
Systems and Control Engineering Laboratory (SC 626)

Kilobotics

Anurag (183230006)
Ponala Venkata Eswara Srisai (183230008)

Sudhakar Kumar (183236001)
Kishan Chouhan (183230015)

April 24, 2019

Contents

1 Overview of Kilobots 4
1.1 Specifications of Kilobot . 4
1.2 Hardware/ Software Requirement . 5
1.3 Over-head Controller . 6

2 Establishing communication between two Kilobots 7
2.1 Speaker . 7
2.2 Listener . 9
2.3 Results and Demonstration . 10

3 Orbiting of Kilobots 12
3.1 Introduction . 12
3.2 Results and Demonstration . 13

4 Moving towards the direction of light source 14
4.1 Introduction . 14
4.2 Results and Demonstration . 15

5 Synchronizing phase of blinking LEDs 16
5.1 Introduction . 16
5.2 Results and Demonstration . 19

6 Efficient star-planet orbiting using a finite state machine 20
6.1 Finite state machine (FSM) . 20
6.2 Flowchart . 21
6.3 Results and Demonstration . 23
6.4 Conclusion . 26

7 Shape formation using Kilobots 27
7.1 Framework . 27
7.2 Flowchart . 28
7.3 Discussion . 28
7.4 Demonstration . 29

1

8 Conclusion 31
8.1 Acknowledgement . 31

A Code for orbiting after escape algorithm 32

B Code for shape formation algorithm 38

2

List of Figures

1.2 Overhead Controller (Source: [?]) . 6

2.1 Broadcasting of a message . 9
2.2 Communication between two Kilobots . 11

3.1 Flowchart for orbiting of kilobot . 12
3.2 Orbiting of Kilobot . 13

4.1 Flowchart for move towards light algorithm . 14
4.2 Move towards the light source . 15

5.1 Algorithm for synchronizing phase of blinking LEDs 17
5.2 Synchronizing phase of blinking LEDs . 19

6.1 Flowchart for orbiting after escape algorithm (Part I) 21
6.2 Flowchart for orbiting after escape algorithm (Part II) 22
6.3 Efficient star-planet orbiting . 23
6.4 Escaping too close region of star by planet followed by orbiting 24
6.5 Orbiting of planet around two stars using single communication to estimate minimum

distance leads to instability . 25
6.6 Orbiting of planet around two stars using two communications to estimate minimum

distance . 25
6.7 Orbiting of planet around three stars using four communications to estimate mini-

mum distance . 26

7.1 Flowchart for shape formation algorithm . 28
7.2 First builder taking its position . 29
7.3 Second builder taking its position . 29
7.4 Shape formation by kilobots (Shape: Rectangle of breadth=2 and length=3) 30

https://photos.app.goo.gl/h2jCY1WrUYU9xLqG8
https://photos.app.goo.gl/xPYoywncwhCk585X8
https://www.google.com/url?sa=j&url=https%3A%2F%2Fphotos.app.goo.gl%2FnUNghDg4nJygpzUu5&uct=1551610784&usg=G0tZGJ7iMN79F5qGk1QMw5rfodM.
https://photos.app.goo.gl/nvWXb5ziksYnx73s6
https://youtu.be/LRgOzhAJI1k
https://youtu.be/X6dGCLT0ho8
https://youtu.be/mhW04WvGKuQ
https://youtu.be/mhW04WvGKuQ
https://youtu.be/EKvty2OxXxM
https://youtu.be/EKvty2OxXxM
https://youtu.be/5aZm0Os9BPc
https://youtu.be/5aZm0Os9BPc
https://youtu.be/SoDq9GQvNAE

Chapter 1

Overview of Kilobots

Kilobots (Figure 1.1a) are low cost robots designed at Harvard University’s Self-Organizing
Systems Research Lab http://www.eecs.harvard.edu/ssr. The robots are designed to make
testing collective algorithms on hundreds or thousands of robots accessible to robotics researchers.

Though the Kilobots are low-cost, they maintain abilities similar to other collective robots.
These abilities include differential drive locomotion, on-board computation power, neighbor-to-
neighbor communication, neighbor-to neighbor distance sensing, and ambient light sensing. Ad-
ditionally they are designed to operate such that no robot requires any individual attention by a
human operator. This makes controlling a group of Kilobots easy, whether there are 10 or 1000 in
the group.

1.1 Specifications of Kilobot

The functional specifications [?] of the Kilobot robot are as follow:

• Processor: ATmega 328p (8bit @ 8MHz)

• Memory:

– 32 KB Flash – used for both user program and bootloader

– 1KB EEPROM – for storing calibration values and other non-volatile data and 2KB
SRAM

• Battery: Rechargeable Li-Ion 3.7V, for a 3 months autonomy in sleep mode. Each Kilobot
has a built-in charger circuit which charges the onboard battery when +6 volts is applied to
any of the legs, and GND is applied to the charging tab.

• Charging: Kilobot charger for 10 robots simultaneously

• Communication: Kilobots can communicate with neighbors up to 7 cm away by reflecting
infrared (IR) light off the ground surface (Figure 1.1b).

• Sensing: one IR sensor and one light sensor

4

http://www.eecs.harvard.edu/ssr

– When receiving a message, distance to the transmitting Kilobot can be determined using
received signal strength. The distance depends on the surface used as the light intensity
is used to compute the value.

– The brightness of the ambient light shining on a Kilobot can be detected.

– A Kilobot can sense its own battery voltage.

• Movement: Each Kilobot has 2 vibration motors, which are independently controllable,
allowing for differential drive of the robot. Each motor can be set to 255 different power
levels. The movement happens via stick and slip mechanism

• Light: Each Kilobot has a red/green/blue (RGB) LED pointed upward, and each color has
3 levels of brightness control.

• Software: The Kilobot Controller software (kiloGUI) is available for controlling the controller
board, sending program files to the robots and controlling them.

