Optimal Control Systems

Anurag anuragg.in@gmail.com www.anuragg.in

April 17, 2019

1 Multivariable calcus

1.1 First order necessary condition for minimum

$$
\begin{equation*}
(\nabla f)^{\top} \cdot d \geq 0 \tag{1.1}
\end{equation*}
$$

1.2 Second order necessary condition for minimum

$$
\begin{array}{r}
(\nabla f)^{\top} \cdot d=0 \\
d^{\top} \cdot \nabla^{2} f \cdot d \geq 0 \tag{1.3}
\end{array}
$$

Theorem 1.1. Schwarz's theorem [1]
If $\mathcal{C}^{2} \ni f:\left(\mathbb{R}^{2} \supset\right) E \rightarrow \mathbb{R}$ then $f_{12}(x, y)=f_{21}(x, y)$ where $(x, y) \in E^{o}$

2 Calculus of variations [2]

2.1 First order necessary condition for fixed end times and end states

$$
\begin{equation*}
\text { (Euler-Lagrange equation) } \quad V_{x}-\frac{\mathrm{d}}{\mathrm{~d} t} V_{x^{\prime}}=V_{x}-p^{\prime}=0 \tag{2.1}
\end{equation*}
$$

2.2 First order necessary condtion for variable end state and variable end time

$$
\begin{array}{r}
V_{x}-p^{\prime}=0 \\
{\left.\left[p \delta x_{f}+\left(V-x^{\prime} p\right) \delta t_{f}\right]\right|_{t_{f}}=0} \tag{2.3}
\end{array}
$$

2.3 Special cases

2.3.1 V independent of x

$$
\begin{equation*}
\text { (Momenta is constant) } \quad p^{\prime}=0 \tag{2.4}
\end{equation*}
$$

2.3.2 $\quad V$ independent of t

$$
\begin{equation*}
\text { (Hamiltonian is constant) } \quad \frac{\mathrm{d}}{\mathrm{~d} t} H\left(t, x, x^{\prime}, p\right)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(p x^{\prime}-V\right)=0 \tag{2.5}
\end{equation*}
$$

2.4 Hamiltonian equations

$$
\begin{array}{r}
x^{\prime}=H_{p} \\
p^{\prime}=-H_{x} \tag{2.7}
\end{array}
$$

2.5 Second order condition

$$
\begin{align*}
\text { (Legendre condition) } \quad V_{x^{\prime} x^{\prime}} & >0 \tag{2.8}\\
V_{x x} V_{x^{\prime} x^{\prime}}-2 V_{x x^{\prime}} & >0 \tag{2.9}
\end{align*}
$$

For fixed end point (2.9) becomes

$$
\begin{align*}
& \int_{a}^{b}\left(V_{x x}-\frac{\mathrm{d}}{\mathrm{~d} t} V_{x x^{\prime}}\right)(\delta x)^{2} \mathrm{~d} t+\int_{a}^{b} V_{x^{\prime} x^{\prime}}\left(\delta x^{\prime}\right)^{2} \mathrm{~d} t>0 \tag{2.10}\\
& \Rightarrow Q(x):=V_{x x}-\frac{\mathrm{d}}{\mathrm{~d} t} V_{x x^{\prime}}>0 \tag{2.11}\\
& \Rightarrow P(x):=V_{x^{\prime} x^{\prime}}>0 \tag{2.12}
\end{align*}
$$

Ricatti equation

$$
\begin{equation*}
P\left(Q+w^{\prime}\right)=w^{2} \tag{2.13}
\end{equation*}
$$

Jacobi equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(P v^{\prime}\right)=Q v, \quad w=-\frac{P v^{\prime}}{v} \tag{2.14}
\end{equation*}
$$

Equation (2.11) is unnecessary if Ricatti or Jacobi equation has solution in the domain of interest and the problem at hand is a fixed boundary conditions problem.

