
A Coloring Approach to Constructing Deletion
Correcting Codes from Constant Weight Subgraphs

Daniel Cullina, Ankur A. Kulkarni, and Negar Kiyavash
Dept. of Electrical and Computer Eng., Coordinated Science Laboratory, Dept. of Industrial and Enterprise Systems Eng.

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Email: {cullina,akulkar3,kiyavash}@illinois.edu

Abstract—We take a graph theoretic view of deletion correcting
codes. The problem of finding an n-bit s-deletion correcting code
is equivalent to finding an independent set in a particular graph.
We discuss the relationship between codes and colorings and
demonstrate that the VT codes are optimal in a coloring sense.
We describe a method of partitioning the set of bit strings by
Hamming weight and finding codes within each partition. In the
single deletion case, we find an optimal coloring of the constant
Hamming weight induced subgraphs. We show that the resulting
code is asymptotically optimal. We also prove a lower bound on
size of codes constructed using these partitions for any number
of deletions.

I. INTRODUCTION

Deletion channels output only a subsequence of their input
while preserving the order of the transmitted symbols. They
have applications in synchronization problems, communication
of information over packet networks and biology. This paper
concerns deletion channels for strings of bits, with fixed input
bit string length and a fixed number of deletions. Despite
significant effort on this case, there still are many fundamental
open problems, pertaining specifically to the design of codes
and the size of the largest codebook.

Levenshtein approached the design of codes from a com-
binatorial and number theoretic perspective [4]. He showed
that the Varshamov Tenengolts (VT) codes, which had been
designed for a different channel [8], functioned as codes for the
single deletion channel. In fact, the VT codes are conjectured
to optimal for the single deletion channel [7]. Levenshtein also
derived an upper bound and a nonconstructive lower bound on
the sizes of codes for any number of deletions. Much less is
known for channels with larger number of deletions. Helberg
generalized the VT construction for any number of deletions,
but the sizes of resulting codes grow very slowly, far below
Levenshtein’s bound [2].

Another direction for the construction of codes is compu-
tational. It is well known that the problem of finding deletion
correcting codes is equivalent to finding an independent set in
a particular graph. But since, for general graphs, finding the
maximum independent set is NP-hard, exact algorithms rapidly
become intractable with increasing input string length (n). For
the case of the single deletion, the computational approach has
established that VT codes are optimal for n ≤ 11 (graph with
211 vertices) [6]. For multiple deletions, the best known codes
have all been found through search algorithms. Butenko et
al. found two-deletion correcting codes of maximum size for

n ≤ 11 [1]. Khajouei et al. used a heuristic algorithm to find
the largest known two deletion correcting codes for n ≤ 25
[3].

This paper takes a graph theoretic perspective on this
problem and contributes to both the combinatorial and compu-
tational approaches. Our first contribution is on the theoretical
understanding VT codes: we show that VT codes optimally
solve the coloring problem in the single deletion graph (while
they have been conjectured to solve the independent set
problem). Second, we present a new method of construct-
ing codes by solving several problems on smaller graphs, a
computationally less intensive task. The method decomposes
the graph of 2n possible bit strings into subgraphs based on
their Hamming weight, finds codes in selected subgraphs, and
takes the union of these codes. In the single deletion case,
this construction is asymptotically optimal; we show this by
constructing an optimal coloring of the subgraphs. For larger
number of deletions, we prove a lower bound on the size of
codes constructed using these subgraphs.

The paper is organized as follows. In Section II, we give
some notation and definitions related to the deletion channel
and review the graph theoretic terminology and results. We
also discuss the VT codes in graph theoretic terms. In Sec-
tion III, we present our construction of codes for single and
multiple deletions. Section IV contains some computational
results on the sizes of some two deletion codes found by
computer search using our partitioning strategy. In Section V,
we discuss future work.

