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Prologue

The first trick of the trade in concentration
phenomena is to get rid of those two
annoying things that scientists bring to the
table — logic and common sense;
concentration is a matter of the right brain
only.

Folklore.

We are suspicious of “intuitive
mathematical truth” and we do not trust
metamathematical rigor of formal logic.

Misha Gromov.

«Theconcentration phenomenon in probability theory provides a gamut of tools for non-asymptotic
estimates. It is a fair statement that from the perspective of engineers, probability theory consists
of mathematical models of certain experiences or controlled experiments with the property that

they are repeatable. Practical considerations, of course, dictate the number of possible repetitions.1
There are only so many samples that can be drawn, only so many experiments repeated, and only
so many computations that can possibly be carried out, before one must stop gathering data and
get on with other tasks. In this scheme of things, devices that provide non-asymptotic guarantees
and estimates are of crucial importance in engineering, and as such, concentration estimates are
expected to play foundational roles in all engineering discplines that interact with data.

Concentration estimates have rarely been employed directly in control theory.2 Apart from
an early application in stochastic predictive control [HCL13], not much work appears to have
focussed on exploiting concentration phenomena in this field. The more recent work [MCB20]
explored the effect of concentration of high-dimensional random vectors in the so-called “scenario
approach” (see, e.g., [Ram18] for a lucid introduction to the subject) to robust optimization, and
the more recent work [DACC22] established an algorithm to mitigate the effects of concentration
phenomena in a broad class of robust optimization problems.

Let us now jump to the probabilistic stuff.

Knowledge I possess of the game of dice, in
numbers thus am I skilled.

Rituparna, King of Ayodhya;
nalopAkhyAnam, Mahabharata.

All random variables appearing in these notes are defined on some fixed proba-
bility space that is sufficiently rich to carry a countable collection of independent
random variables taking values on the unit interval r0, 1s.

1 “Civilizations have finite lifetimes.” H. Witsenhausen.
2A search on Google Scholar with ‘concentration of measures’ and ‘control theory’ anywhere fetched articles mostly

from the biological (and other softer) sciences on 29 Aug 2020.
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§1. Volumes of Euclidean balls

«Let d P ℕ˚ be fixed, and let

Bdpy, rq :“
␣

x P ℝd ˇ
ˇ ∥x ´ y∥ ă r

(

be the Euclidean open ball of radius r centered at y P ℝd (and let Bdry, rs stand for the Euclidean
closed ball of radius r centered at y P ℝd). The volume of the Euclidean open/closed unit ball
centered at 0 P ℝd is given by

(1.1) vol Bdp0, 1q “
π d

2

Γp d2 ` 1q
“

π d
2

d
2 ¨ Γp d2 q

,

where Γp¨q is the standard Gamma function defined by

s0,`8r Q s ÞÑ Γpsq :“
ż `8

0
ts´1e´t dt.

(A few features of the Gamma function are given in §B; the only property of the Gamma function
needed here is that Γps` 1q “ sΓpsq for s ą 0, which immediately establishes the second equality
in (1.1).) Since the d-dimensional volume is homogeneous of order d, the volume of the open ball
of radius r ą 0 centered at 0 P ℝd is

(1.2) vol Bdp0, rq “ rd vol Bdp0, 1q “ rd
π d

2

Γp d2 ` 1q
.

By translation independence of volumes,

vol Bdpy, rq “ vol Bdp0, rq for all y P ℝd.

Of course, the aforementioned volumes remain unchanged if closed balls Bdry, rs replace open balls
Bdpy, rq.

Here is an interesting short proof of (1.1) due to Svante Janson:3

§1.1. The proof of the formula for the volume of Euclidean balls. The centerpiece of
the proof is the formula

(1.3)
ż

ℝ

e´y2
dy “

?
π

coupled with the observation that
ż `8

a
e´t dt “ e´a for a ě 0.

It follows from the first formula that on the one hand,
ż

ℝd
e´∥y∥2

dy “

ż

ℝd
e´

řd
k“1 y

2
k dy1 ¨ ¨ ¨ dyd “

d
ź

k“1

ż

ℝ

e´y2
k dyk “ π

d
2 .

On the other hand, the second formula shows that
ż

ℝd
e´∥y∥2

dy “

ż

ℝd

´

ż `8

∥y∥2
e´t dt

¯

dy “

ż

ℝd

´

ż `8

0
e´t1r∥y∥2 ,`8rptq dt

¯

dy

“

ż `8

0
e´t

´

ż

ℝd
1Bdp0,

?
t qpyq dy

¯

dt “

ż `8

0
e´tt

d
2 dt ¨ vol Bdp0, 1q,

3An alternative and more direct approach may be found in [Lan97, Exercise 3, p. 598].
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where we have employed, respectively, Fubini’s theorem [Zor16, §11.4.1] to interchange the in-
tegrals and homogeneity of order d of the Euclidean volume in ℝd in the last two steps.4 Since
Γp d2 ` 1q “

ş`8

0 e´tt d2 dt, we have

(1.4) vol Bdp0, 1q “
π d

2

Γp d2 ` 1q
.

It follows at once from (1.1) that vol Bdp0, 1q ÝÝÝÝÑ
dÑ`8

0. Here is a figure describing the

behavior of vol Bdp0, 1q against d:5

The proof above also provides an expression of the (hyper-)area of the pd ´ 1q-dimensional
unit sphere: Indeed, since 𝕊d´1 :“

␣

y P ℝd
ˇ

ˇ ∥y∥ “ 1
(

is the pd ´ 1q-dimensional unit sphere in
ℝd, by homogeneity of degree pd ´ 1q of the pd ´ 1q-dimensional area in ℝd,

vol Bdp0, 1q “

ż 1

0

`

area𝕊d´1˘rd´1 dr “
area𝕊d´1

d
,

which leads to the formula6

(1.5) area𝕊d´1 “ d ¨
π d

2

Γp d2 ` 1q
“

2π d
2

Γp d2 q
.

(1.6). Exercise. The preceding proof assumes the identity (1.3). However, if (1.3) is not taken for
granted, then one can define the integral in (1.3) to be some quantity, say, I ą 0 (the integral
obviously converges), and arrive at the identity vol Bdp0, 1q “ Id

Γp d
2 `1q

in place of (1.4). Substitute
an appropriate value of d in the preceding identity to prove (1.3).

§1.2. Some consequences of concentration of volumes in ℝd.

(1.7) (Concentration of volume at the boundary). The first immediate consequence of (1.2) is that
if ε is a small number (i.e., |ε| is small), then

vol Bdp0, r ` εq
vol Bdp0, rq

“
pr ` εqd

rd
.

In particular, if we measure in SI units, d “ 103, and r “ 1m, then the removal of a shell of
thickness 10´2m (i.e., 1cm) from Bdp0, 1q leaves

`

1´10´2˘103
“
` 99

100
˘103

« 0.4ˆ10´4 fraction
of its original volume behind in the ball of radius 0.99m. To wit, an overwhelming fraction of the

4See [Lan97, Chapter XX] for a detailed and lucid treatment of multiple integration.
5See https://mathworld.wolfram.com/Ball.html for further details.
6See https://mathworld.wolfram.com/Sphere.html for further details.

https://mathworld.wolfram.com/Ball.html
https://mathworld.wolfram.com/Sphere.html
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volume of high-dimensional Euclidean balls is concentrated tightly around the boundary — an
example of concentration of volumes in high dimensions.

(1.8). It is interesting to note that, in contrast to Euclidean balls, the volume of the open unit
cube s´1, 1rd (or the closed unit cube r´1, 1sd) grows (exponentially) as 2d with d. Of course,
Bdp0, 1q Ă s´1, 1rd and Bdr0, 1s Ă r´1, 1sd by definition, which gives an early clue that drawing
independently from the uniform distribution on s´1, 1rd or r´1, 1sd will hardly ever fetch samples
from the inscribed unit Euclidean ball as d becomes large. The ratio volpr´1`ε,1´εsdq

volpr´1,1sdq
is p1 ´ εqd

and this quantity goes to 0 exponentially fast with d for any fixed ε P s0, 1r, which shows that the
volume of high-dimensional boxes also concentrate tightly around the boundary.

(1.9). Exercise. Recall that vol Bdp0, rq “ π
d
2

d
2 ¨Γp d

2 q
¨ rd for all r ą 0 and d P ℕ˚. Comment on

the asymptotics, as d becomes large, of the function d ÞÑ rpdq that ensure vol Bd
`

0, rpdq
˘

“ 1.
[Hint: Use Stirling’s approximation n! «

?
2πn

` n
e
˘n for large values of n P ℕ˚ (see §B and esp.

