Multivariable control systems

Anurag anuragg.in@gmail.com www.anuragg.in

November 12, 2018

1 State space equation [1]

$$
\begin{array}{r}
\dot{x}(t)=A x(t)+B u(t) \\
y=C x(t) \tag{1.2}
\end{array}
$$

2 Controllability [2]

2.1 Controllable subspace

$$
\begin{array}{r}
W_{T}=\int_{0}^{T} e^{A t} B B^{\prime} e^{A^{\prime} t} d t \\
u(t)=B^{\prime} e^{A^{\prime}(T-t)} z=B^{\prime} e^{A^{\prime}(T-t)} W_{T}^{-1}\left(x_{f}-e^{A T} x_{0}\right) ; \tag{2.2}
\end{array}
$$

3 Observervability [2]

3.1 Preliminaries for minimal observal design

- Let $\mathcal{B} \oplus \mathcal{D}=\mathcal{X}$ and P be the projection operator on \mathcal{D} along \mathcal{B}, then $\langle P A \mid P A \mathcal{B}\rangle=$ $P \mathcal{X}=\mathcal{D}$
- If (A, B) is controllable then $\exists \mathcal{V}, F$ s.t. $\mathcal{B} \oplus \mathcal{V}=\mathcal{X}$ and $(A+B F) \mathcal{V} \subset \mathcal{V}$ and $\sigma[(A+B F) \mid \mathcal{V}]=\Lambda$ where Λ is any set of symmetric $\operatorname{dim}(\mathcal{X})-\operatorname{dim}(\mathcal{B})$ eigenvalues. To find the unknowns use $\sigma\left[\left(P A+P B F_{0}\right) \mid \mathcal{D}\right]=\Lambda, \mathcal{V}=\left(P+B F_{0}\right) \mathcal{D}$ and $B F=$ $\left(B F_{0} P-I+P\right) A$

3.2 Minimal observer design

1. Obtain the dual matrices A^{\prime}, C^{\prime}
2. Find \mathcal{D}^{\prime} s.t. $\mathcal{C}^{\prime} \oplus \mathcal{D}^{\prime}=\mathcal{X}^{\prime}$
3. Obtain projection matrix P on \mathcal{D}^{\prime} along \mathcal{C}^{\prime}
4. Find F_{0} s.t. $P A^{\prime}+P C^{\prime} F_{0}$ has desired eigenvalues Λ
5. Obtain A^{\prime}-invariant subspace $\mathcal{V}^{\prime}=\left(P+C^{\prime} F_{0}\right) \mathcal{D}^{\prime}$
6. $C^{\prime} F=\left(C^{\prime} F_{0} P-I+P\right) A^{\prime}$
7. Obtain K using $K=-F^{\prime}$
8. Find T^{\prime} using insertion map V^{\prime} satisfying the relation $(A-K C)^{\prime} V^{\prime}=V^{\prime} T^{\prime}$
9. Desired minimal observer which gives $V x(t)$ s.t. $C x(t) \oplus V x(t)=x(t)$ is given by $\dot{z}(t)=T z(t)+V K y(t)+V B u(t)$

3.3 Observer for bad states if $\operatorname{ker}(C) \supset \mathcal{X}_{g}$

1. Find $\bar{A}: \mathcal{X} / \mathcal{X}_{g} \rightarrow \mathcal{X} / \mathcal{X}_{g}$
2. Find \bar{C} using $\bar{C} P_{\mathcal{X} / \mathcal{X}_{g}}=C$
3. Design full observer using \bar{A}, \bar{C}
3.4 Observer for bad states if $\operatorname{ker}(C) \not \supset \mathcal{X}_{g}$
4. Find $\mathcal{S}=\operatorname{ker}(C) \cap \mathcal{X}_{g}$
5. Find $\bar{A}: \mathcal{X} / \mathcal{S} \rightarrow \mathcal{X} / \mathcal{S}$
6. Find \bar{C} using $\bar{C} P_{\mathcal{X} / \mathcal{S}}=C$
7. Design full observer using \bar{A}, \bar{C}

3.5 Minimal detector problem

1. Find $\operatorname{ker}(C)$
2. Take $\mathcal{K} \supset \operatorname{ker}(C)$
3. Obtain D matrix s.t. $\operatorname{ker}(D C)=\mathcal{K}$
4. Find largest unobservable space \mathcal{V} in \mathcal{K} which is $\operatorname{ker}\left(D C ; D C A ; \ldots ; D C A^{n-1}\right)$
5. Check if required state to be observed is contained in $\mathcal{X} / \mathcal{V}$, if not repeat with step 2 .
6. Find \bar{A}, \bar{C} using $\bar{A} P=P A$ and $\bar{C} P=D C$. (Note: It is better to find the matrices in reduced subspace $\mathcal{X} / \mathcal{V}$ and then perform next step)
7. Design observer using $\left.\bar{C}\right|_{\mathcal{X} / \mathcal{V}},\left.\bar{A}\right|_{\mathcal{X} / \mathcal{V}}$