• Programming: C language with WinAVR compiler combined with Eclipse or the online
Kilobotics editor (https://www.kilobotics.com/editor)

• Dimensions: diameter: 33 mm, height 34 mm (including the legs, without recharge antenna).

(a) Kilobot (b) IR sensing (Source [?])

1.2 Hardware/ Software Requirement

The required hardware and software to use the board and develop programs are described below.

Required hardware:

• Computer with an USB port

• Kilobot robot

• Over-head controller (OHC)

• Kilobot charger

5

https://www.kilobotics.com/editor

Required software: To start programming the Kilobot with the new version from kilobotics, we
have two solutions.

• Online editor https://www.kilobotics.com/editor.

• Install WinAVR and Eclipse to compile the whole library on your computer https://github.
com/mgauci/kilobot_notes/blob/master/eclipse_winavr_setup/eclipse_winavr_setup.

md.

We have used online editor for our labs.

1.3 Over-head Controller

To make a robot scalable to large collective sizes, all the operations of the robot must work on the
collective as a whole [?], and not require any individual attention to the robot, such as pushing a
switch or plugging in a charging cable for each robot. In other words, all collective operations must
be scalable. In the case of Kilobots, instead of plugging in a programming cable to each robot in
order to update its program, each can receive a program via an IR communication channel. This
allows an overhead IR transmitter (Figure 1.2) to program all the robots in the collective in a fixed
amount of time, independent of the number of robots.

Figure 1.2: Overhead Controller (Source: [?])

Kilobots are unique in that they stay in “sleep mode” until summoned by the overhead controller.
A person can turn an entire swarm of Kilobots “ON” by sending out one signal – as opposed to
manually switching “ON” every robot.

6

https://www.kilobotics.com/editor
https://github.com/mgauci/kilobot_notes/blob/master/eclipse_winavr_setup/eclipse_winavr_setu p.md
https://github.com/mgauci/kilobot_notes/blob/master/eclipse_winavr_setup/eclipse_winavr_setu p.md
https://github.com/mgauci/kilobot_notes/blob/master/eclipse_winavr_setup/eclipse_winavr_setu p.md

Chapter 2

Establishing communication
between two Kilobots

Here, we will use the ability of two Kilobots to communicate with each other. We will allocate one
Kilobot to be the speaker and the other Kilobot to be the listener.

2.1 Speaker

The objective of this part is to broadcast a fixed message, and blink magenta when we transmit.
Here we introduce message t data structure, and the kilo message tx lback.

• A Kilobot uses IR to broadcast a message within an approximately circular radius of three
body lengths.

• Multiple robots packed closely together will interfere the IR signals. So the Kilobots use a
variant of the CSMA/CD media access control method to resolve the problems with interfer-
ence.

Carrier-sense multiple access with collision detection (CSMA/CD) is a media access control
method which uses carrier-sensing to delay transmissions until no other stations are transmit-
ting.

Step 1: Declare a variable called transmit msg of the structure type message t and add the func-
tion message tx() that returns the address of the message we declared (return & transmit msg).

Step 2: We will register this ”callback” function in the Kilobot main loop, and every time the
Kilobot is ready to send a message it will ”interrupt” the main code and call the message tx() to
get the message that needs to be sent.

A callback is any executable code that is passed as an argument to other code, which is expected
to call back the argument at a given time.

message_t transmit_msg;

message_t *message_tx() {

7

return &transmit_msg;

}

Step 3: Use the setup() function to set the initial contents of the message and compute the message
CRC value (used for error detection) through the function message crc(). The code below shows
how to initialize a simple message.

A cyclic redundancy check (CRC) is an error-detecting code which is used to detect accidental
changes to raw data.

void setup() {

transmit_msg.type = NORMAL;

transmit_msg.data[0]=0;

transmit_msg.crc = message_crc(&transmit_msg);

}

Step 4: Now we will add some more code so that we can have the LED blink whenever the robot
sends a message out. To do this we will declare a variable (often called a ”boolean flag”) called
message sent. We will set this flag inside a function called message tx success() which is another
callback function that only gets called when a message is finally successfully sent on a channel.
Then we will clear this flag in the main loop where we will blink an LED to indicate that a message
was sent.

//At the top of the file, declare a "flag" for when a message is sent

int message_sent = 0;

// Add another function definition after your message_tx function

// (note that "void" means the function doesn’t return any value)

void message_tx_success() {

message_sent = 1;

}

Step 5: Then, in our program loop, write code to do this

// Blink led magenta when you get a message

if (message_sent == 1) {

message_sent = 0;

set_color(RGB(1,0,1));

delay(100);

set_color(RGB(0,0,0));

}

Step 6: Finally, we must register our message transmission functions with the Kilobot library as
follows:

int main() {

kilo_init();

kilo_message_tx = message_tx;

8

kilo_message_tx_success = message_tx_success;

kilo_start(setup, loop);

return 0;

}

Figure 2.1: Broadcasting of a message

2.2 Listener

The objective of this part is to blink yellow when a new message is received and introduce the
kilo message rx callback and store incoming messages.

Step 1: First declare a variable rcvd message of type message t to store any new incoming messages
and a boolean variable called new message to indicate that a new message has been received.

int new_message = 0;

message_t rcvd_message;

9

void message_rx(message_t *msg, distance_measurement_t *dist) {

rcvd_message = *msg; //store the incoming message

new_message = 1; // set the flag to 1 to indicate that a new message arrived

}

Step 2: Check the flag in the program loop to see if a new message has arrived. If a new message
has arrived, we will blink the LED yellow, and clear the flag.

void loop() {

// Blink led yellow when you get a message

if (new_message == 1) {

new_message = 0;

set_color(RGB(1,1,0));

delay(100);

set_color(RGB(0,0,0));

}

}

Step 3: Modify our main section to register the message reception function with the Kilobot library
as follows:

int main() {

kilo_init();

kilo_message_rx = message_rx;

kilo_start(setup, loop);

return 0;

}

2.3 Results and Demonstration

For this task of establishing communication between two Kilobots, the communication protocol
CSMA/CD has been followed. Thus, the speaker Kilobot will first sense and then transmit. Video
of working demonstration of problem statement can be accessed using link in the caption of figure
2.2.