(B.2)) to approximate the factorial for large values of d.]

(1.10) (Volumes of equatorial disks). Define the subset of Bdp0, 1q that lies between the two hyper-
planes

H´ε :“
␣

y P ℝd ˇ
ˇ y1 “ ´ε

(

and Hε :“
␣

y P ℝd ˇ
ˇ y1 “ ε

(

straddling the equator orthogonal to the y1-direction. In other words, define the ε-strip Sp|ε| , dq

of the unit ball
Sp|ε| , dq :“

␣

y P Bdp0, 1q
ˇ

ˇ

��y1
�� ă ε

(

.

Let us determine (tight bounds of) the ratio vol Sp |ε | ,dq

vol Bdp0,1q
for large d. Of course,

vol
`

Bdp0, 1q ∖ Sp|ε| , dq
˘

“ 2 ¨

ż 1

ε
vol Bd´1p0, 1q ¨

`

p1 ´ r2q
1
2
˘d´1 dr

“ 2 ¨
π

d´1
2

d´1
2 ¨ Γp

d´1
2 q

¨

ż 1

ε
p1 ´ r2q

d´1
2 dr

“ 2 ¨
π

d´1
2

d´1
2 ¨ Γp

d´1
2 q

¨

ż 1

ε
e
d´1

2 lnp1´r2q dr.

Let rε, 1r Q t ÞÑ gptq :“ lnp1 ´ t2q P ℝ. Clearly, g is twice continuously differentiable, and
attains its unique maximum at t “ ε. An application of Theorem (A.1)-a) shows that
ż 1

ε
e
d´1

2 lnp1´r2q dr “
1 ´ ε2

2ε
¨ e

d´1
2 lnp1´ε2q ¨

´d ´ 1
2

¯´1
¨

´

1 ` O
´ 2
d ´ 1

¯¯

as d Ñ `8,

and consequently,

vol
`

Bdp0, 1q∖ Sp|ε| , dq
˘

“
π

d´1
2

p
d´1

2 q2 ¨ Γp
d´1

2 q
¨

p1 ´ ε2q
d`1

2

ε
¨

´

1 `O
´ 2
d ´ 1

¯¯

as d Ñ `8.

From this stage it follows at once that irrespective of the value of ε P s0, 1r,

vol Sp|ε| , dq

vol Bdp0, 1q
“ 1 ´

d
?
π ¨ p

d´1
2 q2

¨
p1 ´ ε2q

d`1
2

ε
¨

´

1 ` O
´ 2
d ´ 1

¯¯

ÝÝÝÝÑ
dÑ`8

1.

Of course, symmetry considerations immediately show that the particular orientation of the two
parallel hyperplanes H´ε and Hε play no role the preceding estimates.

(1.11). Exercise. Let Vcylpε, dq denote the volume of the cylinder with cross-section 𝕊d´2, height
2ε, with its axis aligned alone the y1-direction, and centered at 0 P ℝd. How does the ratio
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vol Sp |ε | ,dq

Vcylpε,dq
behave for large d.7 [Hint: We note that Vcylpε, dq “ 2ε ¨ π

d´1
2

d´1
2 ¨Γp

d´1
2 q

, and observe that

vol Sp|ε| , dq

Vcylpε, dq
“

π
d
2

d
2 ¨Γp d

2 q
´ π

d´1
2

p
d´1

2 q2¨Γp
d´1

2 q
¨ p1 ´ ε2q

d`1
2 ¨ 1

ε ¨
`

1 ` Op 2
d´1 q

˘

2ε ¨ π
d´1

2
d´1

2 ¨Γp
d´1

2 q

,

and it remains to consider the asymptotics as d Ñ `8. (Stirling’s formula §B may be useful.)]

(1.12). Fix δ ą 0. If two closed unit balls Bdrz1, 1s and Bdrz2, 1s intersect, where z1 “ pδ, 0, . . . , 0q

and z2 “ p´δ, 0, . . . , 0q in ℝd are the centers of the two balls, then their common region is
contained in the ball Bd

“

0, p1 ´ δ2q
1
2
‰

. The volume of this ball goes to 0 as d becomes large,
and consequently, the volume of the overlap between the two balls is vanishingly small in high
dimensions irrespective of δ:

vol Bd
“

0, p1 ´ δ2q
1
2
‰

“
π d

2

d
2 ¨ Γp d2 q

¨ p1 ´ δ2q
d
2 ÝÝÝÝÑ

dÑ`8
0.

This fact lies at the core of Shannon information theory; see [Zor16, Appendix C] for pointers.

(1.13) (Almost orthogonality of independently sampled unit vectors). A third interesting conse-
quence of the preceding observations is that if two unit vectors X1 and X2 in high dimensional
Euclidean space are sampled independently and uniformly randomly, then they turn out to be
almost orthogonal with high probability.

(1.14) P
`

|xX1, X2y| ą ε
˘

ă

c

π
2

e´ε2 d
2 for ε ą 0.

Since the random vectors X1, X2 are drawn independently and uniformly randomly from 𝕊d´1,
the preceding estimate follows quite naturally from the discussion in §1.3. Here are histograms
of, respectively, the inner products of, and the angles between, 104 pairs of random vectors
drawn uniformly and independently from the unit sphere in dimension d “ 103; we note that
π
2 rad « 1.57rad:

(1.15). Example (Expected length of a uniform random vector in the unit ball). Fix an integer
d ą 2 and consider the change of coordinates

s0,`8r ˆ s0, πrd´2 ˆ s0, 2πr Q pr, θ1, . . . , θd´2, θd´1q ÞÑ px1, . . . , xdq P ℝd ∖ t0u

given by

x1 :“ r cos θ1,
x2 :“ r sin θ1 cos θ2,
...

7See https://mathworld.wolfram.com/Cylinder-SphereIntersection.html and the references therein for
several interesting details.

https://mathworld.wolfram.com/Cylinder-SphereIntersection.html
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xd´1 :“ r sin θ1 sin θ2 ¨ ¨ ¨ cos θd´1,
xd :“ r sin θ1 sin θ2 ¨ ¨ ¨ sin θd´1,

The Jacobian of this coordinate change is
¨

˚

˚

˚

˚

˚

˝

cos θ1 ´r sin θ1 ¨ ¨ ¨ 0
sin θ1 cos θ2 r cos θ1 cos θ2 ¨ ¨ ¨ 0

...
...

...
. . .

sin θ1 ¨ ¨ ¨ sin θd´1 r cos θ1 ¨ ¨ ¨ sin θd´1 ¨ ¨ ¨ ´r sin θ1 ¨ ¨ ¨ sin θd´2 sin θd´1
sin θ1 ¨ ¨ ¨ sin θd´1 r cos θ1 ¨ ¨ ¨ sin θd´1 ¨ ¨ ¨ r sin θ1 ¨ ¨ ¨ sin θd´2 cos θd´1

˛

‹

‹

‹

‹

‹

‚

,

and its determinant is given by rd´1 sind´2 θ1 sind´3 θ2 ¨ ¨ ¨ sin θd´2. Since this determinant
does not vanish on the (open) domain of the coordinate change, it follows from the theory of
integration in multiple dimensions that

(1.16) dx1 ¨ ¨ ¨ dxd “ rd´1 sind´2 θ1 sind´3 θ2 ¨ ¨ ¨ sin θd´2 dr dθ1 ¨ ¨ ¨ dθd´1.
If a random vector X is picked uniformly randomly from the unit ball Bdr0, 1s, then its expected
length is given by

Er∥X ∥s “

ż

ℝd
∥x∥ ¨

1
vol Bdr0, 1s

1Bdr0,1spxq dx

“

ż 2π

0

ż

s0,πrd´2

ż 1

0

Γp d2 ` 1q

π d
2

¨ rd sind´2 θ1 sind´3 θ2 ¨ ¨ ¨ sin θd´2 dr dθ1 ¨ ¨ ¨ dθd´1

“
Γp d2 ` 1q

π d
2 ¨ pd ` 1q

ż 2π

0

ż

s0,πrd´2
sind´2 θ1 sind´3 θ2 ¨ ¨ ¨ sin θd´2 dθ1 ¨ ¨ ¨ dθd´1

“
2Γp d2 ` 1q

π d
2 ´1 ¨ pd ` 1q

ż π

0
sind´2 θ1 dθ1

ż π

0
sind´3 θ2 dθ2 ¨ ¨ ¨

ż π

0
sin θd´2 dθd´2.