II. PRELIMINARIES

A. Notation

Let [n] be the set of nonnegative integers less that n,
{0, 1..n − 1}. Let [2]n be the set of bit strings of length n.
Let H(x) be the Hamming weight of a string x. By

(
[n]
k

)
we denote the set of bit strings of length n with k ones. We
will need the following asymptotic notation: let a(n) . b(n)

denote that limn→∞
a(n)
b(n) ≤ 1.

B. The deletion channel and related graphs

We will formalize the problem of correcting deletions by
defining the deletion channel. The deletion channel takes a bit
string of length n and outputs a substring of length n− s. For
bit strings x and y, write x < y if x is a substring of y and
define the following sets.

Definition 1. For x ∈ [2]n, define Ds(x) = {z ∈ [2]n−s :
z < x}, the set of substrings of x that can be produced by
s deletions. Define Is(x) = {w ∈ [2]n+s : w > x}, the set of
superstrings of x that can be produced by s insertions.

If x is the input to an n bit s deletion channel, Ds(x) is the
set of possible outputs. If x is the output from the channel,
Is(x) is the set of possible inputs.

We are interested in zero error codes for the deletion
channel. Consequently, a code is a set C of bit strings of
length n such that for any two distinct bit strings x and y in
C, the intersection Ds(x) ∩ Ds(y) is empty. We can restate
this in another way by defining a distance measure between
bit strings.

Definition 2. Let x, y ∈ [2]n. Let l be the largest integer
for which there exists some z ∈ [2]l such that z < x and
z < y. Define the deletion distance between x and y to be
dL(x, y) = n− l.

An s-deletion correcting code is a set where the deletion
distance between any two codewords is at least s + 1. Two
codewords cannot both appear in a code if their deletion
distance is s or less. We can capture this condition by defining
the following graph.

Definition 3. For every distance s and length n, both positive
integers, let Ls,n be a graph with [2]n as its vertices. Vertices
x and y are adjacent if and only if dL(x, y) ≤ s.

A code that can correct s deletions is a set of vertices in
Ls,n that have no edges between them.

C. Independent Sets, Colorings, and Cliques

Now we will briefly define some graph notation and review
a few concepts that will be useful later. All of these are sourced
from West [9]. Given a graph G, let V (G) denote its vertex
set and let E(G) denote its edge set. Given S ⊆ V (G), the
subgraph induced by S contains the vertices in S and the
edges in E(G) that have both endpoints in S.

An independent set in a graph is a set of vertices that are
all nonadjacent. The size of a largest independent set in a
graph G is denoted by α(G). The degree of a vertex is the
number of adjacent vertices. The maximum degree of any
vertex in G is denoted by ∆(G). It is easy to argue that
α(G) ≥ |V (G)|/(∆(G) + 1).

A coloring of a graph assigns a color (a number) to each
vertex. The coloring is proper if it never assigns the same color
to both endpoints of an edge. Thus a proper coloring of a graph
partitions its vertices into independent sets; each independent
set is assigned a single color and called a color class. The
chromatic number of a graph G, denoted χ(G), is the smallest
k for which a proper k-coloring of G exists. An argument
based on greedy coloring of G shows that χ(G) ≤ ∆(G) + 1.

A coloring gives us several independent sets to choose
from. At least one of these color classes must be at least
as large as the average size of a color class. Consequently,
α(G) ≥ |V (G)|/χ(G). However, properly coloring a graph

using the minimum number of colors is not equivalent to
finding the largest independent set. In general there is no
guarantee that the largest color class in a particular coloring
is a maximum independent set or that any minimal coloring
has a maximum independent set as a color class.

A clique in a graph is a set of vertices that are all adjacent.
The size of a largest clique in a graph G is denoted by ω(G).
In a proper coloring, each vertex in a clique must be assigned
a different color, so for any graph G, χ(G) ≥ ω(G).

D. The Varshamov-Tenengolts coloring

For each string length n, the Varshamov-Tenengolts con-
struction provides n + 1 distinct single deletion correcting
codes. The largest of these codes is conjectured to be optimal,
i.e., it is conjectured to solve the independent set problem on
L1,n. We show that together they optimally solve the coloring
problem.