10

Figure 2.2: Communication between two Kilobots

According to the Kilobotics website, by default, every kilobot attempts to send message twice
per second. It can also be verified by looking at the frequency of LED blinking. The right Kilobot
acts as speaker and the left Kilobot acts as a receiver.

11

https://photos.app.goo.gl/h2jCY1WrUYU9xLqG8

Chapter 3

Orbiting of Kilobots

3.1 Introduction

Our objective is to make one Kilobot orbit around another stationary Kilobot using distance esti-
mation. We will refer to orbiting Kilobot as planet and stationary Kilobot as star. The alogrithm
goes as follows:

1. Place star and planet under communication link distance.

2. If planet and star distance < TOO LOW go to step 6, else go to step 3.

3. If planet and star distance < DESIRED DISTANCE go to step 4, else go to step 5.

4. Move left. Go to step 2.

5. Move right. Go to step 2.

6. Move straight. Go to step 2.

Flowchart corresponding to orbiting is illustrated in Figure 3.1

Figure 3.1: Flowchart for orbiting of kilobot

12

3.2 Results and Demonstration

Star transmits the message to planet continuously while planet receives message from star and it
estimates the distance between them using the strength of received signal and then accordingly it
follows the algorithm. Following parameters have been used in this algorithm:

• DESIRED DISTANCE = 60. According to the Kilobotics website, this distance of 60mm is a
good compromise between the maximum communication range (110mm) and the minimum
distance (33mm) when two robots are touching.

• TOO CLOSE = 40. If the current distance estimate to the robot is 4cm or smaller, then the
robot is really “too close” to the star. In that case, the robot should just move forward
until the distance is no longer too close. This allows the planet robot to get to a reasonable
distance away from the star quickly and then start the orbiting. However, if the orientation
is not proper, there are chances that the planet might hit the star.

Video of working demo of problem statement can be accessed using link in figure 3.2.

Figure 3.2: Orbiting of Kilobot

We utilize the estimated distances of robot from the strength of received message to determine
which direction to move. Furthermore, this algorithm for orbiting of Kilobots can be extended to
edge-following if there is a group of stars, then the planets can orbit that group of stars. One such
scenario has been presented in the upcoming chapters, which also prevents the planet from hitting
the star.

13

https://photos.app.goo.gl/xPYoywncwhCk585X8

Chapter 4

Moving towards the direction of
light source

4.1 Introduction

In this part, our objective is to design an algorithm so that Kilobot approaches a source of light
(generated by torch light of smartphone) which may be dynamically moving with very slow speed.
The problem statement is similar to that of a line follower with just one onboard sensor [?]. The
algorithm for single sensor line follower goes as follows:

1. Check sensor position.

2. If sensor is on line, go to step 3 else step 4.

3. Move right. Go to step 5.

4. Move left.

5. Go to step 1

Figure 4.1: Flowchart for move towards light algorithm

14

On similar lines, following a light source algorithm is implemented using flowhcart illustrated in
Figure 4.1. Above mentioned algorithm will help us understand why the robot approaches the
source of light in a zig zag fashion. We cannot do significant improvement in algorithm given the
limitation of onboard ambient light sensor to one.

4.2 Results and Demonstration

Following parameters were used for this algorithm for moving towards the direction of light source:

• Number of samples = 300. In order to measure ambient light, we use the function get ambientlight()

to read the current value for the sensor. When a sensor cannot return a good reading, it re-
turns -1. In As such sensors are inherently noisy, we will write a function that “samples” the
current light level by averaging 300 sensor readings, while discarding any bad sensor readings.

• THRESH LOW = 300

• THRESH HIGH = 600

Video of working demo of problem statement can be accessed using link in Figure 4.2.

Figure 4.2: Move towards the light source

Different THRESH LOW and THRESH HIGH parameters were chosen to implement hysteresis be-
haviour, thereby, precluding jittery motion. A high value of THRESH HIGH might ensure that the
Kilobot converges closer and closer to the light source. The function get ambientlight() returns
a 10-bit measurement (0 to 1023). Accordingly, the value of THRESH HIGH might be set for better
convergence towards light source.

15

https://www.google.com/url?sa=j&url=https%3A%2F%2Fphotos.app.goo.gl%2FnUNghDg4nJygpzUu5&uct=1551610784&usg=G0tZGJ7iMN79F5qGk1QMw5rfodM.

Chapter 5

Synchronizing phase of blinking
LEDs

5.1 Introduction

Objective: Create a logical synchronous clock between different robots to allow two or more Kilo-
bots to blink an LED in unison roughly every 4 seconds

A large group of decentralized closely cooperating entities, commonly called a collective or swarm,
can work together to complete a task that is beyond the capabilities of any of its individuals [?].
Following are the three basic swarm behaviors [?] that Kilobots have mastered:

1. Foraging – It involves commanding several robots to disperse and explore the area around
them. With Kilobots, the idea is to chip away the time it takes to forage in a particular
location.

2. Formation control – It means the ability of Kilobots to behave in unison or in a specific
part of the swarm. By maintaining communication with each other, Kilobots possess a virtual
bearing sensor that gives each one a realistic sense of its position in the group.

3. Synchronization – It is often used when coordinating simultaneous actions between many
entities, such as robots or sensor networks. We can visualize this by imagining a swarm of
1,000 Kilobots, with each using its LED light to represent a pixel in a larger video that can
be viewed from above. To know which color to signal at any given time, every Kilobot must
be using the same clock.