Recalling that
şπ

0 sink θ dθ “
?
π ¨

Γp
k`1

2 q

Γp k
2 `1q

for k ě 0, we get

Er∥X ∥s “
2Γp d2 ` 1q

π d
2 ´1 ¨ pd ` 1q

¨ π
d´2

2 ¨
Γp

d´1
2 q

Γp
d´2

2 ` 1q
¨

Γp
d´2

2 q

Γp
d´3

2 ` 1q
¨ ¨ ¨

Γp
1`1

2 q

Γp 1
2 ` 1q

“
d ¨ Γp d2 q

d ` 1
¨
Γp

d´1
2 q

Γp d2 q
¨
Γp

d´2
2 q

Γp
d´1

2 q
¨ ¨ ¨

Γp1q

Γp 1
2 ` 1q

“
d

d ` 1
.

See (1.17) for an alternate approach to calculating Er∥X ∥s.

(1.17). Exercise (Sampling uniformly from the unit ball). Consider the task of sampling uniformly
from the (closed) unit ball Bdr0, 1s. In low dimensions such as d “ 2, 3, it is sometimes ‘roughly
okay’ to sample uniformly from the unit cube r´1, 1sd (which is easy since the components
of such a random vector are independent) and accepting a sample if it lies in the unit ball and
rejecting it otherwise. However, even for moderate dimensions d, the aforementioned strategy
performs abysmally poorly for reasons that should be clear at this stage. How, then, does one
sample uniformly from the unit ball? One approach could be to sample a random vector Y
from a d-dimensional Gaussian and then defining Z :“ Y

∥Y ∥ to get a uniformly distributed
random vector Z on the unit sphere, followed by multiplying Z by a scalar random variable R (a
priori, dependent on Z) taking values in r0, 1s that scales Z appropriately. What is the relevant
distribution of R so that R ¨Z dist

„ Uniform
`

Bdr0, 1s
˘

?8 [Hint: Pay close attention to the formula

8This exercise was suggested by Niranjan Balachandran.
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(1.16); alternatively, recall that vol Bdr0, rs “ rd ¨ vol Bdr0, 1s, which means that the density of the
volume at radius r is drd´1 vol Bdr0, 1s.]

§1.3. Some consequences of concentration of areas on 𝕊d´1.

The shape of the heaven is of necessity
spherical.

Aristotle.

As before, the pd ´ 1q-dimensional unit sphere in ℝd is 𝕊d´1 :“
␣

y P ℝd
ˇ

ˇ ∥y∥ “ 1
(

. We
are interested in the pd ´ 1q-area of bands on the unit sphere of the type

Sε :“
␣

py1, . . . , ydq P 𝕊d´1 ˇ
ˇ y1 P s´ε, εr

(

.

Of course, area Sε is precisely equal to area𝕊d´1 minus the pd ´ 1q-area of the union of two caps
␣

py1, . . . , ydq P 𝕊d´1 ˇ
ˇ y1 P r´1,´εs Y rε, 1s

(

.

These two caps are the regions (subsets) of the sphere that lie beyond (away from 0 P ℝd) the
two hyperplanes H´ε and Hε defined in (1.10).

(1.18). Exercise (Concentration of area around the equator). Establish that

area
`

𝕊d´1 ∖ Sε
˘

«
2

?
2πdε2

e´ε2 d
2 as d Ñ `8.

[Hint: Employ the techniques in (1.10), use Theorem (A.1) appropriately.]

It follows at once from Exercise (1.18) that an overwhelming proportion of the area of the
unit sphere is concentrated on a thin band around any equator.

(1.19). Exercise. Establish the estimate (1.14) under the hypotheses in (1.13).

(1.20). Exercise. A student attempts to establish (1.14) under the conditions in (1.13). Accordingly,
he picks a unit vector from 𝕊d´1 uniformly randomly and calls it X1. Then he considers the
subspaceL ofℝd orthogonal to the span ofX1, i.e., L :“ pspanX1q

K, and looks at the intersection
L X 𝕊d´1. Since L X 𝕊d´1 is an equator of 𝕊d´1, he argues that since X2 is independent of X1,
the conditional probability given X1 of X2 being sampled from an ε-neighborhood of L X 𝕊d´1

is simply the probability of X2 being sampled from the said neighborhood, and it is high for large
d due to (1.18). Is his reasoning correct?

§2. Key inequalities

One must always begin from Markov’s
inequality.

Folklore.

«We study a few elementary but key inequalities to be employed in the later sections. The treatment
here is brief and geared towards exposing a few of the most elementary inequalities. In particular,
we do not study the multitude of general techniques for arriving at concentration inequalities;

the reader is referred to the excellent textbooks [Led01, BLM13] for detailed treatments of such
topics.

(2.1). Theorem (Markov’s inequality). If X is a random variable taking values in r0,`8r and
its mathematical expectation exists, then

λ ¨ PpX ě λq ď ErXs for all λ ě 0.



The Concentration Phenomenon 7

Proof. Fix λ ě 0 and observe that since X takes values in the non-negative real numbers,
λ1tXěλu ď X1tXěλu ď X . Taking expectations yields Markov’s inequality. □

We need Jensen’s inequality in the sequel. Recall that for n P ℕ˚ a function ϕ : ℝn ÝÑ

ℝ is convex if for all t P r0, 1s and all x, y P ℝn we have ϕ
`

p1 ´ tqx` ty
˘

ď p1 ´ tqϕpxq ` tϕpyq.

(2.2). Theorem. Let n P ℕ˚ and let ϕ : ℝn ÝÑ ℝ be a convex function. If X is a random vector
taking values in ℝn such that ErXs and E

“

ϕpXq
‰

exist,9 then ϕ
`

ErXs
˘

ď E
“

ϕpXq
‰

.

Proof. Due to convexity of ϕ, it admits a support function at each point of ℝn, i.e., at
x1 P ℝn there exists ℓ 1 P ℝn such that

ϕpxq ě ϕpx1q ` xℓ 1, x ´ x1y for all x P ℝn.

Since ErXs exists, we substitute x1 “ ErXs and an element ℓ 1 corresponding to ErXs above, and
observe that for almost every outcome,

ϕpXq ě ϕ
`

ErXs
˘

` xℓ 1, X ´ ErXsy .

Taking expectations on both sides of the preceding inequality yields the assertion. □

For sums of bounded independent random variables we have an elegant inequality due to
Hoeffding:

(2.3). Theorem (Hoeffding’s inequality). Let n P ℕ˚ and suppose that pαiqni“1 and pβiqni“1 are two
sequences of real numbers satisfying αi ă βi for each i. Let pXiq

n
i“1 be a sequence of independent

random variables with pXi ´ ErXisq P rαi , βis for each i. If Sn :“
řn

i“1 Xi , then

P
`

Sn ´ ErSns ą t
˘

ď e
´ 2t2

řn
i“1pβi´αiq2

P
`

Sn ´ ErSns ă ´t
˘

ď e
´ 2t2

řn
i“1pβi´αiq2

for all t ą 0.

(2.4). Remarks. Two remarks are in order here:
˝ Hoeffding’s inequalities (2.3) feature the sum of a finite family of independent random variables

and assert that the sum Sn is sharply concentrated around the mean ErSns. It is clear from the
inequalities that the smaller the bounds pβi ´ αiq of the random variables Xi , the sharper the
concentration of Sn around ErSns.

˝ The statement that ‘the sum of a large family of independent random variables sharply concen-
trates around the mean of the sum’ works as a weak principle — a statement that holds under a
fair bit of generalization to families of dependent random variables (such as martingales, cf.
Azuma’s inequality [BLM13, Chapter 1], etc.).

The driving engine behind the proof of Hoeffding’s inequalities (2.3), which we shall discuss
momentarily, is Hoeffding’s lemma:

(2.5). Lemma. Let α, β P ℝ satisfy α ă 0 ă β. If X is a random variable with ErXs “ 0 and
such that X P rα, βs, then for every s ě 0 we have

E
“

esX
‰

ď es
2¨

pβ´αq2
8 .

Proof. The convexity of the exponential function plays a central role here. We fix s ě 0
and express x P rα, βs as

x “
`

1 ´ ηpxq
˘

α ` ηpxqβ for ηpxq :“
x ´ α
β ´ α

,

9While it is possible to weaken these assumptions, we shall ignore such technicalities here.
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and then appeal to convexity of y ÞÑ esy to arrive at

esx ď
`

1 ´ ηpxq
˘

esα ` ηpxqesβ.

