enough C, then with high probability

‖M − M̃k‖2F ≤ ‖M −Mk‖2F + 2ε‖Ak‖2F ,

where ‖ · ‖F denotes the Frobenius norm.

The first term on the right is by definition the least pos-
sible error w.r.t. this norm. Now suppose we intend to
find the zero of G : <N → <N , which is known to be
strictly monotone 4 . Let z∗ be the zero of G and L be a
bound on z∗. Equivalently we may find the fixed point of
the map Ĝ = z−G. In the neighbourhood of z∗ consider
the linearization of Ĝ

F (z) = z∗ + (I − a∇G(z∗))(z − z∗).

Let λmax be the highest eigenvalue of ∇G(z∗). F (·) is a
contraction if the eigenvalues of (I−a∇G(z∗)) lie inside
the unit circle. It follows that for

a <
2

λmax
,

F is a contraction (with a contraction factor α, say), and
z∗ is a fixed point of F . Let Π be a projection opera-
tion on <N of rank k for k satisfying the hypothesis of
Theorem 1, obtained as above. Take M = I − a∇G(z∗);
define Mk as above and let

η =
1

1− α

((
‖Mk −M‖2F + 2ε‖Mk‖2F

)1/2
L+ ‖b− b̃‖

)
,

where b = a∇G(z∗)z∗ and b̃ = Πb. Let G̃ = G|Range(Π).
We then have the following result from [2].

Theorem 2 The zero of G̃ lies in the η neighbourhood
of z∗ with a high probability.

The ‘high probability’ can be made as close to 1 as pos-
sible by a standard boosting procedure. We shall set it
to > 1− δ for a prescribed δ << 1.

3.2 The algorithm

We now motivate and describe the proposed stochastic
approximation scheme. Consider the following stochas-
tic approximation algorithm. Suppose {ξn} is a sequence
of i.i.d. samples of ξ. Let {an} and {bn} be stepsize se-
quences satisfying

an
bn
→ 0,

4 G : <N → <N is said to be strictly monotone if (G(x) −
G(y))T (x− y) > 0 for all x, y ∈ <N
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in addition to∑
an =∞,

∑
bn =∞ and

∑
a2
n + b2n <∞.

Define the function F̂ (x, ξn) = x−ρ [∇h(x, ξn)] . Let Πn

be a random projection generated at time n using the
theory of the above section. At any iterate xn, denote

Fn(x, ξn) = F̂ (xn, ξn) +∇F̂ (xn, ξn)(x− xn),

where ∇F̂ (x, ξn) = I − ρ
[
∇2h(x, ξn)

]
. The fixed point

of Fn(x, ξn) is the minimizer of

ψn(x) = h(xn, ξn) +∇h(xn, ξn)T (x− xn)
+ 1

2 (x− xn)T∇2h(xn, ξn)(x− xn),

the quadratic approximation of h near xn. We minimize
ψn(x) in the space of the range of the randomly chosen
projection Πn. Let

ψ̃n(x) = ψn(xn+Πnx) and ∇ψ̃n = Πn∇ψn(xn+Πnx).

Thus this minimization is equivalent to finding the fixed
point of F̃n(x) := Πn [Fn(xn + x, ξn)− xn].

Algorithm 1. Stochastic approximation scheme
————————————————————

1. Set n = 0. Choose ε > 0, 0 < a < 1
Determine N ∈ N as guaranteed by Theorem 3.
Determine k ≥ C logN

ε2

Pick a random projection Π0

2. Select x0, y0 ∈ <N such that x0, y0 ∈ Range(Π0)
3. Select a projection Γ, that projects iterates on a

closed convex bounded set
While not terminated do

i. Define function Fn
Generate k × N random matrix R. Generate
random projection Πn using Eq (6)

ii. Denote the projected function
F̃n = Πn [Fn(xn + x)− xn]

iii. xn+1 = xn + anyn
iv. Πn+1 = Πn + cn [Πn −Πn]
v. yn+1 = yn + bn

[
F̃n(yn, ξn)− yn

]
vi. xn = Γxn, yn = Γyn
vii. n = n+ 1

end
————————————————————

Theorem 3 mentioned above is presented in the next sec-
tion. For each n, cn ∈ {0, 1} controls the change of the k
dimensional subspace. Let {cn(β)} be the maximal sub-
sequence of all 1’s in {cn}. For each n ∈ {n(β)}, the algo-
rithm switches to a new randomly selected subspace. For
the rest, step iv can be replaced by Πn+1 = Πn. Further-
more,

∑
cn =∞, implying that such switches are made

ad infinitum. We shall also impose n(β + 1)− n(β) ↑ ∞
as β →∞, meaning that switches become less frequent
as the iteration matures. The latter condition will be
made more precise later on. We digress now to provide
a theoretical justification for the finite dimensional ap-
proximation.