Hence, synchronization is one of the swarm behaviours which can be performed by Kilobots. It is
often used when coordinating simultaneous actions between many entities, such as robots or sensor
networks.

16

Figure 5.1: Algorithm for synchronizing phase of blinking LEDs

For our objective, we will use a method that relies on averaging. The algorithm for Synchronizing
robots is given in the flowchart (Figure 5.1). Each Kilobot acts as an oscillator, flashing its LED
in a fixed period P. At the same time, it continually transmits a message with its current position
in the clock period (i.e. a value between 0 and P). In the absence of any neighbors, the Kilobot
will simply blink in a fixed period, like a firefly. If the Kilobot hears neighboring Kilobots, then
it receives information about their current positions in their own periods. In order to synchronize,

17

it collects that information and uses the average to make an adjustment to its own next flashing
time. The steps can be summarized as given below:

Step 1: Create a robot oscillator that flashes every 2 seconds.

#define PERIOD 64

uint32_t reset_time = 0;

// In Program Loop

if (kilo_ticks >= (last_reset + PERIOD)) {

set LED to red

last_reset = kilo_ticks

} else {

turn LED off

}

Step 2: Let the Kilobot continually transmit the current position of its clock within its ticking
period (i.e. kilo ticks - last reset). Since we reset our clock every 64 ticks, this value will be
less than 64. We want this value to be as accurate as possible, so we can read the clock in the
message tx function.

message_t message;

message_t *message_tx() {

message.data[0] = kilo_ticks - last_reset; // current position in PERIOD

message.crc = message_crc(&message);

return &message;

}

Step 3: Let the Kilobot collect the messages it hears from other neighbors. By comparing the its
own current clock position to that of its neighbors (i.e. the first byte of the received message), a
Kilobot can tell how much it is out of sync with its neighbors. Each time a new message arrives,
the Kilobot will store the value of the adjustment to be made. Then, when the Kilobot completes
its own time period and flashes, it will also make one big adjustment for next time’s flash.

void message_rx(message_t *m, distance_measurement_t *d)

{

int my_timer = kilo_ticks - last_reset;

int rx_timer = m->data[0];

int timer_discrepancy = my_timer - rx_timer;

// reset time adjustment.

reset_time_adjustment = reset_time_adjustment + rx_reset_time_adjustment;

}

18

5.2 Results and Demonstration

Following parameters were used for this algorithm for synchronizing phase:

• Period = 50. We use the robot’s own clock to check time, by reading the variable kilo ticks.
One tick is equivalent to roughly 30 ms, or equivalently there are approximatly 32 clock ticks
every second.

• RESET TIME ADJUSTMENT DIVIDER = 120. It affects the size of the reset time adjustment for
every discrepancy with a neighbor. A larger value means smaller adjustments. Hence, this
value should increase with the average number of neighbors each robot has.

Video of working demo of problem statement can be accessed using link in Figure 5.2.

Figure 5.2: Synchronizing phase of blinking LEDs

19

https://photos.app.goo.gl/nvWXb5ziksYnx73s6

Chapter 6

Efficient star-planet orbiting using
a finite state machine

6.1 Finite state machine (FSM)

Before discussing FSM, let us discuss the three individual terms comprising this concept viz. finite,
state and machine. Finite refers to a fixed number, whereas state means the mode or position. For
example, in case of a traffic light signal, we have three different states: red, yellow and green. Thus,
FSM denotes a machine with fixed number of states. [?] views a finite state machine as:

• A set of input events

• A set of output events

• A set of states

• A function that maps states and input to output

• A function that maps states and inputs to states

• A description of the initial state

In our case of star-planet orbiting, we model the problem as a FSM, given its suitability to mod-
ularizing different components of algorithm. Our mechanism for orbiting is very similar to those
provided at Kilobotics website, and elaborately covered in details in previous chapters, although
implementation using a FSM dramatically simplifies integrating macros of large size. Our main con-
tribution in this chapter comprises of a novel and robust obstacle avoidance algorithm to prevent
planet from hitting the star if it starts too close to it and also, a simple extension of existing orbiting
algorithm for multiple stars setting. Both of these contributions will be dealt with extensively in
coming sections.

20

6.2 Flowchart

Flowchart for orbit after escape algorithm has been divided into two parts comprising of Figure
6.1 and 6.2. First part discusses extension of orbit algorithm for multiple star setting whereas the
latter illustrates the algorithm for escaping obstacle.

Figure 6.1: Flowchart for orbiting after escape algorithm (Part I)

In star planet orbiting algorithm, while measuring distance between stars and planet, the param-
eter NUMBER COMMUNICATION defines how many messages should a planet aggregate before making
a decision. Accordingly, planet identifies the nearest star based on the strength of signal received
in previous step. Considering the nearest star, the planet either moves left or right to maintain
DESIRED DISTANCE. The parameter message rx status is used to keep count of successful commu-
nications.

21

Figure 6.2: Flowchart for orbiting after escape algorithm (Part II)22

The parameter NUMBER COMMUNICATION affects speed of the planet. For instance, if the number
of stars in communication range is more, the planet moves faster than having only one star in
communication range. This is due to the fact that it needs to receive NUMBER COMMUNICATION times
of measurements from only one star and then, decides the motion. Here are two observations, which
show how the revolution time is getting varied with the number of communications:

• Motor delay = 200, Number of communications = 4, Revolution time = 23 minutes

• Motor delay = 500, Number of communications = 2, Revolution time = 5 minutes

While escaping from TOO CLOSE region, we compare the successive distance measurements to
check for the orientation of planet from star. In our early version of algorithm, we tried to de-
tect transition of distance from increasing to decreasing state as the instant when planet is
oriented away from star but becase of uncertainity in measurements, this led to unwanted be-
haviour. Hence, we decided to keep track of minimum distance from star and check for the con-
dition distance - min distance > THRESHOLD ROTATE to hold. By appropriately choosing the
parameter THRESHOLD ROTATE, we managed to get the final orientation of planet away from di-
rection of star. Moreover, the modified algorithm sans over-dependence on accuracy of a single
measurement, leading to filter like behaviour and an eventual robustness of solution.
It is worth mentioning that the robustness comes at an additional cost, which is, in worst case
scenario, planet would require one complete revolution before being able to escape from TOO CLOSE

region of star. For more detailed understanding of algorithm, readers are referred to code in Ap-
pendix A.