We observe that ErXs “ 0 leads to xηy :“ ErηpXqs “
´α
β´α . (We note that xηy P s0, 1r due to

our assumption α ă 0 ă β.) It follows that

E
“

esX
‰

ď p1 ´ xηyqesα ` xηy esβ “
`

1 ´ xηy ` xηy espβ´αq
˘

e´sxηypβ´αq,

and we would like to express the right-hand side of the equality as the exponential of some function
of spβ ´ αq for the sake of a convenient calculus. With the aforementioned objective in mind, we
define

(2.6) ϕptq :“ ´ xηy t ` ln
`

1 ´ xηy ` xηy et
˘

for t ě 0,

and write

(2.7) E
“

esX
‰

ď eϕpspβ´αqq.

A quick analysis of the function ϕ defined in (2.6) is needed here. We start by noting that ϕ is
smooth, and its derivative dϕ

dt vanishes at t› satisfying

´ xηy `
1

1 ´ xηy ` xηy et›
¨ xηy et› “ 0.

This equation yields the unique solution t› “ 0 (in the light of xηy P s0, 1r) with the understand-
ing that only the right-hand derivative is involved at 0. The double derivative d2ϕ

dt2 ptq for any t ą 0
admits the bound

(2.8)
d2ϕ
dt2 ptq “

p1 ´ xηyq ¨ xηy et
`

p1 ´ xηyq ` xηy et
˘2 ď

1
4

since 4ab ď pa ` bq2 for a, b ą 0.

Since Taylor’s theorem now shows that there exists t1 P r0, ts such that

ϕptq “ ϕp0q ` t ¨
dϕ
dt

p0q `
t2

2
¨

d2ϕ
dt2 pt1q “

t2

2
¨

d2ϕ
dt2 pt1q,

in the light of the inequality in (2.8) we arrive at

ϕptq ď
t2

8
.

Reverting back to the variable s ě 0 and substituting in (2.7) leads to

E
“

esX
‰

ď es
2¨

pβ´αq2
8 ,

which completes the proof of the lemma. □

Proof of Theorem (2.3). The so-called Chernoff bounding method applies to the random
variable Sn: we observe that for t ą 0 and s ě 0 we have

Sn ´ ErSns ě t ô espSn´ErSnsq ě est ,

which leads to

P
`

Sn ´ ErSns ě t
˘

“ P
`

espSn´ErSnsq ě est
˘

ď e´st ¨ E
“

espSn´ErSnsq
‰

by Markov’s inequality (2.1)(2.9)

“ e´st
n
ź

i“1
E
“

espXi´ErXisq
‰

by independence of pXiq
n
i“1.

Of course, sinceXi ´ErXis P rαi , βis andXi ´ErXis is a mean zero random variable, Hoeffding’s
Lemma (2.5) applies to Xi , and

E
“

espXi´ErXisq
‰

ď es
2¨

pβi´αiq2
8 .
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Substituting in the preceding expression we arrive at

P
`

Sn ´ ErSns ě t
˘

ď e´ste
s2
8
řn

i“1pβi´αiq2
.

Since s ą 0 is arbitrary, we may minimize the right-hand side over s. This manoeuvre yields the
unique optimizer s› “ 4t

řn
i“1pβi´αiq2 , at which the optimal right-hand side is

e
´ 2t2

řn
i“1pβi´αiq2

as asserted in the first inequality. The proof of the second inequality is similar. □

Remark. The Chernoff bounding technique (2.9) is a central theme in the art of probabilistic
inequalities: on the left-hand side is the quantity whose estimate we seek, and the right-hand side
features a parameter-dependent family of quantities, each of which provides such an estimate.
Typically, all estimates are not created equal (there is little need for democracy in the world of
inequalities), and the parameters that offer the tightest inequality are the ones we keep.

(2.10). Example. We provide a simple and important example illustrating the Chernoff bounding
technique. Consider a standard normal random variable X dist

„ 𝔑p0, 1q. We shall establish that

PpX ą xq “

ż `8

x

1
?

2π
e´ t2

2 dt ď e´ x2
2 for x ě 0.

Indeed, if x ą 0, then PpX ą xq “
ş`8

x
1?
2π e´ t2

2 dt and

X ą x ô sX ą sx for s ą 0 ô esX ą esx for s ą 0,

and Markov’s inequality (2.1) shows that

PpX ą xq “ P
`

esX ą esx
˘

ď e´sx ¨ E
“

esX
‰

for s ą 0.

Of course, for all s P ℝ we have

E
“

esX
‰

“

ż

ℝ

1
?

2π
est´

t2
2 dt “ e

s2
2 ¨

ż

ℝ

1
?

2π
e´

pt´sq2
2 dt “ e

s2
2 ,

and substituting back into the preceding inequality leads to

PpX ą xq ď e´sx` s2
2 for s ą 0.

Minimizing the right-hand side over s P s0,`8r leads to

(2.11) PpX ą xq ď e´ x2
2 for x ě 0.

The bound (2.11) is, however, not too sharp; in fact, sharper bounds are provided byMitrinovic’s
inequalities:10

c

2
π

¨
e´ x2

2

x `
?
x2 ` 4

ă PpX ą xq ď

c

2
π

¨
e´ x2

2

x `

b

x2 ` 8
π

for all x ě 0.

The concentration inequalities we shall study below will conform to the type (2.11) featuring
square exponential decay.

10See [AS64, p. 298] for more information.
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§3. Concentration of the uniform distribution on the discrete cube

«The discrete d-dimensional cube (also known as the Boolean cube) is the set

bd :“ t´1, 1ud.

By definition, bd is the family of all functions from a d-element set into the set t´1, 1u, or
equivalently, it is the set of all sequences y “ pynqdn“1 of length d such that each yn P t´1, 1u. Of
course, there are 2d elements in bd, i.e.,

��bd�� “ 2d. A pictorial representation of the discrete cube
in dimension d “ 3 is the following (the spheres represent the triplets p˘1,˘1,˘1q, the skeleton
is irrelevant albeit convenient for visualization):

The Boolean cube bd is one of the simplest spaces on which one can observe the concentration
phenomenon; for the purposes of our discussion, it will be equipped with the following two
structures:
˝ The Hamming distance between two elements in bd is defined by the number of indices at

which the two elements differ:

(3.1) ρ0py, y1q :“
��tn “ 1, . . . , d | yn ‰ y1

nu
�� for y, y1 P bd.

˝ The uniform distribution on bd: Y dist
„ Uniformpbdq if

PpY P Aq “ 2´d ¨ |A| for all A Ă bd.

Consequently,

Ź if X dist
„ Uniformpbdq, then symmetry considerations immediately imply that

ErXs “ 2´d ¨
ÿ

yPbd
y “ 0 P ℝd;

Ź more generally, if f : bd ÝÑ ℝ is any function, then

E
“

f pXq
‰

“ 2´d ¨
ÿ

yPbd
f pyq P ℝ.

A magnificent treatment of concentration phenomena on product spaces may be found
in the seminal article [Tal95]; we employ the simplest of ideas and techniques therein for our
purposes here.

(3.2). Exercise. Demonstrate that the Hamming distance satisfies the properties of a metric. What
do unit balls in the Hamming distance look like? What do Hamming balls of radius r ą 0
look like, and how many elements of bd are present in the Hamming ball of radius r centered at
0 P ℝd?

(3.3). Exercise. Recall that the ℓ1-, ℓ2-, and ℓ8-distances between two vectors x, y P ℝd are

ρ1px, yq “

d
ÿ

n“1

��xn ´ yn
�� , ρ2px, yq “

ˆ d
ÿ

n“1

��xn ´ yn
��2˙ 1

2

, ρ8px, yq “ max
n

��xn ´ yn
�� .
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If we regard bd as a subset of ℝd in a natural way, then are ρ0, ρ1, ρ2, and ρ8 related to each other
on bd? Justify.

(3.4). Exercise. Let d P ℕ˚ be at least 2, and suppose that pX1, . . . , Xdq
dist
„ Uniformpbdq.

˝ Find the (marginal) distributions of X1 and Xd.
˝ Justify whether the random variables X1, . . . , Xd are mutually independent.

Distances between points onbd will be measured in terms of the Hamming distance; naturally,
the Hamming distance on bd is bounded above by d. The Hamming distance between a point
y P bd and a set A Ă bd is the standard one:

(3.5) ρ0py, Aq :“ min
y1PA

ρ0py, y1q;

it is the minimum number of sign flips of the components of y that are needed to bring y to the
set A is given by ρ0py, Aq.