2.6 Weak continuity

Defintion 2.1. Weak convergence
Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in vector space \mathcal{X}, and \mathcal{X}^{\prime} be set of all functionals on \mathcal{X}. If $\forall f \in \mathcal{X}^{\prime}, \lim _{x_{n} \rightarrow y}=f(y)$, then $x_{n} \xrightarrow[\text { convergent }]{\text { weakly }} y$

3 Lagrange multiplier theorem (for integral constraint)

$$
\begin{equation*}
\min \int_{a}^{b} V\left(t, x, x^{\prime}\right) d t \quad \text { s.t. } \quad \int_{a}^{b} W\left(t, x, x^{\prime}\right) d t=K_{0} \tag{3.1}
\end{equation*}
$$

Let J and K be functional over \mathcal{X} and $\partial J, \partial K$ be weakly continuous. Then x^{*} is an extrema of K under the constraint $K=K_{0}$ implies either of (3.3) or (3.4) must hold.

$$
\begin{array}{r}
\partial K\left(x_{*}, \partial x\right)=0 \\
\partial J\left(x_{*}, \partial x\right)=\lambda \partial K\left(x_{*}, \partial x\right) \tag{3.4}
\end{array}
$$

3.1 Necessary condition for minimizer

For all η s.t.

$$
\begin{equation*}
\partial K\left(x^{*}, \eta\right)=0 \tag{3.5}
\end{equation*}
$$

we must have

$$
\begin{equation*}
\partial J\left(x^{*}, \eta\right) \geq 0 \tag{3.6}
\end{equation*}
$$

Note that above set of condition is similar to saying that along all feasible variation, first variation of J must be non-negative.

3.2 Integral constraint

$$
\begin{array}{r}
J(x)=\int_{a}^{b} V\left(t, x, x^{\prime}\right) \mathrm{d} t \\
\min _{x} J(x) \text { s.t. } \quad \int_{a}^{b} W\left(t, x, x^{\prime}\right)=0 \tag{3.8}
\end{array}
$$

Lagrange multiplier theorem corresponds to solving Euler Lagrange equation for $V\left(t, x, x^{\prime}\right)+$ $\lambda K\left(t, x, x^{\prime}\right)$ for integral constraint. Refer [3] for converting integral constraint to non-integral constraint using a dummy variable.

3.3 Non-integral constraint

$$
\begin{array}{r}
J(x)=\int_{a}^{b} V\left(t, x, x^{\prime}\right) \mathrm{d} t \\
\min _{x} J(x) \quad \text { s.t. } \quad W\left(t, x, x^{\prime}\right)=0 \tag{3.10}
\end{array}
$$

It corresponds to solving E-L equation for $V+\lambda(t) W$ along with constraint equation.

3.4 Integral E-L equation

$$
\begin{equation*}
V_{x^{\prime}}-\int_{a}^{b} V_{x}=\mathrm{constant} \tag{3.11}
\end{equation*}
$$

4 Weirstrass-Erdman corner point condition for strong extrema

For each continuous region, E-L equation must hold and also momenta and Hamiltonian must be continuous at corner points (other points they are trivially continuous).

$$
\begin{equation*}
\left.V_{x^{\prime}}\left(t, x(t), x^{\prime}(t)\right)\right|_{t_{1}^{-}} ^{t_{1}^{+}} \delta x_{1}+\left[\left.V\left(t, x(t), x^{\prime}(t)-x^{\prime}(t) V_{x^{\prime}}\left(t, x(t), x^{\prime}(t)\right)\right]\right|_{t_{1}^{-}} ^{t_{1}^{+}} \delta t_{1}=0\right. \tag{4.1}
\end{equation*}
$$

5 Weirstrass excess function

Necessary condition for strong minima at all non-corner points

$$
\begin{equation*}
E(t, x, y, z)=V(t, x, z)-V(t, x, y)-(z-y) V_{y}(t, x, y) \geq 0 \tag{5.1}
\end{equation*}
$$