6.3 Results and Demonstration

The caption of figure 6.3 provides link to the demonstration for orbiting of planet around the star,
given star starts near the desired distance.

Figure 6.3: Efficient star-planet orbiting

23

https://youtu.be/LRgOzhAJI1k

We have hard delays in our current implementation which increases the revolution time. In
future, one can replace them with soft delays to alleviate the time of revolution.

The caption of figure 6.4 provides link to the demonstration of algorithm for planet to go away
from too close region, which involves using a robust algorithm followed by orbiting.

Figure 6.4: Escaping too close region of star by planet followed by orbiting

It is evident from the demonstration that there is a damped oscillation before planet starts
orbiting. This can be attributed to difference in centre of rotation of kilobots for clockwise and
anti-clockwise turn. If it were to rotate about its centre, the oscillations would not have been as
heightened as in current scenario.

The caption of figure 6.5 provides link to the demonstration of algorithm for planet to orbit
around two stars. In this case, only one communication was used to identify minimum distance,
leading to instability which can be attributed to CSMA/CD [?] communication protocol followed
by Kilobots.

24

https://youtu.be/X6dGCLT0ho8

Figure 6.5: Orbiting of planet around two stars using single communication to estimate minimum
distance leads to instability

The caption of figure 6.6 provides link to the demonstration of algorithm for planet to orbit
around two stars where planet uses two communications to make a descision (estimating the mini-
mum distance).

Figure 6.6: Orbiting of planet around two stars using two communications to estimate minimum
distance

The caption of figure 6.7 provides link to the demonstration of algorithm for planet to orbit
around three stars forming a triangle. In this case, planet uses four communications to make a
decision. Though these four communications stabilize the movement of planet, it also increases the
total revolution time.

25

https://youtu.be/mhW04WvGKuQ
https://youtu.be/mhW04WvGKuQ
https://youtu.be/EKvty2OxXxM
https://youtu.be/EKvty2OxXxM

Figure 6.7: Orbiting of planet around three stars using four communications to estimate minimum
distance

6.4 Conclusion

We implemented a robust algorithm for star-planet orbiting by using the concepts of FSM. This
algorithm was able to prevent planet from hitting the star, even if the planet starts in the very close
region of the star. Also, we observed that the movement of a planet can be stabilized by increasing
the number of communications from the star. However, it will also increase the total revolution
time. Also, the orientation of planets and star played a significant role. If the orientation of the
planet is away from that of a star, it might take an additional turn before it begins orbiting.

26

https://youtu.be/5aZm0Os9BPc
https://youtu.be/5aZm0Os9BPc

Chapter 7

Shape formation using Kilobots

In this chapter, we will discuss an algorithm motivated by the work [?] of SSL lab, Harvard Uni-
versity, for shape formation. Rather than implementing the entire algorithm, we will only consider
a portion of it, assuming that the next robot to be placed is available near origin.

7.1 Framework

• Three robots (guides) are used as reference for axis orientation.

• A robot (builder) participating in shape formation starts near the left of origin.

• In its effort to reach the desired location, builder orbits around the partial shape using the
algorithm presented in last chapter.

• The builder stops orbiting when it reaches the desired location.

• Builder becomes a guide, thereby, helping the next builder.

To participate in shape formation, builders need to decide upon what global shape to form. This
is achieved by sharing a shape matrix encapsulating the desired shape as an array of 5-tuple. The
5-tuple contains the following information necessary for establishing builders at desired location:(

Index Neighbour1 Desired distance1 Neighbour2 Desired distance2
)

(7.1)

For forming a linear shape of width 2, the shape matrix would look like
3 1 1 2 1

4 2 1 3
√

2
5 3 1 4 1
· · · · · · · · · · · · · · ·

 (7.2)

It is important to note that we require the shape to ensure two guides for each builder node or else
builder would fail to localize correctly.

27

7.2 Flowchart

Figure 7.1 explains the algorithm for shape formation. Our algorithm differs from [?] in its imple-
mentation of shape matrix, and localization to be discussed later in next section.

Figure 7.1: Flowchart for shape formation algorithm

7.3 Discussion

Figure 7.2 and 7.3 helps in visualizing the shape formation process for shape matrix (7.2), which
corresponds to a line of width 2. Black circles indicate guide robots which continuously transmit
their Index, whereas grey circles indicate the oncoming builder robot. Shaded circle corresponds to

28

a builder transforming into a guide. A builder is always in listener mode, whereas a guide is always
in speaker mode of communication. Dotted lines trace the path of builder.

When first builder initialized with Index=3 starts its journey, as shown in Figure 7.2, it never
faces a situation which requires Index update and hence, it ultimately reaches the desired location
corresponding to Index=3 and transforms into a guide robot.

Figure 7.2: First builder taking its position

When second builder arrives with Index=3, as n in Figure 7.3, it continues on its journey to
occupy the desired location coresponding to Index=3, but when it comes in the communication
range of new guide with Index=3, it realizes that it needs to update its Index to 4. Following
which, it travels to the desired location corresponding to Index=4 and transforms into a guide.