We shall prove the following theorem in a short while:

(3.6). Theorem. Let d P ℕ˚ and fix a non-empty set A Ă bd. Let X dist
„ Uniformpbdq, and define

the random variable

XA :“ ρ0pX, Aq

describing the Hamming distance of X from A. Then for s ą 0 we have

E
“

esXA
‰

¨ PpX P Aq ď

´

cosh
´ s

2

¯¯2d
.

Theorem (3.6) is a special case of Talagrand’s inequality.11 Here is an immediate conse-
quence of Theorem (3.6):

(3.7). Corollary. Let d P ℕ˚ and let A Ă bd be a non-empty set. If X dist
„ Uniformpbdq and

XA :“ ρ0pX, Aq is the Hamming distance of X from A, then for s ą 0 we have

E
“

esXA
‰

¨ PpX P Aq ď es
2 d

4 .

In particular, for ε ą 0 we have

P
`

XA ą ε
?
d
˘

¨ PpX P Aq ď e´ε2
.

(3.8). Remark. Let us demonstrate a few immediate implications of these inequalities. Consider
any non-empty set A Ă bd such that PpX P Aq “ constant (does not change with d). Then
the inequality P

`

ρ0pX, Aq ą ε
?
d
˘

ď e´ε2

PpXPAq
permits us to provide probabilistic guarantees

of finding samples of X beyond ρ0-distance ε
?
d away from A: it says that with probability at

least 1 ´ e´ε2

PpXPAq
a vector X sampled uniformly randomly from bd will lie within ε

?
d distance

(measured in terms of ρ0) of A. Here are pictorial representations of the variation of ε with
PpX P Aq for confidence levels 0.99, 0.95, 0.90; only the lower 10% range of PpX P Aq has been

11See https://terrytao.wordpress.com/2009/06/09/talagrands-concentration-inequality/ for a brief
treatment of this inequality.

https://terrytao.wordpress.com/2009/06/09/talagrands-concentration-inequality/
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depicted for the sake of clarity.
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Fix d “ 103. If A Ă bd is picked such that A contains 1% of bd, then PpX P Aq “ 10´2.
Any uniformly sampled random vector from bd is, with probability at least 0.99, at most 3.03 ˆ
?

103 « 96 in ρ0-distance away from A. That is, with probability at least 0.99, at most 96 sign
flips are needed to bring a uniformly sampled random vector to a set A Ă bd containing 1% of bd.
If A contains 5% of the elements of b103 , then with probability at least 0.99 the distance from A
of a sample uniformly randomly extracted from bd is within 2.76 ˆ

?
103 « 87. The point here

is that the numbers 96 and 87 are small compared to the number of dimensions d “ 103 and
they are incomparably small compared to the total number of elements

���b103
��� “ 2103 in b103 .12

Consider a somewhat more realistic example of d “ 40. There are more than 1012 points in b40,
1% of this figure is a little over ten billion 1010, and a reasonably large supercomputer can store
these many floating points today. Talagrand’s inequality asserts that with probability at least 0.99,
a uniformly randomly sampled point in b40 is within 3.03 ˆ

?
40 « 19 sign flips away from any

fixed A Ă b40 that contains around 1010 points of b40. Observe that 19 accounts for about half as
many coordinates as in the elements of b40.

(3.9). Preparatory to the proofs of Theorem (3.6) and Corollary (3.7), we collect several elementary
definitions and observations in this paragraph. Introduce the notation

a ^ b :“ minta, bu for a, b P ℝ.

For a vector v P bd,
#

vd is the d-th component of v, of course, and we define
v
pd to be the vector pv1, . . . , vd´1q of the first pd ´ 1q components of v.

Of course, vd P b1 and v
pd P bd´1. If A Ă bd is a non-empty set, then we define its positive and

negative slices

(3.10) A` :“
␣

v P A
ˇ

ˇ vd “ 1
(

and A´ :“
␣

v P A
ˇ

ˇ vd “ ´1
(

;

naturally,
A “ A` \ A´.

In particular, if A “ bd, then bd` and bd´ are the slices of bd with the last component equal to 1
and ´1, respectively, and bd “ bd` \ bd´; moreover, each of bd` and bd´ is identifiable in a natural
way with a copy of bd´1 and we write bd˘ ” bd´1. The metric property of the Hamming distance
(3.5) shows that

(3.11) ρ0pv, Aq “ ρ0pv, A`q ^ ρ0pv, A´q for any v P bd.

Fix a non-empty set A Ă bd.

12We shall not be addressing the issue of realizing the set b103 on a physical device; experiments are inexpensive in
mathematics.
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˝ If v P bd`, then v is of the form pv
pd, 1q and (3.11) shows that

ρ0pv, Aq “ ρ0
`

pv
pd, 1q, A`

˘

^ ρ0
`

pv
pd, 1q, A´

˘

;

identifying bd` with bd´1 and regarding A` as a subset of bd` ” bd´1, the definition of the
Hamming distance (3.1) leads to

(3.12) if v P bd`, then ρ0pv, Aq “ ρ0pv
pd, A`q ^

`

1 ` ρ0pv
pd, A´q

˘

.

˝ Similarly, if v P bd´, then v is of the form pv
pd,´1q, and (3.11) it shows that

ρ0pv, Aq “ ρ0
`

pv
pd,´1q, A´

˘

^ ρ0
`

pv
pd,´1q, A`

˘

;

identifying bd´ with bd´1 and regarding A´ as a subset of bd´ ” bd´1, the definition of the
Hamming distance (3.1) yields

(3.13) if v P bd´, then ρ0pv, Aq “ ρ0pv
pd, A´q ^

`

1 ` ρ0pv
pd, A`q

˘

.

We need two auxiliary technical lemmas:

(3.14). Lemma. The function ℝ ˆ ℝ Q px, yq ÞÑ x ^ y P ℝ is Lipschitz continuous and concave.

Proof. The assertions follow at once from the facts that ℝ Q z ÞÑ |z| P r0,`8r is convex
and Lipschitz continuous, ℝ2 Q px, yq ÞÑ x ´ y P ℝ and ℝ2 Q px, yq ÞÑ x ` y P ℝ are linear
and therefore convex, the identity

x ^ y “
1
2

px ` yq ´
1
2
��x ´ y

��
holds for all x, y P ℝ, and that the sum of two concave functions is concave. □

(3.15). Lemma. Let α ě 1 and consider the equality-constrained optimization problem

(3.16)

maximize
x,y

`

x ^ pαyq
˘

`
`

y ^ pαxq
˘

subject to

#

x, y ě 0,
x´1 ` y´1 “ 2.

(3.16) admits (at most) two maximizers
` 1`α

2 , 1`α
2α

˘

and
` 1`α

2α , 1`α
2
˘

, and the maximum value is
p1`αq2

2α .

Here are six figures describing the way that the objection function, restricted to the square
r0, 1s2 Ă ℝ2, in (3.16) changes with increasing values of α, starting with α “ 1 (which corresponds
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to the function px, yq ÞÑ 2px ^ yq).

 , , ,

, , 

Proof of Lemma (3.15). It is not difficult to see that a solution of (3.24) exists for every
fixed α ě 1. Indeed, fix α ě 1 and observe that if x is large, then the equality constraint forces y to
decrease. Beyond a point the variable x ceases to matter in the objective function (due to the two
minimums) and only the y terms matter; moreover, as x increases beyond a certain threshold, since
the equality constraint forces y to decrease, the objective function monotonically decreases. A
maximizer, therefore, cannot involve large values of x. Symmetry arguments show that an identical
conclusion holds for the variable y. Thus, a large enough compact square of the form r0, as2

(with a depending on α) must contain the maximizer. In view of continuity of the objective
function, an appeal to Weierstrass’s theorem suffices to conclude the existence of a maximizer in the
aforementioned square. With the existence question settled, we turn to finding the maximizer(s).
It is also clear that the equality constraint forces the inequality constraints x ě 0, y ě 0 to be
inactive at any maximizer px›, y›q;13 consequently, we shall ignore the inequality constraints in
the remainder of the proof. The standard non-smooth Lagrange multiplier rule Theorem (D.2)
applies to the problem (3.24) because the functions

ℝ2 Q px, yq ÞÑ f px, yq :“ px ^ αyq ` py ^ αxq P ℝ

and
s0,`8r2 Q px, yq ÞÑ gpx, yq :“ x´1 ` y´1 ´ 2 P ℝ

describing the objective and the equality constraints, respectively, are both locally Lipschitz
continuous. Accordingly, if px›, y›q is a local maximizer solving (3.24), then there exist η P t0, 1u

and λ P ℝ such that
˝ the nontriviality condition

(3.17) pη, λq ‰ p0, 0q

holds, and
˝ the stationarity condition

(3.18) 0 P BC
`

η ¨ f ` xλ, gy
˘

px›, y›q Ă ℝ2

holds, where BC denotes the (Clarke) generalized gradient.

