Shape formation using Kilobots A finite state machine approach

${\sf Sudhakar^1 \ Kishan^1 \ Eswara \ Srisai^1 \ Anurag^1}$

¹M.Tech scholar Systems and Control Engineering

Indian Institute of Technology, Bombay April 24, 2019

Introduction

Summary of first half of lab work

Star planet orbiting

- Orbiting
- Escaping the close region

Shape formation

Overview

Introduction

Summary of first half of lab work

Star planet orbiting

- Orbiting
- Escaping the close region

Shape formation

Kilobots

Specifications

- ► ATmega 328p processor
- ► Li-Ion 3.7V battery
- One IR transmitter-receiver pair
- ► One light sensor
- Two vibration motors (1 cm/sec, 45 degrees/sec)

Figure 1: Kilobot

About Kilobots [1]

Figure 2: Communication between two Kilobots

- ► Reflecting IR light
- Communication up to 7 cm (32kb/s) away
- Using over-head controller

- Sharing of same wireless channel by all robots
- CSMA-CA (Carrier Sense Multiple Access with Collision Avoidance) method [2].
- Reduction of channel bandwidth

Introduction

Summary of first half of lab work

- Star planet orbiting
 - Orbiting
 - Escaping the close region

Shape formation

- ► Familiarization with Kilobots
- Establishing communication between two Kilobots (speaker and listener)
- Implementing naive algorithm for orbiting of Kilobots (star and planet)
- Moving towards the direction of light source
- Synchronizing phase of blinking LEDs

Flowchart

Naive orbiting algorithm

Demonstration

Figure 3: Naive orbiting algorithm

Introduction

Summary of first half of lab work

Star planet orbiting

- Orbiting
- Escaping the close region

Shape formation

Objective: Algorithm to allow a planet to orbit n stars from any initial condition.

Stars: Stationary bots around which planet rotates (Black)

Objective: Algorithm to allow a planet to orbit n stars from any initial condition.

- ▶ Stars: Stationary bots around which planet rotates (Black)
- ▶ Planet: Dynamic bots rotating around stars (Gray)

Efficient orbiting using FSM

Demonstration

Figure 7: Efficient star-planet orbiting using single communication

Objective: Designing a robust algorithm to reach the desired orbit distance without hitting the star.

Objective: Designing a robust algorithm to reach the desired orbit distance without hitting the star.

Figure 8: Planet too close to star

Figure 9: Desired distance of orbit

7

Flowchart

Efficient orbiting using FSM

Demonstration

Figure 11: Escaping too close region of star by planet followed by orbiting

Introduction

Summary of first half of lab work

Star planet orbiting

- Orbiting
- Escaping the close region

Shape formation

Objective: Distributed algorithm to generate a desired shape [3].

Guides: Index 0, 1, 2 acts as reference for coordinate axis by continuously transmitting their index.

Shape formation

- Builders: Index 3 onwards for shape formation
- For forming a linear shape of width 2, the shape matrix would look like

Γ	Index	N_1	DD_1	<i>N</i> ₂	DD_2	
	2	1	1	2	1	
	3	1	1	2	1	
	4	2	1	3	√2 1	
	5	3	T	4	T	
L	• • •	• • •	• • •	• • •		

where,

N_i : Desired neigbour i *DD_i*: Desired distance from neighbour i.

Flowchart

Figure 12: First builder

Figure 13: Second builder

Shape formation

Demonstration

Figure 12: Rectangle shape formation by Kilobots (I=3, b=2)

Conclusion

Challenges

- Calibration of Kilobots
- Non-smooth surface

Scope

- Integration of individual building blocks
- Optimization based localization scheme [3]
- Macros for generating shape matrix.

Reference

- K Team. *Kilobot user manual*. URL: https://ftp.kteam.com/kilobot/user_manual/Kilobot_UserManual.pdf.
- Vangie Beal. CSMA/CD Carrier Sense Multiple Access / Collision Detection. URL: https://www.webopedia.com/TERM/C/CSMA_CD.html.
- Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal.
 "Programmable self-assembly in a thousand-robot swarm". In: Science 345.6198 (2014), pp. 795–799. ISSN: 0036-8075. DOI: 10.1126/science.1254295. eprint: https://science. sciencemag.org/content/345/6198/795.full.pdf. URL: https://science.sciencemag.org/content/345/6198/795.