$4(A, B)$ invariant subspaces [2]

4.1 Notation

Family of (A, B) invariant subspace in \mathcal{X} is denoted by $\mathcal{I}(A, B ; \mathcal{X})$.
4.2 Algorithm to find (A, B)-invariant subspace inside \mathcal{X} i.e. \mathcal{V}^{*}

$$
\begin{array}{r}
\mathcal{V}_{0}=\mathcal{X} \\
\mathcal{V}_{n}=\mathcal{X} \cap A^{-1}\left(\mathcal{V}_{n-1}+\mathcal{B}\right) \\
\mathcal{V}_{\mu}=\mathcal{V}_{\mu+1} \Longrightarrow \mathcal{V}^{*}=\mathcal{V}_{\mu} \tag{4.3}
\end{array}
$$

5 Disturbance decoupling prolem [2]

Theorem 5.1. $D D P$ is solvable iff $\operatorname{im}(S) \subset \mathcal{V}^{*}$ where $\mathcal{V}^{*}=\sup \mathcal{I}(A, B, \operatorname{ker}(C))$

6 Output stabilization [2]

Theorem 6.1. Output stabilization is solvable iff $\mathcal{X}_{b}(A) \subset\langle A \mid \mathcal{B}\rangle+\mathcal{V}^{*}$ where $\mathcal{V}^{*}=\sup \mathcal{I}(A, B ; \operatorname{ker}(C))$

7 Controllability subspace [2]

Theorem 7.1. \mathcal{R} is a controllability subspace iff $\mathcal{R}=\langle A+B F \mid \mathcal{B} \cap \mathcal{R}\rangle$
Theorem 7.2. If $\mathcal{V}=\langle A+B F \mid \mathcal{V} \cap \mathcal{B}\rangle$ is a c.s. then $\mathcal{V}=\left\langle A+B F_{1} \mid \mathcal{V} \cap \mathcal{B}\right\rangle \forall F_{1} \in \mathbb{F}(\mathcal{V})$
Lemma 7.1. If $\mathcal{V} \in \mathcal{I}(A, B ; \mathcal{X}) F_{1}, F_{2} \in \mathbb{F}(\mathcal{V})$ then $B\left(F_{2}-F_{1}\right) \mathcal{V} \subset \mathcal{B} \cap \mathcal{V}$
Theorem 7.3. Let $A_{0}=(A+B F) \mid \mathcal{V}$ and $B_{0}=(\mathcal{V} \cap \mathcal{B}) \mid \mathcal{V}$. Then, $\left\langle A_{0}, B_{0}\right\rangle$ is controllable.
7.1 Largest controllability space in $\mathcal{R} \in \mathcal{I}(A, B ; \mathcal{X})$

1. Let $\mathcal{R} \in \mathcal{I}(A, B ; \mathcal{X})$
2. Generate $\mathcal{S}_{*}=\mathcal{S}_{\mu}=\mathcal{S}_{\mu+1}$ using $\mathcal{S}_{i}=\left(A \mathcal{S}_{i-1}+\mathcal{B}\right) \cap \mathcal{R}$ with $\mathcal{S}_{0}=0$

7.2 Spectrum assignability of $\mathcal{R} \in \mathcal{I}(A, B ; \mathcal{X})$

Let $\mathcal{R} \in \mathcal{I}(A, B ; \mathcal{X})$. Generate S_{*} which is the largest controllability subspace contained in \mathcal{R}. Then, we can only freely assign eigenvalues corresponding to subspace $\mathcal{S}_{*} \subset \mathcal{R}$

7.3 Disturbance decoupling problem with stability

Theorem 7.4. Assuming (A, B) is controllable, $D D P$ with stability is solvable iff $\operatorname{im}(S) \subset \mathcal{V}_{g}^{*}$ where $\mathcal{V}_{g}^{*}=\mathcal{R}^{*}+\mathcal{A}_{2 g}$ where $A_{2 g}$ is good eigenvectors of $A_{2} \mid \mathcal{V}^{*} / \mathcal{R}^{*}$ where $A=\left[\begin{array}{ccc}A_{1} & * & * \\ 0 & A_{2 g} & 0 \\ 0 & 0 & A_{2 b}\end{array}\right]$ in basis of $R^{*}, A_{2 g}, A_{2 b}$.