13This statement means that px›, y›q P s0,`8r2.



The Concentration Phenomenon 15

Theorem (D.1) permits us to employ the standard gradient formula to construct the set on the
right-hand side of (3.18), and performing the necessary computations we arrive at the following
observations:
˝ If η “ 0, then the objective function f becomes irrelevant and since g is smooth, the stationarity

condition takes the form 0 P

"

λ ¨

ˆ

´x´2
›

´y´2
›

˙*

, and since the set on the right-hand side is a

singleton, we must have λ “ 0, contradicting the nontriviality condition (3.17). Thus, we may
take η “ 1.

˝ For η “ 1, we note that for every α ě 1 the region s0,`8r2 is the union of the following three
subsets:

S1 :“
␣

px, yq P s0,`8r2 ˇ
ˇ y ď 1

αx
(

,

S2 :“
␣

px, yq P s0,`8r2 ˇ
ˇ

1
αx ď y ď αx

(

,

S3 :“
␣

px, yq P s0,`8r2 ˇ
ˇ y ě αx

(

.

The boundaries of the sets S1, S2, S3 are of measure 0. Assuming that α ą 1, we deduce the
following:
Ź On S1 the objective function is f px, yq “ p1 ` αqy and f is differentiable on intpS1q;

consequently, ∇f px, yq “

ˆ

0
1 ` α

˙

for px, yq P intpS1q. If px›, y›q P intpS1q, then

0 “

ˆ

0
1 ` α

˙

` λ
ˆ

´x´2
›

´y´2
›

˙

for some λ P ℝ,

which is impossible because x› ą 0 and α ą 1. We conclude that px›, y›q R intpS1q.
Ź On S2 the objective function is f px, yq “ x ` y and f is differentiable on intpS2q; conse-

quently, ∇f px, yq “

ˆ

1
1

˙

for px, yq P intpS2q. If px›, y›q P intpS2q, then the equation

0 “

ˆ

1
1

˙

` λ
ˆ

´x´2
›

´y´2
›

˙

is solvable for some λ P ℝ, and it leads to a stationary point (candidate maximizer)

(3.19) px›, y›q “ p1, 1q with the corresponding cost equal to 2

in view of the equality constraint x´1
› ` y´1

› “ 2.
Ź On S3 the objective function is f px, yq “ p1 ` αqx and f is differentiable on intpS3q;

consequently, ∇f px, yq “

ˆ

1 ` α
0

˙

for px, yq P intpS3q. If px›, y›q P intpS3q, then

0 “

ˆ

1 ` α
0

˙

` λ
ˆ

´x´2
›

´y´2
›

˙

for some λ P ℝ,

which is impossible because y› ą 0 and α ą 1. We conclude that px›, y›q R intpS3q.
Ź On S1 X S2 the stationarity condition yields

0 P co
"ˆ

0
1 ` α

˙

,
ˆ

1
1

˙*

` λ
ˆ

´x´2
›

´y´2
›

˙

.

If for some c P r0, 1s we have

0 “ p1 ´ cq
ˆ

0
1 ` α

˙

` c
ˆ

1
1

˙

` λ
ˆ

´x´2
›

´y´2
›

˙

,

then in the light of the constraint x´1
› ` y´1

› “ 2 and the fact that y› “ α´1x› on
S1 X S2, after the necessary algebraic manipulations we arrive at the solution c “ α´1

(satisfying the condition c P r0, 1s) of this system of equations. This leads to the point
px›, y›q “

` 1`α
2 , 1`α

2α
˘

as the solution satisfying x´1
› ` y´1

› “ 2 and y› “ α´1x›. The
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corresponding value of the objective function is p1`αq2

2α , which (since p1 ´ αq2 ě 0) is
at least 2 — the value of the objective function at the point p1, 1q obtained in (3.19). We
conclude that px›, y›q “

` 1`α
2 , 1`α

2α
˘

is a maximizer.
Ź On S2 X S3 the necessary condition yields

0 P co
"ˆ

1 ` α
0

˙

,
ˆ

1
1

˙*

` λ
ˆ

´x´2
›

´y´2
›

˙

.

The analysis proceeds in a similar fashion as the preceding case, leading to the maximizer
px›, y›q “

` 1`α
2α , 1`α

2
˘

with the same value p1`αq2

2α of the objective function as in the
preceding case.

An examination of the remaining case of α “ 1 (and η “ 1) and its proof is relegated to Exercise
(3.20). We merely note that for α “ 1 the set S2 is the diagonal of the open first quadrant and
f px, yq “ 2px ^ yq.

Since the preceding cases are exhaustive, our proof is complete. □

(3.20). Exercise. Complete the proof of the case η “ 1 and α “ 1 in the Proof of Lemma (3.15).

We are ready for:

Proof of Theorem (3.6). The “rectangular” nature of the set bd permits the employment
of mathematical induction. We begin with the induction base for d “ 1. Since b1 “ t´1, 1u

and A Ă b1 is non-empty by hypothesis, three mutually exclusive cases arise, namely, A “ t´1u,
A “ t1u, and A “ t´1, 1u. Fix s ě 0. If A “ t´1u, then E

“

esρ0pX,Aq
‰

“ es¨0 ¨ PpX “

´1q ` es¨1 ¨ PpX “ 1q “ 1
2 p1 ` esq, and similarly if A “ t1u, then E

“

esρ0pX,Aq
‰

“ 1
2 p1 ` esq; if

A “ t´1, 1u, then ρ0pX, Aq “ 0, which means that E
“

esρ0pX,Aq
‰

“ 1. Since coshp s
2 q ě 1 for all

s ě 0, the purported inequality is immediately verified for A “ t´1, 1u for which PpAq “ 1.
For either of the cases A “ t´1u and A “ t1u, it suffices to observe that PpAq “ 1

2 and
2 coshp s

2 q2 “ 2
` 1

2 ` 1
4 pes ` e´sq

˘

ě 1
2 p1 ` esq for all s ě 0. This completes the induction base.

Assuming that d ě 2 and that the purported inequality holds for d ´ 1 as our induction
hypothesis, we move to the induction step. Observe that for s ě 0,

(3.21)
E
“

esXA
‰

“ E
“

esXA
`

1t1upXdq ` 1t´1upXdq
˘‰

“ E
“

esXA
ˇ

ˇ Xd “ 1
‰

PpXd “ 1q ` E
“

esXA
ˇ

ˇ Xd “ ´1
‰

PpXd “ ´1q.

Since XA “ ρ0pX, Aq, X “ pX
pd, Xdq, and A “ A` \ A´ as defined in (3.10), conditional on

Xd “ 1 we see from (3.12) that

E
“

esXA
ˇ

ˇ Xd “ 1
‰

“ E
“

esρ0pX,Aq
ˇ

ˇ Xd “ 1
‰

“ E
„

exp
ˆ

s
´

ρ0pX
pd, A`q ^

`

ρ0pX
pd, A´q ` 1

˘

¯

˙
ˇ

ˇ

ˇ

ˇ

Xd “ 1
ȷ

.

Since X
pd is independent of Xd and expp¨q is monotone increasing, the right-hand side is equal to

E
”

exp
`

sρ0pX
pd, A`q

˘

^ exp
´

s
`

ρ0pX
pd, A´q ` 1

˘

¯ı

,

and in view of Lemma (3.14) and Jensen’s inequality (2.2), the last expression is bounded above by

(3.22) E
”

exp
`

sρ0pX
pd, A`q

˘

ı

^ E
”

exp
´

s
`

ρ0pX
pd, A´q ` 1

˘

¯ı

.

By our induction hypothesis (3.22) is bounded above by

1
PpX

pd P A`q
¨

´

cosh
´ s

2

¯¯2pd´1q

^
1

PpX
pd P A´q

¨ es ¨

´

cosh
´ s

2

¯¯2pd´1q
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“
1

PpX P Aq
¨

´

cosh
´ s

2

¯¯2pd´1q

¨

ˆ

PpX P Aq

PpX
pd P A`q

^
es ¨ PpX P Aq

PpX
pd P A´q

˙

.

Similar arguments show that E
“

esXA
ˇ

ˇ Xd “ ´1
‰

is bounded above by

1
PpX P Aq

¨

´

cosh
´ s

2

¯¯2pd´1q

¨

ˆ

PpX P Aq

PpX
pd P A´q

^
es ¨ PpX P Aq

PpX
pd P A`q

˙

.

