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Abstract— We address stability of receding horizon control
for stochastic linear systems with additive noise and bounded
control authority. We construct tractable and recursively feasi-
ble receding horizon control policies that ensure a mean-square
bounded system in closed-loop if the noise has bounded forth-
order moment, the unexcited system is stabilizable, the system
matrix A is Lyapunov stable, and there is large enough control
authority.

I. INTRODUCTION

Receding horizon has become a natural way of dealing
with the optimal control problem for linear systems involving
input and state constraints [31], [29], [4], [15]. An inherent
feature of receding-horizon methods is that the controllers
may not be stabilizing in general. In the deterministic setting
one starts with some initially feasible region and poses some
terminal constraints which the state must satisfy at the end of
the optimization horizon to ensure stability. In the stochastic
setting involving possibly unbounded disturbances, however,
no such terminal constraints can be posed. Moreover, impos-
ing any bound on the control inputs with no restrictions on
the system matrices may lead to the resulting system being
unstable. At an intuitive level, this is quite natural since the
control authority is restricted, while the disturbance can take
large values, and can therefore drive the system unstable. In
this article we aim to pose constraints under which receding
horizon control policies can render the state of a given system
mean-square bounded.

Receding horizon control of deterministic systems is a
well-studied subject, see, e.g., [31], [4], [28], [15] and the
references therein. In the stochastic setting, following early
theoretical works on Markov decision processes [2], [21],
[10], constructive methods with a strong applied flavor have
received considerable attention. In [12], the authors first
formulate the finite-horizon stochastic control problem as a
deterministic one with bounded noise and then show that
the underlying min-max problem is equivalent to a semidef-
inite program. In [36] a different problem is addressed
in which the noise enters in a multiplicative manner, and
hard constraints on the states and control inputs are relaxed
to constraints resembling the integrated chance constraints
of [20] or risk measures in mathematical finance. Another
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approach involving multiplicative noise and probabilistic
input constraints has appeared in [16]. Similar relaxations
of hard constraints to soft probabilistic ones have appeared
in [33], [1] for additive noise inputs, as well as in [17]
for both multiplicative and additive noise inputs. Alternative
approaches employing randomized algorithms have been pro-
posed in [39], [14], [3], [30]. Related lines of research can be
found in [44], [45] dealing with constrained model predictive
control (MPC) for stochastic linear systems motivated by
industrial applications, in [41], [40] dealing with various
tractable methods of controller synthesis, in [13] where
optimality of a certain class of tractable feedback policies is
established for deterministic scalar linear systems, and in [6]
dealing with linear systems with multiplicative disturbances
and using the scenario approach.

The deterministic version of the stabilization problem with
bounded control inputs was solved completely in a sequence
of articles [47], [43] culminating in [46]. It was demonstrated
that global asymptotic stabilization of a discrete-time linear
system xt+1 = Axt+But with bounded feedback controls is
possible if and only if the system matrix A has spectral radius
at most 1, and the pair (A,B) is stabilizable with arbitrary
controls. See also the recent work [25] dealing with input-to-
state stability of bounded receding horizon controllers, and
some earlier related work in [26]. In the context of stochastic
linear systems xt+1 = Axt + But + wt with (wt)t=0,1,2,···
being i.i.d noise vectors, it is possible to establish mean-
square boundedness of the closed loop system under bounded
receding horizon control policies by employing classical
Foster-Lyapunov techniques [32] if the system matrix A is
Schur stable [22], [18]. In this article we demonstrate that
it is possible to strengthen this last result to the case of A
being Lyapunov stable by considering the setup in the recent
article by the authors [37]. It was shown in [37] that there
exists a bounded control policy that ensures mean-square
boundedness of the closed-loop system if the pair (A,B)
is controllable, A is Lyapunov stable, and the process noise
has bounded fourth moment. This is the track that we shall
pursue. For related results see also [42].

The remainder of this article is organized as follows: We
formulate the problem in Section II with all the underlying
assumptions. In Section III we state the main result and prove
it in Section IV. We conclude in Section V.

Notation

We denote by N the set of non-negative integers. We
denote by ‖·‖ the standard Euclidean norm on Rn and by
‖·‖∞ the `∞ norm. For any two matrices A and B of
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compatible dimensions, we denote byRk(A,B) the k-th step
reachability matrix Rk(A,B) :=

[
Ak−1B · · · AB B

]
.