Figure 7.3: Second builder taking its position

7.4 Demonstration

EPSILON MARGIN and MOTOR ON DURATION plays an essential role in determining the stability and
accuracy of shape formation. For large MOTOR ON DURATION, it is likely for builder to go beyond
its desired location and continue orbiting whereas for larger EPSILON MARGIN, we get distortion in

29

shape. Moreover, we can not choose very small EPSILON MARGIN due to error in measurements. One
way to improve accuracy of shape is by adaptively decreasing the MOTOR ON DURATION of builder
when it comes in the comunication range of desired neighbours. The two parameters discussed
are borrowed from previous chapter. For detailed understanding of these parameters, readers are
motivated to go through code in Appendix B
Figure 7.4 provides the link to video of shape formation in action. Shape matrix (7.2) was fed
to each builder robots to form a rectangle breadth=2 and length=3. Values for EPSILON MARGIN

and MOTOR ON DURATION were assigned to 5 and 500 respectively. For abovementioned values of
parameters, the desired shape formation took place in roughly 10 minutes with observable dis-
tortions in shape. As the shape becomes larger and larger, accumulations of these errors could
prevent a builder from localization, given our naive implementation of the algorithm. We also ex-
perimented with smaller values of EPSILON MARGIN, namely 2, but because of measurement noise,
builders failed to establish themselves at desired location with large probability and continued or-
biting around guides. Same observations were made for large values of MOTOR ON DURATION, namely
1000, as we had implemented hard delays. Although, larger values decreased the time to reach near
the desired region, builders failed to localize within desired error margin. This could be attributed
to large displacement being made before every localization step.

Figure 7.4: Shape formation by kilobots (Shape: Rectangle of breadth=2 and length=3)

Based on our discussion, inclusion of following measures would boost the performance:

• Adaptively decreasing the MOTOR ON DURATION as the builder reaches closer to its target lo-
cation. Doing this would significantly improve the runtime of shape formation and accuracy
of localization if calibrated with proper choice of EPSILON MARGIN.

• Conversion of hard delays to soft delays, thereby, decreasing the overall run time.

• Use of optimization based approach for localization to incorporate uncertainity in measure-
ments.

30

https://youtu.be/SoDq9GQvNAE

Chapter 8

Conclusion

During our lab work on Kilobotics, we developed essential building blocks for implementation of
shape formation algorithm. In the process, we tested algorithms for efficient orbiting, algorithm
for escaping an obstacle, algorithm for orbiting multiple stars, and lastly, we also implemented a
rudimentary shape formation algorithm for Kilobots. There’s a lot which needs to be achieved in
terms of robustness in performance and integration of individual building blocks. Further, one may
also pursue development of macros to generate shape matrix from a bitmap image.

8.1 Acknowledgement

We would like to thank Tejdeep Reddy for his teaching assistance and lab staffs for maintaining
a healthy number of working robots. Moreover, we would like to thank Prof. Leena Vachhani for
her coursework on Automation and Feedback which motivated us to approach the problem using
finite state machine. Lastly, thanks to Prof. Leena Vachhani, Prof. Arpita Sinha and Adwaith
Vijayakumar for their generous coperation in preponing our presentation dates.

31

Appendix A

Code for orbiting after escape
algorithm

1 #include <kilolib.h>

2
3 // ----- PARAMETERS FOR SHAPE FORMATION / COMMUNICATION -----

4 #define DESIRED_DISTANCE 65

5 #define EPSILON_MARGIN 5

6 #define TOO_CLOSE_DISTANCE 45

7 #define MOTOR_ON_DURATION 500

8 #define THRESHOLD_ROTATE 12

9 #define NUMBER_COMMUNICATION 1

10
11 // ----- DEFINE MOTION -----

12 #define FORWARD 0

13 #define LEFT 1

14 #define RIGHT 2

15
16 // ----- DEFINE STATE -----

17 #define MEASURE_DISTANCE 0

18 #define DISTANCE_CHECK_ORBIT 1

19 #define TOO_CLOSE 2

20 #define TOO_CLOSE_ESCAPE 3

21 #define GREATER_THAN_DESIRED 4

22 #define SMALLER_THAN_DESIRED 5

23 #define WAIT 6

24 #define MEASURE_AGAIN 7

25 #define WAIT_AGAIN 8

26 #define UPDATE_MINIMUM_DISTANCE 9

27 #define MEASURE_ESCAPE 10

28 #define WAIT_ESCAPE 11

32

29 #define FINISH 12

30
31 // ----- VARIABLE DECLARATION -----

32 int state , last_state , distance , last_distance , message_rx_status ,

min_distance , temp;

33 message_t message;

34
35 void measure_distance ()

36 {

37 message_rx_status =0;

38 }

39
40 message_t *message_tx ()

41 {

42 return &message;

43 }

44
45 // ----- ROUTINE FOR RECEPTION -----

46 void message_rx(message_t *m, distance_measurement_t *d)

47 {

48 if(message_rx_status == 0)

49 {

50 distance = 1000;

51 }

52 if(message_rx_status != NUMBER_COMMUNICATION)

53 {

54 temp = estimate_distance(d);

55 if(temp < distance)

56 {

57 distance = temp;

58 }

59 message_rx_status ++;

60 }

61 }

62
63 // ----- ROUTINE FOR MOTION -----

64 void move(int direction)

65 {

66 switch(direction)

67 {

68 case FORWARD:

69 spinup_motors ();

70 set_motors(kilo_straight_left , kilo_straight_right);

71 delay(MOTOR_ON_DURATION);

72 set_motors (0, 0);

73 break;

33

74 case LEFT:

75 spinup_motors ();

76 set_motors(kilo_straight_left , 0);

77 delay(MOTOR_ON_DURATION);

78 set_motors (0, 0);

79 break;

80 case RIGHT:

81 spinup_motors ();

82 set_motors (0, kilo_straight_right);

83 delay(MOTOR_ON_DURATION);

84 set_motors (0, 0);

85 break;

86 }

87 }

88
89 void setup()