4 Justification for a finite dimensional approach

Recall x∗ from Definition 3.1, let f̂ =
∑
i∈Φ̂

x∗(i)ϕi and

consider the following optimization problems.

P min
f

IE [h(f)]

s. t. f ∈ S

P̂ min
f

IE [h(f)]

s. t. f ∈ Ŝ

f∗ solves (P) and f̂ solves (P̂ ). Algorithm 1 outputs x∗,
and effectively solves (P̂ ). The question we try to answer
in this section is:

“Why is problem (P̂ ) a suitable approximation to (P)?”

Since the objective functions of both problems are the
same, it is enough to assess the constraints of the prob-
lems. Ŝ ⊂ S; so the following is true.

IE [h(f∗)] ≤ IE
[
h(f̂)

]
≤ IE [h(f∗|i≤N )] ,

where f∗|i≤N , resp. f∗|i>N is the projection of f∗ to
Range{ϕi, i ≤ N}, resp. its orthogonal complement.

Let IP be any probability measure on H that defines a
prior belief on where f∗ lies in H . Specifically we may
choose IP(E) = 0 if E∩S = ∅. IP is said to be tight if for
all δ > 0 there exists Eδ ⊂ H , Eδ compact, such that
IP(H \Eδ) < δ.

The following is well known property of metric spaces.

Lemma 4.1 ([21], Theorem 3.2, page 29) If X is a
complete separable metric space, every probability mea-
sure on X is tight.

Since H is a complete separable metric space with re-
spect to ‖ · ‖,

IP(f∗ ∈ Eδ, Eδ compact ) > 1− δ.
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The next theorem provides a characterization of com-
pact sets in H .

Theorem 3 Let A ⊂ H be bounded. A is relatively
compact iff

∀ ε > 0 ∃ Nε ∈ N s.t.
∑
i>Nε

〈f, ϕi〉2 < ε ∀ f ∈ A.

Proof : Recall that S ⊂ H is relatively compact iff
every sequence in S has a convergent subsequence.

“⇐= ”. Let {fn}n∈N be a sequence in A. Fix ε > 0 and
Nε ∈ N guaranteed by the condition of the theorem. We
thus have

∀ n ∈ N
∑
i>Nε

〈fn, ϕi〉2 < ε (7)

Let fn(i) = 〈fn, ϕi〉. Due to boundedness, there ex-
ists a subsequence {fn(k)}k∈N such that the sequence of
real numbers {fn(k)(1)}k∈N converges. Let the limit be
f(1)∗. One can then find a subsequence of this subse-
quence such that

<2 3 {fn(k(j))(1), fn(k(j))(2)}j∈N → [f(1)∗, f(2)∗].

Extending this ‘diagonal argument’ 5 further one can
find H 3 f̄∗ =

∑
f(i)∗ϕi such that fn(i) → f(i)∗ for

each i along a common subsequence. By passing to the
limit as n → ∞ along this subsequence, f̄∗ also seen to
satisfy the condition in (7). We now show that fn → f̄∗

in the Hilbert space.

lim
n→∞

‖fn − f̄∗‖2 ≤ lim
n→∞

‖(fn − f̄∗)|i≤Nε‖2

+ lim
n→∞

‖(fn − f̄∗)|i>Nε‖2

≤ lim
n→∞

‖(fn − f̄∗)|i≤Nε‖2 + 2ε

≤ 2ε

On noting that ε can be arbitrarily small, the claim fol-
lows.

“ =⇒ ”. We prove this by contradiction. Let A ⊂ H
be a relatively compact set for which there exists ε > 0
such that

∀ n ∈ N ∃fn ∈ A
∑
i≥n

〈fn, ϕi〉2 ≥ ε.