For any matrix M ∈ Rn×m, we let σ1(M) ≥ · · · ≥
σmin{n,m}(M) denote its singular values and M† denote its
Moore-Penrose pseudo-inverse. We also denote by (M)i:j
the matrix comprising the i-th to j-th rows of M , where
j ≥ i. For a n × n positive semidefinite matrix M , we
let ‖x‖M :=

√
xTMx denote the weighted semi-norm of

x ∈ Rn. Let (Ω,F,P) be a general probability space, we
denote the conditional expectation given the sub-σ algebra
F′ of F as EF′ [.]. In a Euclidean space we denote by Br
the closed Euclidean ball or radius r centered at the origin.
For r > 0 let the saturation function satr : Rd −→ Br
be defined by satr(y) = y if y ∈ Br, and satr(y) =
ry/ ‖y‖ otherwise. Note that satr(·) is not the component-
wise saturation function.

II. PROBLEM SETUP

A. Dynamics and Cost

Consider the following discrete-time linear system with
additive noise

xt+1 = Axt +But + wt, x0 = x, (1)

where xt ∈ Rn, ut ∈ Rm, (wt)t∈N is a sequence of n-
dimensional random vectors, and (A,B) ∈ Rn×n × Rn×m.
We posit the following standing assumption:

Assumption 1:
1) The system matrices in (1) satisfy the following:

a) (A,B) is stabilizable [7, Chapter 12];
b) A is discrete-time Lyapunov stable [7, Chapter 12],

i.e., the eigenvalues {λi(A) | i = 1, . . . , d} lie in
the closed unit disc, and those eigenvalues λj(A)
with

∣∣λj(A)
∣∣ = 1 have equal algebraic and geometric

multiplicities;
2) The noise sequence (wt)t∈N in (1) is a collection

of independent n-dimensional random vectors having
bounded fourth moment, i.e., there exists C4 > 0 such
that E

[
‖wt‖4

]
≤ C4 <∞ for all t ∈ N.

3) The control inputs take values in the control constraint
set

U :=
{
ξ ∈ Rm

∣∣ ‖ξ‖ ≤ Umax

}
, (2)

i.e., ut ∈ U for all t ∈ N. ♦
Select C1 > 0 such that E[‖wt‖] ≤ C1 for all t ∈ N; this is
possible since Jensen’s inequality leads to E[‖wt‖] ≤ 4

√
C4.

Without any loss of generality, we assume that A is in
real Jordan canonical form. Indeed, given a linear system
described by system matrices

(
Ã, B̃

)
, there exists a coor-

dinate transformation in the state-space that brings the pair(
Ã, B̃

)
to the pair (A,B), where A is in real Jordan form

[24, p. 150]. In particular, choosing a suitable ordering of the
Jordan blocks, we can ensure that the pair (A,B) has the

form
([
As 0
0 Ao

]
,

[
Bs
Bo

])
, where As ∈ Rns×ns is Schur

stable, and Ao ∈ Rno×no has its eigenvalues on the unit
circle. Due to the stability hypothesis Assumption 1-1b, Ao is
therefore block-diagonal with elements on the diagonal being

either ±1 or 2×2 rotation matrices. As a consequence, Ao is
orthogonal. Moreover, since (A,B) is stabilizable, the pair
(Ao, Bo) must be reachable in a number of steps κ ≤ no
that depends on the dimension of Ao and the structure of
(Ao, Bo). Summing up, we can start by considering that
system (1) has the form[

xst+1

xot+1

]
=
[
Asx

s
t

Aox
o
t

]
+
[
Bs
Bo

]
ut +

[
wst
wot

]
, (3)

where As is Schur stable and Ao is orthogonal. And, there
exists a κ ≤ no such that the subsystem (Ao, Bo) is reachable
in κ steps, i.e., rank

(
Rκ(Ao, Bo)

)
= no. This integer κ is

fixed throughout the rest of the article, and we will consider
it to be our control horizon.