Substituting into (3.21) we arrive at the inequality

E
“

esXA
‰

¨ PpX P Aq ď

´

cosh
´ s

2

¯¯2d
¨

´

cosh
´ s

2

¯¯´2
ˆ

1
2

¨

˜

ˆ

PpX P Aq

PpX
pd P A`q

^
es ¨ PpX P Aq

PpX
pd P A´q

˙

`

ˆ

PpX P Aq

PpX
pd P A´q

^
es ¨ PpX P Aq

PpX
pd P A`q

˙

¸

Define a` :“ PpXPAq

PpX
pdPA`q

and a´ :“ PpXPAq

PpX
pdPA´q

. Of course, a`, a´ ě 0 and since

PpX P Aq “ P
`

X
pd P A`, Xd “ 1

˘

` P
`

X
pd P A`, Xd “ ´1

˘

` P
`

X
pd P A´, Xd “ 1

˘

` P
`

X
pd P A´, Xd “ ´1

˘

“ P
`

X
pd P A`, Xd “ 1

˘

` P
`

X
pd P A´, Xd “ ´1

˘

“
1
2
`

PpX
pd P A`q ` PpX

pd P A´q
˘

,

we have a´1
` ` a´1

´ “ 2. At this stage, we observe that if for all s ě 0 and all a`, a´ ě 0
satisfying a´1

` ` a´1
´ “ 2, we have

(3.23)
´

`

a` ^ pes a´q
˘

`
`

a´ ^ pes a`q
˘

¯

ď 2 ¨

´

cosh
´ s

2

¯¯2
,

then the asserted inequality will hold and our proof will be complete, so we turn to establishing
(3.23). Fix s ě 0, and consider the equality-constrained optimization problem

(3.24)

maximize
a` ,a´

`

a` ^ pes a´q
˘

`
`

a´ ^ pes a`q
˘

subject to

#

a`, a´ ě 0,
a´1

` ` a´1
´ “ 2.

Since (3.24) is identical to (3.16), Lemma (3.15) shows that there are (at most) two solutions of
(3.24), given by

` 1`es
2 , 1`es

2es
˘

and
` 1`es

2es ,
1`es

2
˘

, the corresponding (maximum) value of the objective
function being

p1 ` esq2

2es
“

1
2

¨
`

e´s ` 2 ` es
˘

“ 2 ¨

ˆ

e s
2 ` e´ s

2

2

˙2
“ 2 ¨

´

cosh
´ s

2

¯¯2
.

In other words, (3.23) indeed holds, and this completes the proof. □

(3.25). Exercise. In the Proof of Theorem (3.6) we employed the induction hypothesis by tacitly
assuming that PpX P A`q, PpX P A´q ą 0. What happens if one of them is 0?

Proof of Corollary (3.7). Fix s ě 0. For the first inequality it suffices to verify that
`

coshp s
2 q
˘2d

ď es2¨ d4 . Since considerable attention in [Tal95, p. 84] is devoted to proving this
fact, we reproduce the author’s proof almost verbatim by noting first that

cosh
´ s

2

¯

“ 1 `

`8
ÿ

n“1

s2n

2p2nq!
,

and then that 2p2nq! ě 4n ¨ n! because the last inequality holds for n “ 1, 2, and if n ě 3, then
p2nq!
n!

“ pn ` 1q ¨ ¨ ¨ p2nq ě 4n.
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Therefore,

cosh
´ s

2

¯

ď 1 `

`8
ÿ

n“1

s2n

4n ¨ n!
“ e

s2
4 ,

which completes our verification. For the second inequality we employ Markov’s inequality in
the following computations: for s ą 0,

P
`

XA ą ε
?
d
˘

¨ PpX P Aq ď P
`

esXA ą esε
?
d ˘ ¨ PpX P Aq

ď e´sε
?
d ¨ E

“

esXA
‰

¨ PpX P Aq ď e´sε
?
d es

2 d
4 .

Minimizing the right-hand side with respect to s P s0,`8r leads to the unique minimizer
s› “ 2ε?

d
, and the corresponding right-hand side for s “ s› is e´ε2 . The second inequality

follows. □

(3.26). Exercise. What sort of concentration bounds does one get by employing Hoeffding’s
inequalities on bd for large d? Does it help to take a simpler notion of the metric on bd compared
to ρ0?

Remark. A significant refinement of Talagrand’s concentration inequality is possible if bd is
realized as a subset of ℝd in a natural way and the set A Ă ℝd in (3.6) is assumed to be convex:
If A Ă ℝd is convex and X dist

„ Uniformpbdq, then there exists an absolute constant c ą 0 such
that14

(3.27) P
`

ρ2pX, Aq ą t
˘

¨ PpX P Aq ď e´ct2
for all t ą 0.

On the one hand, the estimate in Theorem (3.6) applies to arbitrary non-empty sets A Ă bd,
while on the other hand, convexity of A is crucial in (3.27). Moreover, (3.27) features the stan-
dard Euclidean distance ρ2 (for which ρ2py, Aq :“ inf zPA∥y ´ z∥ for all y P ℝd) and not the
(combinatorial) Hamming distance ρ0 employed in (3.6) (cf. Exercise (3.3)).

§4. Concentration of Gaussian random vectors

«Let X denote a d-dimensional standard normal random vector.15 Recall that this means X is a
Gaussian random vector X dist

„ 𝔑p0, Idq, i.e., its probability density function is16

ℝd Q x ÞÑ fX pxq “
1

p2πq
d
2

e´ 1
2 ∥x∥

2
P s0,`8r.

We will establish:

(4.1). Theorem. If d P ℕ˚ and X dist
„ 𝔑p0, Idq, then for all ε P s0, 1r,

$

’

’

&

’

’

%

P
ˆ

∥X ∥ ą

c

d
1 ´ ε

˙

ă e´ε2 d
4 , and

P
´

∥X ∥ ă

b

dp1 ´ εq
¯

ă e´ε2 d
4 .

Remark. An immediate consequence of the two estimates in Theorem (4.1) is that

(4.2) P
ˆ

b

dp1 ´ εq ď ∥X ∥ ď

c

d
1 ´ ε

˙

ě 1 ´ 2e´ε2 d
4 .

14A proof of (3.27) may be found in the reference mentioned in footnote 11. See [Tal95, Theorem 4.1.1] for a more
general version of this inequality.

15See https://mathworld.wolfram.com/NormalDistribution.html for details.
16See https://mathworld.wolfram.com/GaussianFunction.html for several interesting calculations.

https://mathworld.wolfram.com/NormalDistribution.html
https://mathworld.wolfram.com/GaussianFunction.html
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This means that for larged, the samples drawn from𝔑p0, Idq are to be found with high probability
in a thin annulus around the spherical shell of radius

?
d . We immediately encounter some

difficulty reconciling the preceding fact with our intuition derived from the standard normal
densities in low dimensions, such as d “ 1, d “ 2, and d “ 3 shown below:

(The figure for d “ 3 represents the probability density in terms of a color-map on three orthogo-
nal planes passing through the origin: the deeper the shade, the higher the value of the probability
density function.) These pictures strongly suggest that there ought to be a large concentration of
samples close to the mean 0 P ℝd of the distribution because the probability density peaks at 0
irrespective of the dimension. The estimate (4.2), however, directly contradicts that intuition:
it says that as d increases, very few (independently drawn) samples will arise from the region
immediately around the mean, and further that most such samples will lie in a thin spherical
shell around the radius

?
d ; see Remark (4.3) for further details.17 Observe that the value of the

probability density at 0 is p2πq´ d
2 , while the value of the probability density on the

?
d -sphere is

p2πq´ d
2 e´ d

2 ; the ratio of the latter to the former vanishes as d Ñ `8.

(4.3). Remark. The mapping s0, 1r ˆ ℕ˚ Q pε, dq ÞÑ gpε, dq :“ e´ε2 d
4 appearing on the

right-hand sides of the estimates in Theorem (4.1) is worth studying in detail; here is a pictorial

17There is an urban legend about sampling from regions where the probability density function attains the peak
values. . .One should not pay too much attention to such legends in high dimensions.
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representation of g for four representative values of d:

0.2 0.4 0.6 0.8 1.0
ϵ

0.2

0.4

0.6

0.8

1.0

g

g(ϵ, 10)

g(ϵ, 20)

g(ϵ, 40)

g(ϵ, 80)

The functions on the right-hand side of (4.2) for various moderately large values of d are given
below:

0.2 0.4 0.6 0.8 1.0
ϵ

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

1 - 2 g

1 - 2 g(ϵ, 50)

1 - 2 g(ϵ, 100)

1 - 2 g(ϵ, 200)

1 - 2 g(ϵ, 500)

1 - 2 g(ϵ, 1000)

(Of course, the domain of the curves on which it takes negative values are of little importance for
they merely say that a lower bound of a certain probability is a negative number.) It follows from
the preceding figure that d “ 500 dimensional standard normal random vectors are to be found
with probability at least 0.9 within the shell

␣

y P ℝ500 ˇ
ˇ 20.62 ď ∥y∥ ď 24.25

(

.