5 That is, we construct a nested sequence of subsequences
each containing the next, such that for each k, the first k
components of the kth subsequence converge. Then by pick-
ing the kth element of the kth subsequence, we have a sub-
sequence all of whose components converge. See, e.g., [26].

By relative compactness, there exists a subsequence n(j)
and f ∈ A such that fn(j) → f , i.e. , ∃ J ∈ N such that
∀j̄ ≥ J , ‖f − fn(j̄)‖2 < ε/2. Let j ≥ J be arbitrary.

‖f |i≥n(j)‖2 ≥ ‖fn(j)|i≥n(j)‖2−‖(f−fn(j))|i≥n(j)‖2 ≥ ε/2

This holds for all j ≥ J . Thus for all j ≥ J ,∑
i≥n(j)〈f, ϕi〉2 ≥ ε/2. This contradicts

‖f‖2 =
∑
〈f, ϕi〉2 <∞.

This completes the proof. 2

Fix δ > 0. With high probability f∗ solves problem (Pδ)

Pδ min
f

IE [h(f)]

s. t. f ∈ Eδ, Eδ compact.

Let ε > 0, to be chosen later. Using the above theorem
we conclude that there exists Nε ∈ N such that ‖f −
f |i≤Nε | < ε for all f ∈ Eδ. By taking N = Nε, we get
with high probability

IE [h(f∗)] ≤ IE
[
h(f̂)

]
≤ IE [h(f∗|i≤N )]

and ‖f∗ − f∗|i≤N‖ < ε

By continuity of h, it follows that we can choose ε and
henceN so that IE

[
h(f̂)

]
is arbitrarily close to IE [h(f∗)]

with high probability.

4.1 An estimate of N

We now provide an estimate ofN = Nε under the further
qualification that f∗ ∈ W 1,2(B) ⊂ L 2. Let ε, δ be as
chosen at the end of the previous section.

Assumption 4.1 f∗ ∈ V ⊆ Eδ ∩W 1,2(B) such that V
is closed and bounded w.r.t ‖ · ‖1,2

For any metric space X and any U ⊂ X, let N (U, ε, ‖ ·
‖X) be the covering number: the least number of balls of
radius ε with respect to ‖ ·‖X that can cover U . Suppose
we can cover V with balls of radius ε w.r.t. ‖ · ‖ and
let foi , i ≤ N (V, ε, ‖ · ‖) be the centers of these balls.
Then for each f ∈ V , there exists g ∈ span({foi : i ≤
N (V, ε, ‖ · ‖)}) such that ‖f − g‖ < ε. Thus we may take
N = Nε = N (V, ε, ‖ · ‖).

Several definitions and results used below are from [1].
We give a bound on N (V, ε, ‖ · ‖) using [10]. Since ‖ · ‖
is dominated by ‖ · ‖∞,

N (V, ε, ‖ · ‖) ≤ N (V, ε, ‖ · ‖∞).

7



It is known that the embedding

E : W 1,2(B) ↪→ Cb(B)

is compact (Rellich-Kondrachov Theorem in [1]). Define
the mth entropy number of a metric space X to be

em(X) = inf {ε > 0 | ∃ closed balls
D1, . . . , D2m−1 with radius ε covering X}

Using (4), page 16 of [10], we have that if B has a C∞
boundary, then

em(E (B1)) ≤ κ
(

1
m

)2

,

where BR = {f ∈ W 1,2(B) | ‖f‖1,2 ≤ R} and κ is a
constant independent of m.

Let BR ⊇ V for some R. BR is compactly embedded in
Cb(B). Using Proposition 6, page 16, in [10]

lnN (V, ε, ‖ · ‖) ≤ lnN (E (V ), ε, ‖ · ‖∞)

≤ lnN (E (BR), ε, ‖ · ‖∞)

≤
(
Rκ

ε

)1/2

+ 1.

Using the dominance of norms stated above, V is closed
with respect to ‖·‖ and lnN (V, ε, ‖·‖) ≤ lnN (E (V ), ε, ‖·
‖∞). If we take the span of the vectors that form the
centers of these balls, that will clearly give a finite di-
mensional approximation with the above error bound.
This gives an order of magnitude estimate for the size of
the approximating subspace needed.