6 Pontryagin's minimum principle [3]

$$
\begin{array}{r}
\mathcal{H}=g(x, u)+p(t)^{\top} a(x, u, t) \\
J(u)=h\left(x_{t_{f}}, t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x, u, t) d t \\
\dot{x}=\mathcal{H}_{p} \\
\dot{p}=-\mathcal{H}_{x} \\
H\left(t, x^{*}, p^{*}, u^{*}\right) \leq H\left(t, x^{*}, p^{*}, u\right) \\
{\left.\left[\frac{\partial h}{\partial x}-p\right]_{t_{f}}^{\top}\right|_{t_{f}} \delta x_{f}+\left.\left[\mathcal{H}+\frac{\partial h}{\partial t}\right]\right|_{t_{f}} \delta t_{f}=0} \tag{6.6}
\end{array}
$$

Additional necessary conditions are as follows:

- If final time is free and Hamiltonian does not explicitly depends on time, then

$$
\begin{equation*}
H\left(x^{*}, u^{*}, p^{*}\right)=0 \tag{6.7}
\end{equation*}
$$

- If final time is fixed and Hamiltonian does not explicitly depend on time, then

$$
\begin{equation*}
H\left(x^{*}, u^{*}, p^{*}\right)=\text { constant } \tag{6.9}
\end{equation*}
$$

7 Hamilton-Jacobi-Bellman equation

$$
\begin{array}{r}
0=J_{t}^{*}(x, t)+\inf _{u \in \mathcal{U}}\left[g(x, u, t)+J_{x}(x, t) a(x, u, t)\right]=\inf _{u}\left[g(x, u, t)+\frac{d}{d t} J(t, x)\right] \\
J\left(x\left(t_{f}\right), t_{f}\right)=h\left(x\left(t_{f}\right), t_{f}\right) \tag{7.2}
\end{array}
$$

8 Linear quadratic regulator

Finite horizon

$$
\begin{array}{r}
\dot{x}(t)=A(t) x(t)+B(t) u(t) \\
J(x, t)=\frac{1}{2} x\left(t_{f}\right)^{\top} H x\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(x(t)^{\top} Q(t) x(t)+u(t)^{\top} R(t) u(t)\right) d t \\
p(t)=K(t) x(t) ; K(t) \in S^{n x n} \\
u(t)=-R^{-1} B^{\top}(t) K(t) x(t) \\
-\dot{K}=K A+A^{\top} K+Q-K B R^{-1} B^{\top} K \\
\text { Hamiltonian matrix } \triangleq \mathcal{H}=\left[\begin{array}{cc}
A & -B R^{-1} B^{\top} \\
-Q & -A^{\top}
\end{array}\right] \tag{8.6}
\end{array}
$$

Infinite horizon

$$
\begin{align*}
H & =0, \text { all matrices are time invariant } \tag{8.7}\\
0 & =K A+A^{\top} K+Q-K B R^{-1} B^{\top} K \tag{8.8}
\end{align*}
$$

Refer Appendix D of [4] for techniques to find K of algebraic Ricatti equation using Hamiltonian matrix.

8.1 Linear tracking problem

$$
\begin{gather*}
J(x, t)=\frac{1}{2}\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right)^{\top} H\left(x\left(t_{f}\right)-r\left(t_{f}\right)\right) \tag{8.9}\\
+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left((x(t)-r(t))^{\top} Q(t)(x(t)-r(t))+u(t)^{\top} R(t) u(t)\right) d t \\
p(t)=K(t) x(t)+s(t) \tag{8.10}\\
\dot{s}=-A^{\top} s+K B R^{-1} B^{\top} s+Q r \tag{8.11}\\
s\left(t_{f}\right)=-H r\left(t_{f}\right) \tag{8.12}
\end{gather*}
$$

8.2 Minimum time problem

Refer to Section 5.4, page 240 of [3] and Section 5.6 for a discussion on singular intervals.

9 Reference

[1] W. Rudin. Principles of mathematical analysis. 3d ed. International series in pure and applied mathematics. McGraw-Hill, 1976.
[2] D. Liberzon. Calculus of Variations and Optimal Control Theory. Princeton University Press, 2012.
[3] D. E. Kirk. Optimal control theory: An introduction. Dover Publications, 2004.
[4] Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado. Control System Design. Prentice Hall, 2000. ISBN: 0139586539,9780139586538.