We fix a second horizon, namely an optimization (or
prediction) horizon N ≥ κ. Given the state xt at time t,
let us consider the following objective function:

Vt := Ext

[
N−1∑
i=0

(
‖xt+i‖2Qi

+‖ut+i‖2Ri

)
+‖xt+N‖2QN

]
, (4)

where Qi ≥ 0, Ri ≥ 0, QN ≥ 0 are given symmetric ma-
trices of appropriate dimensions. At times t = 0, κ, 2κ, · · · ,
we are interested in minimizing (4) over the class of causal
N -history-dependent strategies ΠN defined as:

ut
ut+1

...
ut+N−1

 =


πt(xt)
πt+1(xt, xt+1)
...
πt+N−1(xt, xt+1, · · · , xt+N−1)

 , (5)

for some measurable functions {πt, · · · , πt+N−1} ∈ ΠN ,
while satisfying the hard input constraints (2). The receding
horizon control procedure with an optimization horizon N
and a control horizon κ can be described as follows:

1) set t = 0;
2) measure the state xt;
3) determine an admissible optimal control policy
{π∗t , · · · , π∗t+N−1} ∈ ΠN , that minimizes the N -stage
cost function (4);

4) apply the first κ elements {π∗t , · · · , π∗t+κ−1} of the
policy;

5) increase t to t+ κ, and go back to step 2.
Therefore, the optimization problem to be solved at times
t = 0, κ, 2κ, · · · is given by:

min
{
Vt
∣∣ (1), (2), {πt, · · · , πt+N−1} ∈ ΠN

}
. (6)

The solution to Problem (6) is difficult to obtain in general.
For instance, in order to obtain an optimal solution to Prob-
lem (6) over the class of causal state feedback policies, we
need to solve the Dynamic Programming equations [9], [11].
This generally requires using gridding techniques, which
suffer from the curse of dimensionality. Another approach
is to restrict attention to a specific class of causal history-
dependent policies. This will result in a suboptimal solution
to our problem, but may yield a tractable optimization
problem [8], [35]. It is this track that we pursue in the next
section.
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B. Policy Class
By the hypothesis that the state is fully observed without

error, one may reconstruct the noise sequence from the
sequence of observed states and inputs in Figure 1 by the
formula

wt = xt+1 −Axt −But, t ∈ N. (7)

xt+1 = Axt + But + wt xt

xt − Axt−1 −But−1wt−1
Optimizer

Controller

ut

wt

ϕ(.)

Fig. 1. Block diagram of the closed-loop system.

In light of this, we follow our earlier approach in [22],
[18], [23] inspired by the works [38], [27], [5], [19] and
use nonlinear N -history-dependent policies of the following
form:

ut+l = ηt+l +
l−1∑
i=0

θt+l,iϕi(wt+i), (8)

for l = 0, 1, . . . , N − 1 and a measured state xt at time
t, where ϕi(wi) is any vector-valued function of wi such
that ‖ϕi(wi)‖∞ ≤ ϕmax for all i. In other words, we
saturate the measurements that we obtain from the noise
vectors before inserting them into our control vector. With
this definition, the value of u at time t + l depends on the
values of w from time t up to time t + l − 1. Therefore, a
finite amount of memory is required to compute the value
of the inputs ut, for any t ∈ N. We do not assume that the
noise distribution is defined over a compact domain, which is
a crucial assumption in robust MPC approaches [12], [19].
Moreover, the choice of element-wise saturation functions
ϕi(·) is left open. As such, we can accommodate standard
saturation, piecewise linear, and sigmoidal functions, to name
a few.

Before we proceed to state the main result, it is helpful to
have the following compact notation. The evolution of the
system (1) over a single optimization or prediction horizon
N , starting at t, can be described as follows:

Xt = Axt + BUt +DWt, (9)

where Xt =

 xt
xt+1

...
xt+N

, Ut =

 ut
ut+1

...
ut+N−1

, Wt =

 wt
wt+1

...
wt+N−1

,

A =

 I
A
...
AN

, B =


0 ··· ··· 0

B
. . .

...

AB B
. . .

...
...

. . . 0
AN−1B ··· AB B

, and D =


0 ··· ··· 0

I
. . .

...

A I
. . .

...
...

. . . 0
AN−1 ··· A I

. Similarly, the cost in (4) can be written

as
Vt = Ext

[
XT
t QXt + UTt RUt

]
, (10)

where Q = diag{Q0, Q1, · · · , QN} and R =
diag{R0, R1, · · · , RN−1}. We can represent the control
vectors over the optimization horizon as

Ut = ηt + Θtϕ(Wt), (11)

where

ηt :=


ηt
ηt+1

...
ηt+N−1

 , ϕ(Wt) :=


ϕ0(wt)
ϕ1(wt+1)

...
ϕN−2(wt+N−2)

 ,
and

Θt :=


0 0 · · · 0

θt+1,t 0 · · · 0
θt+2,t θt+2,t+1 · · · 0

...
...

. . .
...

