Complex variables

Anurag
anuragg.in@gmail.com
www.anuragg.in

1 Analytic functions

If the function is continuously differentiable.

1.1 Cauchy-Reimann equations

Let \mathbb{G} be a region in \mathbb{C} and let u and v be a function on \mathbb{G} with continuous partial derivative. Then, $f(z)=u(z)+i v(z)$ on \mathbb{G} is analytic if and only if the Cauchy-Reimann equations hold, i.e.

$$
\begin{array}{r}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{2}
\end{array}
$$

1.2 Properties

Theorem 1. If a function $f(z)$ is analytic at a point, then its derivative of all orders are analytic at the same point.

Theorem 2. If f is entire and bounded in \mathbb{C}, then $f(z)$ is constant throughout the plane.

2 Cauchy's integral theorem

Let $f(z)$ be analytic on and inside a closed contour C and let $f^{\prime}(z)$ be also continuous on and inside C, then

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{4}
\end{equation*}
$$

Definition 1. Positively oriented closed curve A planar simple closed curve such that when traveling on it, one always has interior of the curve on its left.

Corollary 1. Let $C, C_{1}, C_{2}, \ldots, C_{n}$ be positively oriented closed contours, where $C_{i} \forall i$ lies inside C and each C_{i} lies outside of each other. Let $f(z)$ be analytic on the set $C \cup \operatorname{int}(C) \backslash$ $\operatorname{int}\left(C_{1}\right) \backslash \ldots \backslash \operatorname{int}\left(C_{n}\right)$, then

$$
\begin{equation*}
\oint_{C} f(z) d z=\sum_{k} \oint_{C_{k}} f(z) d z \tag{5}
\end{equation*}
$$

3 Cauchy's integral formula

Let $f(z)$ be analytic on and inside a positively oriented closed contour C and let z be any point inside C, then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{6}
\end{equation*}
$$

Corollary 2. Let z be a point in the set $C \cup \operatorname{int}(C) \backslash \operatorname{int}\left(C_{1}\right) \backslash \ldots \backslash \operatorname{int}\left(C_{n}\right)$ where C, C_{i} and $f(z)$ have the same condition as in Corollary 1, then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \sum_{k} \oint_{C_{k}} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{7}
\end{equation*}
$$

Corollary 3. Assuming differentiation under the integration sign is legitimately defined,

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta \tag{8}
\end{equation*}
$$

[Ref. example on Page 56 of additional material slides of integration.pdf]
Corollary 4. Assuming differentiation under the integration sign is legitimately defined,

$$
\begin{equation*}
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \tag{9}
\end{equation*}
$$

4 Taylor's theorem

Let $f(z)$ be analytic at all points within a circle C_{0} with center z_{0} and radius ρ_{0}. Then, for every point z within C_{0}, we have

$$
\begin{equation*}
f(z)=f\left(z_{0}\right)+\sum_{n=1}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{n!} f^{(n)}\left(z_{0}\right) \tag{10}
\end{equation*}
$$

where the power series converges inside the disc.

5 Laurent series

Let $f(z)$ be analytic in the annular region $\operatorname{ann}\left(a ; R_{1}, R_{2}\right)$. Then

$$
\begin{align*}
& f(z)=\sum_{i=-\infty}^{\infty} a_{n}(z-a)^{n} \tag{11}\\
& a_{n}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \tag{12}
\end{align*}
$$

Convergence over annular region. γ is any closed curve in annular region.
[Refer example on NPTEL slides]

6 Residue theorem

Definition 2 (Residue). The coefficient a_{-1} is the residue of $f(z)$ at $z=a$ or $\operatorname{Res}(f ; a)$.
Theorem 3 (Residue theorem). Let $f(z)$ be analytic on a region \mathbb{G} except for singularities at a_{1}, \ldots, a_{n}. If γ is a closed piecewise smooth curve in \mathbb{G} which does not pass through any of the singular points, then

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\sum_{k} \operatorname{Res}\left(f ; a_{k}\right) \tag{13}
\end{equation*}
$$

7 Reference

http://nptel.ac.in/courses/111107056/21