8 Equivalent classes of systems

8.1 Controllability indices and controllability index [2, p. 121]
8.2 Canonical form [2, p. 121]
8.3 Possible c.s. and exactly one c.s. [2, p. 124]

Theorem 8.1. Let (A, B) be controllable, with controllability indices $k_{1} \geq \ldots \geq k_{m}$. Then the possible dimensions of these nonzero c.s. of (A, B) are given by the list

$$
\begin{array}{r}
k_{m} \\
k_{m-1}, k_{m-1}+1, \ldots, k_{m-1}+k_{m} \\
\vdots \tag{8.3}\\
k_{1}, k_{1}+1, \ldots, k_{1}+k_{2}+\cdots+k_{m}
\end{array}
$$

There is exactly one c.s of dimension $r \neq 0$ if (i) $r=n$ (ii) for some $j \in 1,2, \ldots, m-1$,

$$
\begin{equation*}
k_{j}>r=k_{j+1}+\cdots+k_{m} \tag{8.5}
\end{equation*}
$$

9 Restricted regulator problem [2]

$$
\begin{align*}
& \text { (Necessary condition) } \quad X_{b}(A) \cap \mathcal{N} \subset \operatorname{ker}(D) \tag{9.1}\\
& X_{b}(A) \cap \mathcal{N} \subset \mathcal{V} ; \mathcal{V} \in \mathcal{I}(A, B ; \operatorname{ker}(D) \tag{9.2}\\
& A(\mathcal{V} \cap \mathcal{N}) \subset \mathcal{V} \tag{9.3}\\
& X_{b}(A) \subset\langle A \mid B\rangle+\mathcal{V} \tag{9.4}\\
& F \mathcal{N}=0 \tag{9.5}
\end{align*}
$$

9.1 Finding maximal element of $\{\mathcal{V} \in \mathcal{I}(A, B ; \operatorname{ker}(D))$ s.t. $A(\mathcal{V} \cap \mathcal{N}) \subset$ $\mathcal{V}\}$

$$
\begin{array}{r}
\mathcal{V}^{M}=\mathcal{V}_{0} \oplus \mathcal{V}_{i} \\
\mathcal{V}_{0}=\sup \{\mathcal{V}: \mathcal{V} \subset \operatorname{ker}(D) \cap \mathcal{N}, A \mathcal{V} \subset \mathcal{V}\} \\
\mathcal{V}_{i}=\sup \left\{\mathcal{V}: \mathcal{V} \subset \mathcal{W} \cap A^{-1}\left(\mathcal{B}+\mathcal{V}_{0}+\mathcal{V}\right)\right\} \tag{9.8}
\end{array}
$$

where W is a suitable complement of $\mathcal{N} \cap \operatorname{ker}(D)$ in $\operatorname{ker}(D)$
Corrolary 9.1. If $A(\mathcal{N} \cap \operatorname{ker}(D)) \subset \operatorname{ker}(D)$ then $R R P$ is solvable iff conditions for $R R P$ are satisfied.

10 Extended regulator problem [2]

Theorem 10.1. ERP is solvable iff

$$
\begin{gather*}
X_{b}(A) \cap \mathcal{N} \subset \operatorname{ker}(D) \tag{10.1}\\
X_{b}(A) \subset\langle A \mid B\rangle+\mathcal{V}^{*} \tag{10.2}
\end{gather*}
$$

Finding feedback matrix

$$
\begin{array}{r}
\mathcal{V}_{0}=A \text { invariant subspace contained in } \mathcal{V}^{*} \cap \mathcal{N} \\
\mathcal{V}^{*} \cap \mathcal{N}=\mathcal{V}_{0} \oplus \mathcal{V}_{1} \\
\mathcal{V}^{*}=\mathcal{V}_{0} \oplus \mathcal{V}_{1} \oplus \mathcal{V}_{2} \\
\mathcal{X}=\mathcal{V}_{0} \oplus \mathcal{V}_{1} \oplus \mathcal{V}_{2} \oplus \mathcal{V}_{3} \\
\operatorname{dim}\left(\mathcal{X}_{a}\right)=\operatorname{dim}\left(\mathcal{V}_{1}\right) \\
E: \mathcal{X}_{e} \rightarrow \mathcal{X}_{e} \text { s.t. } \operatorname{ker}(E) \cap \mathcal{V}_{1}=0, \operatorname{ker}(E) \subset \mathcal{V}_{0} \oplus \mathcal{V}_{2} \\
\mathcal{V}_{e}^{*}=(I+E) \mathcal{V}^{*} \\
\mathbb{F}\left(\mathcal{V}_{e}^{*}\right) \ni F_{e} \text { and } \operatorname{ker}\left(F_{e}\right) \subset \mathcal{N} \tag{10.10}
\end{array}
$$

11 Reference

[1] N S Nise. Control systems engineering. Wiley, 2004. ISBN: 9780471445777,0-471-44577-0,0-471-45243-2.
[2] W N Wonham. Linear multivariable control : a geometric approach. Vol. 10. Applications of Mathematics. Springer, 1985. ISBN: 0387960716,9780387960715.