θt+N−1,t θt+N−1,t+1 · · · θt+N−1,t+N−2

 .
(12)

Finally, the constraint (2) can be represented as

Ut ∈ {ξ ∈ RNm| ‖ξ‖∞ ≤ Umax}. (13)

III. MAIN RESULT

It is well known that receding horizon control is in general
not stabilizing, even in the noise-free case and without any
bounds on the control inputs [27, p.26]. This problem is
due to the fact that the finite-horizon optimization problem
does not necessarily inherit the infinite-horizon stability
property, usually present in the traditional infinite horizon
Linear Quadratic (LQ) control problem. This problem is
circumvented in deterministic MPC by requiring that the
state at the end of the optimization horizon enters some
terminal positively invariant set [31]. In our setup, however,
no such constraint can be enforced on the state as the
process noise does not have compact support. Instead, we
introduce an additional stability constraint which, if feasible,
can render the state of the closed-loop system mean-square
bounded. Guided by our approach in [37] we then show that
this constraint is indeed recursively feasible.

We require that the following stability constraint be sat-
isfied: for any given ε > 0 and for every t = 0, κ, 2κ, · · · ,
Ut ∈ U is chosen, such that the following “negative drift
condition” holds:∥∥∥∥∥∥∥Aκoxot +Rκ(Ao, Bo)

 ut
...

ut+κ−1


∥∥∥∥∥∥∥− ‖xot‖

≤ −
(√

κσ1(Rκ(Ao, Ino))C1 +
ε

2

)
,

whenever ‖xot‖ ≥
√
kσ1(Rκ(Ao, Ino

))C1 + ε,

(14)
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where C1 is as defined earlier. The constraint (14) pertains
only to the orthogonal subsystem in (3). Taking the pol-
icy structure in (11) and the stability constraint (14) into
account, the optimization problem to be solved at times
t = 0, κ, 2κ, · · · becomes:

min
(ηt,Θt)

{
Vt
∣∣ (9), (11), (13), and (14)

}
. (15)

Assumption 2: In addition to Assumption 1, we stipulate
that the upper bound on the control authority Umax ≥ U∗max,
where

U∗max :=σno
(Rκ(Ao, Bo))−1

(√
κσ1(Rκ(Ao, Ino

))C1 +
ε

2

)
.

Theorem 3 (Main Result): Consider system (1) and sup-
pose that Assumption 2 holds. Then:
(i) For every t = 0, κ, 2κ, · · · , the optimization problem

(15) is convex, feasible, and can be rewritten as the
following tractable program with tightened constraints:

min
(ηt,Θt)

tr(ΘT
tMΘtΛϕϕ) + 2 tr(ΘT

t BQDΛwϕ)

+ 2xTt ATQB(ηt + ΘtΛϕ) + ηTtMηt

+ 2ηTtMΘtΛϕ (16)
subject to :
Θt having the structure in (12), (17)
|(ηt)i|+ ‖(Θ)i‖1 ϕmax ≤ Umax ∀i = 1, · · · , Nm,

(18)
‖Aκoxot +Rκ(Ao, Bo)(ηt)1:κm‖

+
√
no ‖Rκ(Ao, Bo)(Θt)1:κm‖ϕmax

− ‖xot‖ ≤ −
(√

κσ1(Rκ(Ao, Ino))C1 +
ε

2

)
whenever ‖xot‖ ≥

√
κσ1(Rκ(Ao, Ino))C1 + ε,

(19)

where M = R + BTQB, Λϕ = E[ϕ(Wt)], Λwϕ =
E[Wtϕ(Wt)T ], and Λϕϕ = E[ϕ(Wt)ϕ(Wt)T ].

(ii) For any initial condition x0 ∈ Rn successive appli-
cation of the control laws given by the optimization
problem in (i) for κ steps renders the closed-loop system
mean-square bounded, i.e., there exists a constant γ =
γ(x0, ε, C4, Umax) such that

sup
t∈N

Ex0

[
‖xt‖2

]
≤ γ. (20)

A proof of Theorem 3 is provided in Section IV. Note that
the constraint (18) is tightly equivalent to (13) (see [22]). The
constraint (19) is a tightened representation of (14) for the
control policy in (11), i.e., if (19) is satisfied then (14) is
satisfied. The matrices Λϕ, Λwϕ, and Λϕϕ can be computed
off-line as in [22], either in closed form or numerically, hence
reducing the online computational burden.