5 Convergence analysis

5.1 Preliminaries

The algorithm above is a projected simultaneous
stochastic approximation iteration in (xn, yn) but with
different time scales.

xn+1 = Γ (xn + anyn) (8)
yn+1 = Γ (yn + bn [g(Πn, xn, yn)− yn +Mn+1]) , (9)
Πn+1 = Πn + cn [Πn −Πn] (10)

where g(Πn, xn, yn) =
∫
F̃n(yn, ξ)ζ(dξ), where ζ is

the law of ξn for all n and Mn+1 = F̃n(yn, ξn+1) −
g(Πn, xn, yn) is a martingale difference sequence by
construction. Due to projection, {xn, yn} stay bounded.
Recall that we had set {an}, {bn} such that an

bn
→ 0, in

addition to the usual conditions on stepsizes of stochas-
tic approximation algorithms. {cn}, which we specify

later, also satisfies cn
bn
→ 0. The analysis of two time

scale algorithms from [7], section 6.1 then allows us
to treat {xn}, {Πn} as quasi-static and analyze {yn}
in isolation treating the former as constant. By the
‘o.d.e.’ analysis of [7], section 5.4, {yn} has a.s. the same
asymptotic behavior as the o.d.e.

ẏ(t) = g(Π, x, y(t))− y(t) + r(t), (11)

where ‘r(t)’ is a boundary correction term. If we assume
that the vector field g(Π, x, y) − y is transversal and
pointing inwards at every point of the boundary ∂Γ of
Γ, this correction term is identically zero. We do so for
simplicity, though the condition could be relaxed with
some additional technicalities. This reduces (11) to

ẏ(t) = g(Π, x, y(t))− y(t) (12)

5.2 Convergence of fast iteration

We use the following notation.

<N 3 x∗ : The desired solution

<N 3 xn∗ : Fixed point of local approximation

<N 3 yn∗ : Fixed point of projected approximation

where

IE [∇h(x∗, ξ1(ω))] = 0,
IE [Fn(xn + xn∗, ξ1(ω))− xn] = xn∗

IE
[
F̃n(yn∗, ξ1(ω))|Πn

]
= yn∗

Assumption 5.1 There exists K > 0, such that
IE
[
‖Mm+1‖2|Fm

]
< K a.s. for each m.

The following lemma is easy to see.

Lemma 5.1 λmax(ξ(ω)), the maximum eigenvalue of
Ψ(ξ(ω)), is bounded a.s.

Theorem 4

sup
n∈N

ess supΩ λmax(ξn(ω))h′′(
∑

xn(i)ϕi, ξn) <∞,

and for

ρ < inf
n∈N

ess infΩ
2

λmax(ξn(ω))h′′(
∑
xn(i)ϕi, ξn)

,

F̃n(x, s) is a uniform (w.r.t. s, n) contraction in x a.s.
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The first claim follows from Lemma 5.1 and the bound-
edness of iterates. The second claim is an easy conse-
quence of this and Theorem 2 in section 3.1. The above
theorem ensures that there exists a unique fixed point
yn
∗

of g(Π, x, ·).

Theorem 5 ym → yn
∗

a.s.

The convergence of (12) to yn
∗

follows by Theorem 2, p.
126, of [7]. The claim then follows by Theorem 2, p. 15,
of [7].

Note that yn
∗

will be a function of Π, x, say yn
∗

=
yn
∗
(Π, x). What the above means is that yn −

yn
∗
(Πn, xn) → 0 a.s. (see [7], section 6.1). Our con-

ditions on {cn} stated later also ensure that cn
an
→ 0,

which in view of the above and section 6.1 of [7], ensures
that we can now analyze the iterates {xn} treating Πn

as constant ≈ Π and yn ≈ yn
∗
(Π, xn). As a solution to

a parametrized quadratic minimization problem stated
earlier, yn

∗
(Π, x) will be Lipschitz in x.

As an application of Theorem 2, we get the next theorem.

Theorem 6 yn
∗

lies within an η neighbourhood of xn
∗

with probability > 1− δ.

