Complex variables

Anurag anuragg.in@gmail.com www.anuragg.in

Analytic functions 1

If the function is continuously differentiable.

Cauchy-Reimann equations 1.1

Let \mathbb{G} be a region in \mathbb{C} and let u and v be a function on \mathbb{G} with continuous partial derivative. Then, f(z) = u(z) + iv(z) on \mathbb{G} is analytic if and only if the Cauchy-Reimann equations hold, i.e.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{2}$$

$$\frac{1}{y} = -\frac{1}{\partial x}$$
 (2)

(3)

1.2**Properties**

Theorem 1. If a function f(z) is analytic at a point, then its derivative of all orders are analytic at the same point.

Theorem 2. If f is entire and bounded in \mathbb{C} , then f(z) is constant throughout the plane.

2 Cauchy's integral theorem

Let f(z) be analytic on and inside a closed contour C and let f'(z) be also continuous on and inside C, then

$$\oint_C f(z)dz = 0 \tag{4}$$

Definition 1. Positively oriented closed curve A planar simple closed curve such that when traveling on it, one always has interior of the curve on its left.

Corollary 1. Let $C, C_1, C_2, ..., C_n$ be positively oriented closed contours, where $C_i \forall i$ lies inside C and each C_i lies outside of each other. Let f(z) be analytic on the set $C \cup int(C) \setminus$ $int(C_1) \setminus ... \setminus int(C_n)$, then

$$\oint_C f(z)dz = \sum_k \oint_{C_k} f(z)dz \tag{5}$$

3 Cauchy's integral formula

Let f(z) be analytic on and inside a positively oriented closed contour C and let z be any point inside C, then

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta \tag{6}$$

Corollary 2. Let z be a point in the set $C \cup int(C) \setminus int(C_1) \setminus ... \setminus int(C_n)$ where C, C_i and f(z) have the same condition as in Corollary 1, then

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \sum_k \oint_{C_k} \frac{f(\zeta)}{\zeta - z} d\zeta \tag{7}$$

Corollary 3. Assuming differentiation under the integration sign is legitimately defined,

$$f'(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^2} d\zeta \tag{8}$$

[Ref. example on Page 56 of additional material slides of integration.pdf]

Corollary 4. Assuming differentiation under the integration sign is legitimately defined,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$
(9)

4 Taylor's theorem

Let f(z) be analytic at all points within a circle C_0 with center z_0 and radius ρ_0 . Then, for every point z within C_0 , we have

$$f(z) = f(z_0) + \sum_{n=1}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0)$$
(10)

where the power series converges inside the disc.

5 Laurent series

Let f(z) be analytic in the annular region $ann(a; R_1, R_2)$. Then

$$f(z) = \sum_{i=-\infty}^{\infty} a_n (z-a)^n \tag{11}$$

$$a_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-a)^{n+1}}$$
(12)

Convergence over annular region. γ is any closed curve in annular region.

[Refer example on NPTEL slides]

6 Residue theorem

Definition 2 (Residue). The coefficient a_{-1} is the residue of f(z) at z = a or Res(f; a).

Theorem 3 (Residue theorem). Let f(z) be analytic on a region \mathbb{G} except for singularities at $a_1, ..., a_n$. If γ is a closed piecewise smooth curve in \mathbb{G} which does not pass through any of the singular points, then

$$\frac{1}{2\pi i} \oint_{\gamma} f(z) dz = \sum_{k} \operatorname{Res}(f; a_{k})$$
(13)

7 Reference

http://nptel.ac.in/courses/111107056/21