IV. PROOF OF THEOREM 3

Let us first recall the following fundamental result.
Proposition 4 ([34, Theorem 1]): Let (ξt)t∈N be a se-

quence of nonnegative random variables on some probability
space (Ω,F,P), and let (Ft)t∈N be any filtration to which
(ξt)t∈N is adapted. Suppose that there exist constants ε > 0,

J < ∞ and M < ∞, such that ξ0 ≤ J , and for all t, we
have the following two conditions satisfied:

EFt
[
ξt+1 − ξt

]
≤ − ε

2
on the event {ξt > J}, (21)

and
E
[
|ξt+1 − ξt|4

∣∣ξ0, . . . , ξt] ≤M. (22)

Then there exists a constant γ = γ(ε, J,M) > 0 such that

sup
t∈N

E
[
ξ2t
]
≤ γ. (23)

�
Proof of Theorem 3:

Proof of claim (i): The proof of convexity, the reformulation
of the objective, and the constraints (17) and (18) can be
found in [18], [22], and the constraint (19) is obviously
convex as it is the sum of two norms. Therefore, it remains
to show that the constraint (19) is both feasible and that it
implies that the stability constraint (14) is satisfied.

Let us consider the feasibility of the constraint (19). Note
that the matrix Rκ(Ao, Bo) has full rank equal to no. At any
time t = 0, κ, 2κ, · · · , consider the sequence of control input
vectors

ũt,t+κ−1 :=


ũt
ũt+1

...
ũt+κ−1

 := −Rκ(Ao, Bo)†satr(Aκox
o
t ),

for r =
(√
κσ1(Rκ(Ao, Ino

))C1 + ε
2

)
. Substituting the

input above into the left-hand side of (14), we obtain∥∥Aκoxot −Rκ(Ao, Bo)Rκ(Ao, Bo)† satr
(
Aκox

o
t

)∥∥− ‖xot‖
=
∥∥Aκoxot − satr

(
Aκox

o
t

)∥∥− ‖Aκoxot‖
= −r = −

(√
κσ1(Rκ(Ao, Ino))C1 +

ε

2

)
,

whenever ‖xot‖ ≥ (
√
κσ1(Rκ(Ao, Ino

))C1 + ε). Moreover,

‖ũt,t+κ−1‖∞ ≤ ‖ũt,t+κ−1‖2
≤
∥∥Rκ(Ao, Bo)†

∥∥
2
‖satr(Aκox

o
t )‖2

≤ σno
(Rκ(Ao, Bo))−1

(√
κσ1(Rκ(Ao, Ino

))C1 +
ε

2

)
= U∗max ≤ Umax.

Therefore, we have shown that there exists an sequence of
input vectors ũt,t+κ−1 that is feasible with respect to the
input constraint set (2). Moreover, this policy is encompassed
by the general policy structure (11), as we can set the design
parameters to (η̃t)1:κm = ũt,t+κ−1 and (Θ̃t)1:κm = 0.

Now, the sequence of control inputs can be written in terms
of the decision variables as

ut,t+κ−1 :=


ut
ut+1

...
ut+κ−1

 = (ηt)1:κm + (Θt)1:κmϕ(Wt).

(24)
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Combining (24) with the stability constraint (14), we obtain

‖Aκoxot +Rκ(Ao, Bo)ut,t+κ−1‖
= ‖Aκoxot +Rκ(Ao, Bo)(ηt)1:κm

+Rκ(Ao, Bo)(Θt)1:κmϕ(Wt)‖
≤ ‖Aκoxot +Rκ(Ao, Bo)(ηt)1:κm‖

+ ‖Rκ(Ao, Bo)(Θt)1:κmϕ(Wt)‖
≤ ‖Aκoxot +Rκ(Ao, Bo)(ηt)1:κm‖

+
√
no ‖Rκ(Ao, Bo)(Θt)1:κmϕ(Wt)‖∞

≤ ‖Aκoxot +Rκ(Ao, Bo)(ηt)1:κm‖
+
√
no ‖Rκ(Ao, Bo)(Θt)1:κm‖∞ ϕmax.

Accordingly, if the constraint (19) is satisfied, then the
stability constraint (14) is satisfied as well. This completes
the proof of claim (i) of Theorem 3.
Proof of claim (ii): In order to show mean-square bounded-
ness, we start by dividing the problem into two parts:

sup
t∈N

Ex0

[
‖xt‖2

]
= sup

t∈N

(
Ex0

[
‖xst‖2

]
+ Ex0

[
‖xot‖2

])
≤ sup

t∈N
Ex0

[
‖xst‖2

]
+ sup

t∈N
Ex0

[
‖xot‖2

]
.