90 {

91 // ----- RESET FINITE STATE MACHINE -----

92 state = MEASURE_DISTANCE;

93 set_color(RGB(0,0,1));

94 }

95
96 void loop()

97 {

98 switch(state)

99 {

100 case MEASURE_DISTANCE:

101 // ----- INITIATE RECEPTION -----

102 message_rx_status = 0;

103 state = WAIT;

104 break;

105 case WAIT:

106 if(message_rx_status == NUMBER_COMMUNICATION)

107 {

108 state = DISTANCE_CHECK_ORBIT;

109 }

110 break;

111 case DISTANCE_CHECK_ORBIT:

112 // ----- CHECK THE REGION OF PLANET -----

113 if(distance < TOO_CLOSE_DISTANCE)

114 {

115 state = TOO_CLOSE;

116 min_distance = distance;

117 }

118 else

119 {

34

120 if(distance > DESIRED_DISTANCE)

121 {

122 state = GREATER_THAN_DESIRED;

123 }

124 else

125 {

126 state = SMALLER_THAN_DESIRED;

127 }

128 }

129 break;

130 case TOO_CLOSE:

131 set_color(RGB(1,0,0));

132 move(LEFT);

133 state = MEASURE_AGAIN;

134 break;

135 case MEASURE_AGAIN:

136 message_rx_status = 0;

137 state = WAIT_AGAIN;

138 break;

139 case WAIT_AGAIN:

140 if(message_rx_status == NUMBER_COMMUNICATION)

141 {

142 state = UPDATE_MINIMUM_DISTANCE;

143 }

144 break;

145 case UPDATE_MINIMUM_DISTANCE:

146 // ----- UPDATE MINIMUM DISTANCE WHILE TRYING TO ESCAPE

THE OBSTACLE -----

147 if(distance < min_distance)

148 {

149 min_distance = distance;

150 }

151 // ----- CHECK IF PLANET IS ORIENTED AWAY FROM OBSTACLE

152 if(distance - min_distance > THRESHOLD_ROTATE)

153 {

154 state = TOO_CLOSE_ESCAPE;

155 }

156 else

157 {

158 state = TOO_CLOSE;

159 }

160 break;

161 case TOO_CLOSE_ESCAPE:

162 // ----- CHECK IF PLANET IS NEAR THE ORBITING DISTANCE

35

163 if(distance > DESIRED_DISTANCE - EPSILON_MARGIN)

164 {

165 state = MEASURE_DISTANCE;

166 }

167 else

168 {

169 move(FORWARD);

170 state = MEASURE_ESCAPE;

171 }

172 break;

173 case MEASURE_ESCAPE:

174 message_rx_status = 0;

175 state = WAIT_ESCAPE;

176 break;

177 case WAIT_ESCAPE:

178 if(message_rx_status == NUMBER_COMMUNICATION)

179 {

180 state = TOO_CLOSE_ESCAPE;

181 }

182 break;

183 case GREATER_THAN_DESIRED:

184 // ----- ROUTINE FOR CLOCKWISE ORBITING -----

185 move(RIGHT);

186 set_color(RGB(0,1,0));

187 state = MEASURE_DISTANCE;

188 break;

189 case SMALLER_THAN_DESIRED:

190 // ----- ROUTINE FOR CLOCKWISE ORBITING -----

191 move(LEFT);

192 set_color(RGB(1,0,0));

193 state = MEASURE_DISTANCE;

194 break;

195 default:

196 break;

197 }

198 last_state = state;

199 }

200
201
202
203 int main()

204 {

205 kilo_init ();

206 // ----- INITIALIZE RECEPTION -----

207 kilo_message_rx = message_rx;

208 kilo_start(setup , loop);

36

209
210 return 0;

211 }

37

Appendix B

Code for shape formation
algorithm

1 #include <kilolib.h>

2
3 // ----- PARAMETERS FOR SHAPE FORMATION / COMMUNICATION -----

4 #define DESIRED_DISTANCE 65

5 #define EPSILON_MARGIN 5

6 #define MOTOR_ON_DURATION 500

7 #define NUMBER_COMMUNICATION 3

8
9 // ----- DEFINE MOTION -----

10 #define FORWARD 0

11 #define LEFT 1

12 #define RIGHT 2

13
14 // ----- DEFINE STATE -----

15 #define NEIGHBOURS_IN_RANGE 1

16 #define COMPARE_DESIRED_DISTANCE 2

17 #define ORBIT_AND_UPDATE_INDEX 3

18 #define FINISH 4

19 #define INFINITY 5

20
21 // ----- VARIABLE DECLARATION -----

22 message_t message;

23 int state , message_rx_status , temp , index=3, check = 0, x, y,

max_index=2, message_sent;

24 float distance , last_distance , min_distance;

25
26 // ----- ARRAYS FOR STORING NEIGHBOURS INFORMATION -----

27 int reception_id [3] = {0,0,0};

38

28 float reception_distance [3] = {0,0,0};

29
30 // ----- SHAPE MATRIX -----

31 int neighbours [8][2] =

{{0 ,0} ,{0 ,0} ,{0 ,0} ,{1 ,2} ,{2 ,3} ,{3 ,4} ,{4 ,5} ,{5 ,6}};

32 float distance_multiplier [8][2] = {{0,0}, {0,0}, {0,0}, {1,1},

{1,1.4}, {1,1}, {1 ,1.4} ,{1 ,1}};

33
34 message_t *message_tx ()

35 {

36 return &message;

37 }

38
39 // ----- ROUTINE FOR TRANSMISSION -----

40 void message_tx_success ()

41 {

42 message_sent = 1;

43 set_color(RGB(1, 0, 1));

44 delay (100);

45 set_color(RGB(0, 0, 0));

46 }

47
48 // ----- ROUTINE FOR RECEPTION -----

49 void message_rx(message_t *m, distance_measurement_t *d)