Definition 4. For any x ∈ [2]n, let w(x) =
∑n−1
i=0 (i + 1)xi.

Call w(x) mod n+ 1 the VT weight of x.

The VT contruction partitions [2]n into n+1 sets, each with
a particular VT weight. Each of these sets is a code (cf. [4])
and an independent set in L1,n. This makes the VT weight a
coloring of L1,n that uses n + 1 colors, although it has not
usually been described in this language. To demonstrate that
one cannot use fewer colors in any coloring of L1,n, we will
find cliques of size n+ 1 in L1,n and use ω(G) ≤ χ(G).

Lemma 1. For each x ∈ [2]n−s, Is(x) induces a clique in
Ls,n. Furthermore |Is(x)| =

∑s
i=0

(
n
i

)
.

Proof: Any two vertices in Is(x) have a common sub-
string of length n− s, x, so their deletion distance is at most
s and they are adjacent in Ls,n. The size of Is(x) is sourced
from Levenshtein [5].

This gives us the result that an optimal coloring of L1,n

uses n+ 1 colors.

Theorem 1. For any n, χ(L1,n) = ω(L1,n) = n+ 1.

Proof: The VT coloring uses n+ 1 colors, and by taking
s = 1 in Lemma 1, we see that there are cliques of n + 1
vertices in L1,n. So n+ 1 ≤ ω(L1,n) ≤ χ(L1,n) ≤ n+ 1.

The largest color class (corresponding to VT weight zero)
in the VT coloring of L1,n always contains at least 2n

n+1 code-
words. This sequence of independent sets is asymptotically
maximum [4].

III. CODE CONSTRUCTION BY WEIGHT PARTITIONING

We now describe a new strategy for code construction for
any number of deletions. For single deletion channels, the
codes we construct are asymptotically optimal (Section III-A).
In Section III-B we prove lower bounds on the sizes of our
codes for any number of deletion. This strategy is inspired by
a simple bound on deletion distance.

Lemma 2. For all x, y ∈ [2]n, dL(x, y) ≥ |H(x)−H(y)|.

L1,4,0 L1,4,1 L1,4,2 L1,4,3 L1,4,4

Fig. 1. L1,4 partitioned by Hamming weight. An independent set in each
even weight layer is highlighted.

Proof: If z < x and z < y, then z must have fewer ones
than either x or y as well as fewer zeros.

Let Ls,n,k be the subgraph of Ls,n induced by the vertices
with exactly k ones. The endpoints of any edge in Ls,n
differ in Hamming weight by at most s. Suppose we find an
independent set composed entirely of vertices of Hamming
weight k, i.e. an independent set in Ls,n,k, and another
independent set entirely of vertices of weight k + s + 1, we
can guarantee that their union is an independent set in Ls,n.
Then we can add another independent set in Ls,n,k+2(s+1) and
continue until we have exhausted the weights that are equal
to k mod s+ 1. This procedure gives us an independent set
in Ls,n. Figure 1 illustrates this for L1,4.

More formally, we have the following result.

Lemma 3. For each possible remainder a ∈ [s+ 1], we have
α(Ls,n) ≥

∑n/(s+1)
i=0 α(Ls,n,i(s+1)+a)

Another way to describe this process is that we start by
throwing out all the vertices whose Hamming weights do not
equal a mod s+ 1. We keep only about 1

s+1 of the vertices,
The remaining graph is disconnected. It has broken up into a
component for each weight.

A. Explicit construction of a single deletion correcting code

The strategy outlined above reduces the problem of finding
an independent set in Ls,n to the problem of finding indepen-
dent sets in each of Ls,n,k, k = 0, . . . , n. In the single deletion
case (s = 1), we show an explicit construction of independent
sets in the graphs L1,n,k. We construct these independent sets
by finding an optimal coloring of L1,n,k. This coloring is
closely related to the optimal VT coloring of L1,n. The code
that results is asymptotically optimal.