5.3 Convergence of slow iteration

We shall adapt the arguments of [7], section 4.2, and
sketch the convergence arguments in outline. The full
details would follow closely the corresponding arguments
in [7] and would be excessively lengthy. Note that {xn}
has a.s. the same asymptotic behavior as the o.d.e. 6

ẋ(t) = yn
∗
(Π, x(t)) = xn

∗
(x(t)) + c(t), (13)

where ‖c(t)‖ < η with probability > 1− δ. Suppose the
latter holds. Compare this with

˙̃x(t) = xn
∗
(x̃(t)). (14)

Eq (14) is simply the Newton’s algorithm in continuous
time applied to V (x) = E[ĥ(x)] restricted to the sub-
space under consideration (say, X). Thus V itself serves
as a Liapunov function for (14). Recall that we are oper-
ating in a bounded set, say S̃ ⊂ X. Consider S′ := S̃−
the ε′-neighbourhood of the unique minimizer of V in
X. Fix T > 0. Then along any trajectory x̃(·) of (14)
initiated in S′ and of duration ≥ T , V decreases by at
least a certain ∆ > 0. By a standard argument based
on the Gronwall inequality, the trajectory x(·) of (13)

6 Once again we are ignoring the boundary effects by assum-
ing appropriate transversality condition at the boundary for
the vector field under consideration. We skip the details.

with the same initial condition and duration as above,
remains in a small tube around the trajectory x̃(·) whose
width (say, κ) can be made arbitrarily small by choos-
ing η small enough. Let the initial condition be xn0 ,
where n0 is the instant when the projection Π under
consideration was introduced (in particular, cn0 = 1).
Set n1 := min{m > n0 :

∑m
i=n0

ai ≥ T} and suppose as
above that the projection is not changed till n1. By the
foregoing and the arguments of Lemma 1, p. 12, of [7], it
follows that with probability > 1−2δ, for n0 sufficiently
large, xm, n0 ≤ m ≤ n1, will remain in a tube of width
κ around x(t), t ≥

∑n0
0 ai, therefore in a tube of width

2κ around x̃(t), t ≥
∑n0

0 ai. For κ sufficiently small, this
ensures that V (xn1) < V (xn0)− ∆

2 . Since V is bounded,
say by K ′ > 0, we have

E[V (xn1)] ≤ (1− 2δ)(V (xn0)− ∆
2

) + 2δK ′.

The r.h.s. is< V (xn0)− ∆
4 (say) if δ is chosen sufficiently

small. It is important to note that in the above, both ∆
and K ′ can be chosen to be independent of Πn since the
iterates are bounded. Thus the above conclusions hold
regardless of the specific choice of n0 from among the
{n(β)}.

We now specify our choice of {cn}. Recall that
{n(β)} ⊂ {n} is the maximal subsequence along which
cn = 1. Thus it suffices to specify {n(β)}. Define it re-
cursively by: n(0) = 0 and n(β + 1) := min{m ≥ n(β) :∑m
k=n(β) am ≥ T}.

Let x̂ be the minimizer of V (·) in the space X. Let γ =
max‖x−x̂‖≤ε′ V (x). Then

E[V (xn(β+1))|xm,m ≤ n(β)] ≤ V (xn(β))−
∆
4

when V (xn(β))− V (x̂) > γ.

By standard arguments (see, e.g., [15]) it follows that
{xn(β)} will a.s. hit the set Vγ := {x : V (x) ≤ V (x̂) +
γ}. We can now adapt arguments of [7], p. 42, leading
to Lemma 13 to show that {xn} cannot escape Vγ+ν

thereafter for a prescribed small ν. Since both γ and
ν can be made arbitrarily small, this implies that xn
converges to the unique minimizer of V a.s.

Recall that x̂ is a function of Πn. We expect that as n
increases, x̂ reaches a region from which x∗ is accessible
via a Newton step in <N , i.e. , x̂ + xn

∗
(x̂) ≈ x∗. Thus

{xn} converges to within η radius of x∗, where η is as in
Theorem 2, with z∗ therein taken as x∗.

6 Conclusions

This paper has presented a finite dimensional approach
to stochastic approximation in Hilbert space with an
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application to the field of stochastic programming.
The algorithm presented was a two time-scale New-
ton scheme. Acknowledging that the finite dimensional
problem can be prohibitively large dimensional, we op-
erated our Newton scheme in a projected, O(logN)
dimensional subspace. Admittedly, finding the projec-
tion as indicated in section 3.1 can be computationally
cumbersome. But we believe that exploiting the struc-
ture of Ψ and using techniques such as those in [12], this
difficulty can be considerably mitigated.
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