It has been shown in [18] that for the Schur stable sub-
system, under bounded control inputs and noise sequence
with bounded second moment, there exists a constant γs =
γs(x0, C4, Umax) > 0 such that

sup
t∈N

Ex0

[
‖xst‖2

]
≤ γs. (25)

It remains to show that there exists a constant γo =
γo(x0, ε, C4, Umax) > 0 such that

sup
t∈N

Ex0

[
‖xot‖2

]
≤ γo. (26)

We shall rely on the result in Proposition (4) and show that
both conditions (21) and (22) are satisfied from which it
follows that the orthogonal subsystem has bounded variance.

Consider the sub-sampled process (xot )t=0,κ,2κ,···, given
by

xot+κ = Akox
o
t +Rk(Ao, Bo)ut,t+κ−1+
Rκ(Ao, Ino

)wot,t+κ−1,
(27)

where ut,t+κ−1 =

 ut
...

ut+κ−1

 and wot,t+κ−1 =

 wot
...

wot+κ−1

.

Let Ft := σ(x0, · · · , xt) and observe that

EFt
[∥∥xot+κ∥∥− ‖xot‖]

= EFt

[∥∥∥Akoxot +Rκ(Ao, Bo)ut,t+κ−1

+Rκ(Ao, Ino
)wot,t+κ−1

∥∥∥− ‖xot‖ ]
≤ EFt

[∥∥Akoxot +Rκ(Ao, Bo)ut,t+κ−1

∥∥− ‖xot‖]
+ E

[∥∥Rκ(Ao, Ino)wot,t+κ−1

∥∥].

Now using the stability condition (14), we can establish the
upper bound:

EFt
[∥∥xot+κ∥∥− ‖xot‖] ≤ −(√kσ1(Rk(Ao, Ino

))C1 +
ε

2

)
+ E

[∥∥Rk(Ao, Ino
)wot,t+κ−1

∥∥]
≤ − ε

2
,

for all xot ∈ Rno such that ‖xot‖ > J :=√
κσ1(Rκ(Ao, Ino

)C1 + ε, and condition (21) holds.
Also observe that

E
[(∥∥xot+κ∥∥− ‖xot‖)4 ∣∣{‖xoi ‖}ti=0

]
= E

[(
‖Aκoxot +Rκ(Ao, Bo)ut,t+κ−1

+Rκ(Ao, Ino)wot,t+κ−1‖ − ‖Aκoxot‖
)4∣∣{‖xoi ‖}ti=0

]
≤ E

[(
‖Aκoxot +Rκ(Ao, Bo)ut,t+κ−1‖ − ‖Aκoxot‖

+
∥∥Rκ(Ao, Ino)wot,t+κ−1

∥∥)4∣∣{‖xoi ‖}ti=0

]
≤ E

[(
‖Rκ(Ao, Bo)ut,t+κ−1‖

+
∥∥Rκ(Ao, Ino

)wot,t+κ−1

∥∥)4∣∣{‖xoi ‖}ti=0

]
. (28)

Since the control inputs are bounded by design and the forth
moment of wt is bounded by Assumption 1-2, expanding
the last inequality in (28) and applying Jensen’s inequality
shows that there exists a constant M = M(C4, Umax) > 0
such that E

[(∥∥xot+κ∥∥− ‖xot‖)4 ∣∣ ‖xo0‖ , . . . , ‖xot‖] ≤ M . As
such both hypotheses of Proposition (4) are satisfied with ξt :
= ‖xot‖, and hence the sub-sampled process (xot )t=0,κ,2κ,···
is mean-square bounded, i.e., there exists a constant γ̄o =
γ̄o(x0, ε, C4, Umax) > 0 such that

sup
t=0,κ,2κ,···

Ex0

[
‖xot‖2

]
≤ γ̄o. (29)

It follows from (29) via standard calculations involving
triangle inequalities and the system dynamics that there exists
another constant γo = γo(γ̄o) > γ̄o, such that (26) holds.
Finally, setting γ = γs+γo completes the proof of claim (ii)
and hence the proof of Theorem (3).

V. CONCLUSIONS

We presented a method for stochastic receding horizon
control of discrete-time linear systems with process noise
and bounded control inputs. We showed that the optimization
problem to be solved periodically is recursively feasible and
convex under a suitable choice of control policies. Moreover,
we showed how the optimization problem can be augmented
with a certain stability constraint in order to render the state
of the closed-loop system mean-square bounded. Future work
will focus on extending this setup to the case of output
feedback.
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