Lemma 4. The modified VT weight f(x) = w(x) mod
(max(k, n− k) + 1) gives a proper coloring of L1,n,k.

Proof: Let x and y be adjacent vertices in L1,n,k. To
show f(x) 6= f(y), we will show that 0 < |w(y) − w(x)| ≤
max(k, n−k). Let i be the smallest index where xi 6= yi and
let j be the largest such index. Because dL(x, y) = 1, either
x[n]\i = y[n]\j or x[n]\j = y[n]\i. Without loss of generality
assume the latter. Because H(x) = H(y) = k, xj = yi. The

interval x{i..j−1} shifts right by one space to become y{i+1..j}
so the contribution to the weight of each one in the interval
increases by one. The bit xj moves j− i spaces to the left, so
its contribution decreases by that amount. If l is the number
of ones in x{i..j−1}, then w(y)− w(x) = l − xj(j − i).

If xi = 0. then w(y)− w(x) = l ≤ k. Since x 6= y, l > 0.
On the other hand, if xi = 1, then w(y)− w(x) = l + i− j.
There are j − i− l zeros in x[i,j) and only n− k zeros in all
of x, so w(y)−w(x) ≥ k − n. Because x 6= y, l < j − i− 1
and w(y)− w(x) < 0.

To prove optimality, we need ω(L1,n,k). As in L1,n we will
look at cliques whose vertices have a single common substring.
Let us introduce some notation.

Definition 5. For x ∈
(
[n]
k

)
, let Is,r(x) = Is(x)∩

(
[n+s]
k+r

)
. This

is the number of superstrings of x of length n+s with exactly
k + r ones.

Just as the size of Is(x) only depends on the length of x, the
size of the set Is,r(x) only depends on the length and weight
of x. To prove this we will need the following lemma. Due to
space limitations, we only sketch the proof.

Lemma 5. For all x ∈
(
[n]
k

)
, all s, and all r ∈

[s + 1],|Is,r(x)| =
∑min(r,s−r)
a=0

(
n−k+r
r−a

)(
k+s−r
s−r−a

)
.

Sketch of proof: For any x ∈ [2]n−s, there is a bijection
between Is(x) and

⋃s
i=0

(
[n+i−1]

i

)
× [2]s−i. Each superstring

in Is(x) is produced by two types of operations: insertions of
some number of negated bits before a bit of x and insertion
of bits at the end of x. The sets

(
[n+i−1]

i

)
encode the former

operation and [2]s−i encode the latter. For any superstring in
Is,r(x), let p be the number of ones and q be the number of
zeros in the appended bit string, so there are

(
p+q
p

)
such bit

strings. There are r − p remaining new ones to insert before
the n− k existing zeros, which can be done in

(
n−k+r−p−1

r−p
)

ways. The remaining s − r − q zeros can be inserted before
the k existing ones, in

(
k+s−r−q−1
s−r−q

)
ways. Summing over all

possible values of p and q gives the size of Is,r(x) as

r∑
p=0

s−r∑
q=0

(
n− k + r − p− 1

r − p

)(
k + s− r − q − 1

s− r − q

)(
p+ q

p

)
.

This sum can be simplified using the Vandermonde identity
and a variation of it for multisets to give the result.

Lemma 6. Ls,n,k contains cliques of sizes∑min(r,s−r)
i=0

(
n−k−s+2r

r−i
)(
k+s−2r
s−r−i

)
for all r ∈ [s+ 1].

Proof: In Lemma 5, we fix the length and weight of the
substring to be n and k. Here we would like the length and
weight of the superstrings to be n and k, so we substitute n−s
for n and k − r for k in the previous result.

Theorem 2. χ(L1,n,k) = ω(L1,n,k) = max(k, n− k) + 1.

Proof: By Lemma 6, L1,n,k contains cliques of sizes k+1
and n− k + 1. Lemma 4 gives the coloring.