50 {

51 if(message_rx_status == 0)

52 {

53 distance = 1000;

54 }

55 if(message_rx_status != NUMBER_COMMUNICATION)

56 {

57 temp = estimate_distance(d);

58 // ----- CALCULATE MINIMUM DISTANCE -----

59 if(temp < distance)

60 {

61 distance = temp;

62 }

63 // ----- STORE RECEPTION ID -----

64 reception_id[message_rx_status] = (*m).data [0];

65 // ----- MAXIMUM INDEX IN CURRENT COMMUNICATION -----

66 if(reception_id[message_rx_status]>max_index)

67 {

68 max_index=reception_id[message_rx_status];

69 }

70 // ----- STORE RECEPTION DISTANCE -----

71 reception_distance[message_rx_status] = temp;

39

72 message_rx_status ++;

73 }

74 }

75
76 void measure_distance ()

77 {

78 message_rx_status =0;

79 }

80
81 // ----- ROUTINE FOR MOTION -----

82 void move(int direction)

83 {

84 switch(direction)

85 {

86 case FORWARD:

87 spinup_motors ();

88 set_motors(kilo_straight_left , kilo_straight_right);

89 delay(MOTOR_ON_DURATION);

90 set_motors (0, 0);

91 break;

92 case LEFT:

93 spinup_motors ();

94 set_motors(kilo_straight_left , 0);

95 delay(MOTOR_ON_DURATION);

96 set_motors (0, 0);

97 break;

98 case RIGHT:

99 spinup_motors ();

100 set_motors (0, kilo_straight_right);

101 delay(MOTOR_ON_DURATION);

102 set_motors (0, 0);

103 break;

104 default:

105 break;

106 }

107 }

108
109 void setup()

110 {

111 // ----- RESET FINITE STATE MACHINE -----

112 state = NEIGHBOURS_IN_RANGE;

113 set_color(RGB(0,0,1));

114 }

115
116 void loop()

117 {

40

118 switch(state)

119 {

120 case NEIGHBOURS_IN_RANGE:

121 state = COMPARE_DESIRED_DISTANCE;

122 // ----- INITIATE RECEPTION -----

123 message_rx_status = 0;

124 break;

125 case COMPARE_DESIRED_DISTANCE:

126 if(message_rx_status == NUMBER_COMMUNICATION)

127 {

128 for(int i=0; i<NUMBER_COMMUNICATION; i++)

129 {

130 for(int j=i+1; j<NUMBER_COMMUNICATION; j++)

131 {

132 // ----- CHECK IF DESIRED NEIGHBOURS IN

RANGE -----

133 if(reception_id[i] == neighbours[index][0]

&& reception_id[j] ==

neighbours[index][1])

134 {

135 x = i;

136 y = j;

137 check = 1;

138 break;

139 }

140 }

141 if(check == 1)

142 {

143 break;

144 }

145 }

146
147 // ----- CHECK IF DESIRED NEIGHBOURS AT DESIRED

DISTANCE -----

148 if((check == 1) && (reception_distance[x] >

distance_multiplier[index][0] * DESIRED_DISTANCE

- EPSILON_MARGIN && reception_distance[x] <

distance_multiplier[index][0] *

DESIRED_DISTANCE+EPSILON_MARGIN) &&

(reception_distance[y] >

distance_multiplier[index][1] *

DESIRED_DISTANCE -EPSILON_MARGIN &&

reception_distance[y] <

distance_multiplier[index][1] * DESIRED_DISTANCE

+ EPSILON_MARGIN))

149 {

41

150 state = FINISH;

151 }

152 else

153 {

154 state = ORBIT_AND_UPDATE_INDEX;

155 }

156 }

157 break;

158 case ORBIT_AND_UPDATE_INDEX:

159 // ----- ALGORITHM FOR ORBITING CLOCKWISE -----

160 if(distance > DESIRED_DISTANCE)

161 {

162 set_color(RGB(1,0,0));

163 move(RIGHT);

164 state = NEIGHBOURS_IN_RANGE;

165 }

166 else

167 {

168 set_color(RGB(0,0,1));

169 move(LEFT);

170 state = NEIGHBOURS_IN_RANGE;

171 }

172 // ----- UPDATE INDEX IF REQUIRED -----

173 if(max_index +1>index)

174 {

175 index=max_index +1;

176 }

177 break;

178 case FINISH:

179 set_color(RGB(0,1,0));

180 // ----- START TRANSMISSION AFTER DESIRED LOCATION IS

ACHIEVED -----

181 message.type = NORMAL;

182 message.data [0] = index;

183 message.crc = message_crc (& message);

184 kilo_message_tx = message_tx;

185 kilo_message_tx_success = message_tx_success;

186 state = INFINITY;

187 break;

188 case INFINITY:

189 break;

190 default:

191 break;

192 }

193 }

194

42

195 int main()

196 {

197 kilo_init ();

198 // ----- INITIALIZE RECEPTION -----

199 kilo_message_rx = message_rx;

200 kilo_start(setup , loop);

201 return 0;

202 }

43

	Overview of Kilobots
	Specifications of Kilobot
	Hardware/ Software Requirement
	Over-head Controller

	Establishing communication between two Kilobots
	Speaker
	Listener
	Results and Demonstration

	Orbiting of Kilobots
	Introduction
	Results and Demonstration

	Moving towards the direction of light source
	Introduction
	Results and Demonstration

	Synchronizing phase of blinking LEDs
	Introduction
	Results and Demonstration

	Efficient star-planet orbiting using a finite state machine
	Finite state machine (FSM)
	Flowchart
	Results and Demonstration
	Conclusion

	Shape formation using Kilobots
	Framework
	Flowchart
	Discussion
	Demonstration

	Conclusion
	Acknowledgement

	Code for orbiting after escape algorithm
	Code for shape formation algorithm