We now show that this strategy produces independent sets
in L1,n that are asymptotically of optimal size. Let Cn,k be

a largest color class of L1,n,k using the coloring described
above. Our code is the set Dn,a,

Dn,a :=
⋃

0≤i≤n/2

Cn,2i+a.

Lemma 7. |Dn,a| ≥ 1
n+1

(
2n −

(
n
k∗

))
where k∗ is (n− 1)/2

if n is odd, (n − 2)/2 if n is even and a ≡ n/2 mod 2 and
n/2 otherwise.

Proof: We only consider the case where n is odd; the
other case follows similarly. In each graph L1,n,k, some color
class must be at least as large as the average.

|Dn,a| =
∑

0≤k≤n
k≡a mod 2

|Cn,k| ≥
∑

0≤k≤n
k≡a mod 2

|V (L1,n,k)|
χ(L1,n,k)

There are
(
n
k

)
vertices in L1,n,k and χ(L1,n,k) = max(k, n−

k) + 1. Without loss of generality suppose (n − 1)/2 ≡ a
mod 2. Thus |Dn,a| is at least

(n−1)/2∑
k=0

k≡a mod 2

(
n

k

)
1

n− k + 1
+

n∑
k=(n+3)/2
k≡a mod 2

(
n

k

)
1

k + 1

=
1

n+ 1

∑
0≤k≤n

k 6=(n−1)/2

(
n

k

)
=

1

n+ 1

(
2n −

(
n

(n− 1)/2

))

Theorem 3. Dn,a is asymptotically optimal.

Proof: By Stirling’s formula,
(
n
n/2

)
∼ 2n

√
2
πn , so

|Dn,a| ∼
2n

n+ 1

(
1−

√
2

πn

)
∼ 2n

n
.

Levenshtein showed that α(L1,n) . 2n

n [4], hence the claim.

Note that maxk χ(L1,n,k) = n, which is barely better than
χ(L1,n) = n + 1. However, most of the vertices are in the
subgraphs with Hamming weight ≈ n/2, and χ(L1,n,n/2) =
n/2 + 1. Thus, half the vertices have been thrown out, but
the middle layers are colored about twice as efficiently as
they were in the original graph. This explains the asymptotic
optimality.

B. A lower bound for multiple deletion code sizes

For s > 1, we do not have optimal explicit colorings
of Ls,n,k. However, we can use the maximum degrees of
Ls,n,k to lower bound the sizes of their maximum indepen-
dent sets. Recall the relation from Section II-C, α(G) ≥
|V (G)|/(∆(G) + 1). This is equivalent to considering the
performance of greedy colorings on these graphs.

First we will obtain an asymptotic expression for the number
of superstrings of a particular weight. We will use that to
bound the degree of a vertex in Ls,n,k. This will translate into
a bound on independent set size.

Lemma 8. Let k = pn and x ∈
(
[n]
k

)
. For fixed p, s, and r,

|Is,r(x)| ∼ ns

s!

(
s
r

)
(1− p)rps−r

Proof: We start with the result of Lemma 5. Only the first
term of

∑min(r,s−r)
a=0

(
n−k+r
r−a

)(
k+s−r
s−r−a

)
is of degree s. Since(

n
c

)
∼ nc

c! , this term becomes (n−pn)r(pn)s−r

r!(s−r)! which we can
rearrange into ns

s!

(
s
r

)
(1− p)rps−r.

As n becomes large, the weight distribution of vertices
in Ls,n concentrates around n/2, so we need to bound the
number of insertions in that region only.

Lemma 9. Let k = pn, s
2s+2 ≤ p ≤

s+2
2s+2 , and x ∈

(
[n]
k

)
. Fix

s and r ∈ [s+ 1]. If s is even, then |Is,r(x)| . 1
2s

(
s
s/2

)(
n
s

)
. If

s is odd, then |Is,r(x)| . 1
2s−1

(
s−1

(s−1)/2
)(
n
s

)
.

Proof: Due to space limitations, we prove this only for
the case where s is even. For each r ∈ [s + 1], let fr(p) =(
s
r

)
(1 − p)rps−r. In the interval 1 − r+1

s+1 ≤ p ≤ 1 − r
s+1 ,

fr(p) is the largest of the s + 1 polynomials. The maximum
of fr(p) occurs at p = 1− r

s and the value achieved there is(
s
r

) rr(s−r)s−r

ss .
If s is even, then fs/2(s/2) = 1

2s

(
s
s/2

)
. For all r, fr(p) ≤

1
2s

(
s
s/2

)
in the interval s

2s+2 ≤ p ≤
s+2
2s+2 .

Now we can apply this result to get a bound on degree.

Lemma 10. Let k = pn. Fix s, r ∈ [s+ 1], and s
2s+2 ≤ p ≤

s+2
2s+2 . If s is even, ∆(Ls,n,k) . 1

2s

(
s
s/2

)(
n
s

)2
and if s is odd,

∆(Ls,n,k) . 1
2s−1

(
s−1

(s−1)/2
)(
n
s

)2
.

Proof: For x ∈
(
[n]
k

)
, let d(x) be the degree of x in

Ls,n,k. Each vertex adjacent to x shares at least one substring
of length n− s with it. We bound degree by considering the
superstrings of the substrings of x. i.e.,

d(x) ≤
∑

y∈[2]n−s:y<x

|Is,r(y)|

Since each vertex has at most
(
n
s

)
substrings of length n− s,

there are at most
(
n
s

)
terms in the sum. We can use Lemma 9

to bound |Is,r(y)|, which results in the desired bound.
Finally, we can use the upper bound on degree to get a

lower bound on code size.

Theorem 4. For fixed even s, codes produced by the constant
weight strategy contain asymptotically at least 2n+s

(s+1)(s
s/2)(

n
s)

2

codewords. For odd s, they contain at least 2n+s−1

(s+1)(s−1
(s−1)/2)

2
(n
s)

2

codewords. For even s this size is a factor of (s+1)
(
s
s/2

)
less

than Levenstein’s asymptotic lower bound and for odd s it is
a factor of s+1

2

(
s−1

(s−1)/2
)

less.

Proof: There must be some a ∈ [s+ 1] such that∑
0≤k≤n

k≡a mod s+1

|V (Ls,n,k)|
1 + ∆(Ls,n,k)

≥ 1

s+ 1

∑
0≤k≤n

|V (Ls,n,k)|
1 + ∆(Ls,n,k)

We drop the values of k that are outside the interval in the
condition for Lemma 10.

≥ 1

s+ 1

∑
s

2s+2n≤k≤
s+2
2s+2n

(
n

k

)
1

1 + ∆(Ls,n,k)

n Our code Best known n Our code Best known
3 2 2 12 27 32
4 2 2 13 40 49
5 2 2 14 60 78
6 4 4 15 100 126
7 5 5 16 161 201
8 6 7 17 264 331
9 8 11 18 449 546
10 12 16 19 744 911
11 17 24 20 1244 1539

TABLE I
COMPARISON OF CODE SIZES FOR CORRECTING TWO DELETIONS. SIZES

OF BEST KNOWN CODES TAKEN FROM KHAJOUEI ET AL. [3]

The bound in the previous lemma does not depend on k. In
the case where s is even, we get

&
2s

(s+ 1)
(
s
s/2

)(
n
s

)2 ∑
s

2s+2n≤k≤
s+2
2s+2n

(
n

k

)
.

The sum is asymptotic to 2n. The factor is found by compar-
ison with Levenshtein’s lower bound, 2n+s/

(
n
s

)2
[4].

IV. COMPUTATIONAL SEARCHES FOR TWO DELETION
CODES

To demonstrate how well our construction performs, we
applied this strategy to the cases of one and two deletions.
We used a greedy algorithm to find maximal independent sets
in L2,n,k for n ≤ 20. One advantage of working with the
constant weight subgraphs Ls,n,k is that they are much smaller
than Ls,n, which makes experiments more tractable. For each
n, there is a set of layers for each remainder modulo three.
We computed code sizes for each set and took the largest. The
sizes of the codes that we found and the best known are given
in Table I and their ratio is plotted in Figure 2.

For comparison, we computed the exact sizes of the codes
given by our construction for s = 1. To do this, we determined
which color class in L1,n,k was largest for each n and k. The
sizes of these codes are shown in Figure 3. For very small n,
the codes are significantly larger than the lower bound. This is
because the gap between the size of largest color class and the
average size is proportionally largest for small n. The effect
is large enough that the ratio between these codes and the VT
codes is fairly flat across the plot even though the codes are
asymptotically optimal.

Consequently, it is difficult to conclude much from the plot
for s = 2. As in the s = 1 plot, the ratio is about 0.8
throughout. There might be a constant factor gap between the
performance of the two strategies, convergence that is too slow
to observe, or perhaps something else.

V. CONCLUSION

We translated the problem of finding deletion correcting
codes into one of finding independent sets in Ls,n. We dis-
cussed coloring as means of constructing independent sets and
demonstrated the the VT codes are optimal in a coloring sense.
We described a strategy of decomposing the problem of finding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

n

F
ra

ct
io

n
 o

f L
a

r g
e

st
 K

n
o

w
n

 C
o

d
e

Fig. 2. Ratio of the size of our codes for two deletions to the best known.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

Actual Size

Lower Bound

n

F
ra

ct
io

n
 o

f V
T

 C
o

d
e

 s
iz

e

Fig. 3. Ratio of the size of our codes for one deletion to the VT codes.

codes into a set of smaller problems by partitioning Ls,n by
Hamming weight and finding codes within each partition. In
the single deletion case, we found an optimal coloring of
L1,n,k and showed that the code is asymptotically optimal.
We proved a lower bound on size of codes constructed using
these partitions that applies to any number of deletions. In the
two deletion case, we compared the performance of the best
known codes, which were found by searching all of L2,n, and
codes found using our strategy of searching each of L2,n,k

separately.

ACKNOWLEDGMENT

This work was supported in part by AFOSR under grants FA
9550-11-1-0016 and FA 9550-10-1-0573; and by NSF grant
CCF 10-54937 CAR.

REFERENCES

[1] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk., “Find-
ing maximum independent sets in graphs arising from coding theory,”
Proceedings of the 2002 ACM Symposium on Applied Computing, pp.
542–546, 2002.

[2] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion
correcting codes,” IEEE Trans. Inform. Theory, vol. 48, pp. 305–308,
January 2002.

[3] F. Khajouei, M. Zolghadr, and N. Kiyavash, “An algorithmic approach for
finding deletion correcting codes,” Information Theory Workshop (ITW),
2011 IEEE, pp. 25 –29, oct. 2011.

[4] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Soviet Physics - Doklady, vol. 10, no. 8, pp. 707–710,
February 1966.

[5] ——, “Efficient reconstruction of sequences from their subsequences or
supersequences,” J. Comb. Theory, vol. 93, no. 2, pp. 310 – 332, 2001.

[6] N. Sloane, “Challenge problems: Independent sets in graphs
http://www2.research.att.com/ njas/doc/graphs.html,” January 2012.
[Online]. Available: http://www2.research.att.com/ njas/doc/graphs.html

[7] ——, “On single-deletion-correcting codes,” Codes and Designs, Ohio
State University, pp. 273–292, May 2002.

[8] R. R. Varshamov, “On an arithmetic function with an application in the
theory of coding,” no. 3, pp. 540–543, 1965.

[9] D. B. West, Introduction to graph theory. Upper Saddle River, NJ:
Prentice Hall Inc., 1996.