Drawing 104 independent samples from a d “ 103-dimensional standard Gaussian and evaluating
their norms yields histograms of the following type (note that

?
103 « 31.62):

Proof of Theorem (4.1). Observe first that

∥X ∥ ą

c

d
1 ´ ε

if and only if ∥X ∥2 ą
d

1 ´ ε
,

and if t ą 0 is a parameter, then

∥X ∥ ą

c

d
1 ´ ε

ô
t
2
∥X ∥2 ą

td
2p1 ´ εq

ô e
t∥X ∥2

2 ą e
td

2p1´εq .
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At this stage we restrict t P s0, 1r to ensure that E
“

e
t∥X ∥2

2
‰

is well-defined, and proceed with
applying the Markov’s inequality (2.1) to arrive at

P
ˆ

∥X ∥ ą

c

d
1 ´ ε

˙

“ P
´

e
t∥X ∥2

2 ą e
td

2p1´εq
¯

ď e´ td
2p1´εq ¨ E

“

e
t∥X ∥2

2
‰

for every t P s0, 1r.(4.4)

It is clear that for each fixed t P s0, 1r,

E
“

e
t∥X ∥2

2
‰

“

ż

ℝd

1

p2πq
d
2

e´
p1´tq

2 ∥x∥2
dx

“
1

p1 ´ tq d
2

ż

ℝd

1

p2πq
d
2

1

p1 ´ tq
´d

2

e´
p1´tq

2 ∥x∥2
dx

“ p1 ´ tq´ d
2 .

Substituting back into (4.4) we arrive at the inequality

P
ˆ

∥X ∥ ą

c

d
1 ´ ε

˙

ď p1 ´ tq´ d
2 e´ td

2p1´εq “ exp
ˆ

´
d
2

´

lnp1 ´ tq `
t

1 ´ ε

¯

˙

.

Since the preceding inequality is valid for all t P s0, 1r, we minimize the right-hand side with
respect to t P s0, 1r to find that it admits a unique minimizer at t› “ ε, which is a point in the
domain s0, 1r. (Check!) But then

lnp1 ´ εq `
ε

1 ´ ε
“

´

´ε ´
ε2

2
´

ε3

3
´ ¨ ¨ ¨

¯

`
`

ε ` ε2 ` ε3 ` ¨ ¨ ¨
˘

ě
ε2

2
,

which implies that

exp
ˆ

´
d
2

´

lnp1 ´ tq `
t

1 ´ ε

¯

˙

ď e´ε2 d
4 .

This proves the first inequality.

To prove the second inequality we proceed by noting that

∥X ∥ ă

b

dp1 ´ εq if and only if ´ ∥X ∥2 ą ´dp1 ´ εq,

and therefore, if t ą 0 is a parameter, then

∥X ∥ ă

b

dp1 ´ εq ô ´
t∥X ∥2

2
ą ´

tdp1 ´ εq
2

ô e´
t∥X ∥2

2 ą e´
tdp1´εq

2 .

Applying the Markov’s inequality (2.1) leads to

P
´

∥X ∥ ă

b

dp1 ´ εq
¯

“ P
´

e´
t∥X ∥2

2 ą e´
tdp1´εq

2

¯

ď e
tdp1´εq

2 E
“

e´
t∥X ∥2

2
‰

for all t ą 0.(4.5)

Of course, E
“

e´
t∥X ∥2

2
‰

“ p1 ` tq´ d
2 for each t ą 0, and substituting in (4.5) gives us

P
´

∥X ∥ ă

b

dp1 ´ εq
¯

ď p1 ` tq´ d
2 e

tdp1´εq
2 “ exp

´

´
d
2
`

lnp1 ` tq ´ tp1 ´ εq
˘

¯

.

Since this inequality is valid for all t ą 0, we minimize the right-hand side with respect to t to
find out that there exists a unique minimizer t› “ ε

1´ε . (Check!) But

lnp1 ` t›q ´ t›p1 ´ εq “ ln
´

1 `
ε

1 ´ ε

¯

´ ε “ ´ lnp1 ´ εq ´ ε

“ ´

´

´ε ´
ε2

2
´

ε3

3
´ ¨ ¨ ¨

¯

´ ε ě
ε2

2
,
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which gives

exp
´

´
d
2
`

lnp1 ` tq ´ tp1 ´ εq
˘

¯

ď e´ε2 d
4 .

The second inequality follows immediately from here. □

(4.6). Exercise. Fill out the details omitted in the preceding proof (— the two “Check!” points).

(4.7). Exercise. If X dist
„ 𝔑p0, Idq, then show by direct calculations (i.e., without relying on

Theorem (4.1)) that,

P
`

∥X ∥ ą
a

d ` ε
˘

ă

´ d
d ` ε

¯´ d
2 e´ ε

2 for ε ě 0,

P
`

∥X ∥ ă
a

d ´ ε
˘

ă

´ d
d ´ ε

¯´ d
2 e

ε
2 for ε P s0, dr.

The preceding two inequalities provide estimates of probabilities pertaining to a symmetric
shell with the

?
d -sphere at the center as opposed to estimates involving an asymmetric shell in

Theorem (4.1).

(4.8). Exercise. Let α P ℝd and let Σ P ℝdˆd be a symmetric and positive definite matrix.
Suppose that Y dist

„ 𝔑pα,Σq, i.e., the probability density function of Y is

ℝd Q z ÞÑ fY pzq :“
1

p2πq
d
2 detpΣq

1
2

e´ 1
2 xz´α,Σ´1pz´αqy P s0,`8r.

Derive natural analogs of the inequalities in Theorem (4.1) that Y satisfies.

§5. Concentration of the uniform distribution on the unit cube

«The (closed) unit cube in d-dimension is the set

(5.1) Cd :“ r´1, 1sd

centered at 0 P ℝd, and the uniform distribution UniformpCdq on Cd has the probability density
function

(5.2) ℝd Q y ÞÑ 2´d ¨ 1Cdpyq P t0, 2´du,

that takes only two possible values. By definition, the higher the dimension d, the lower is the
maximum value of the probability density. Here is the unit cube in dimension d “ 3:

It may appear strange that, despite the name “uniform”, sampling from the uniform distribution
in high dimension begets samples from the vicinity of 0 quite rarely. In the sequel we shall
investigate this phenomenon in some detail.

Let us begin with an exercise concerning the components of a uniform random vector:

(5.3). Exercise. If X dist
„ UniformpCdq, then show that the random variables in the family pXnqdn“1

are independent of each other and that every Xn
dist
„ UniformpC1q.
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Here is a picture of 104 samples drawn independently at random from UniformpC2q:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

While the samples appear to be somewhat uniformly spread on C2, we shall demonstrate below that
drawing independently and uniformly at random from the unit cube Cd does not produce samples
that are “uniformly” scattered in the cube as d becomes large; instead, the samples congregate
towards the corners of the cube Cd with high probability as d grows.

Remark. The aforementioned fact about nonuniform clumps of independently sampled uni-
form random vectors in high dimensions was exploited in [MCB20] in the context of robust
optimization. The numerical experiments therein indicate that non-i.i.d. sampling may be needed
for performance enhancement in certain classes of robust optimization problems.

Let X dist
„ UniformpCdq, and let us compute Er∥X ∥2s. We quickly recall that the mean of

Y dist
„ UniformpC1q is 0 and its variance is

varpY q “ ErY 2s ´ ErY s2 “

ż 1

´1

1
2

¨ t2 dt “
1
3
.

Due to independence of the components of X in view of Exercise (5.3), it follows that

Er∥X ∥2s “ E
„ d
ÿ

k“1
∥Xk∥2

ȷ

“

d
ÿ

k“1
Er∥Xk∥2s “

d
3
.

Since ErXs “ 0 P ℝd due to symmetry about 0 P ℝd of the uniform distribution, it follows that
the scalar variance of X is

Er∥X ∥2s “
d
3
.

˝ Since the Euclidean distance between any two opposite faces of the cube Cd is 2, the preceding
equality suggests that relatively few samples drawn from the uniform distribution on Cd would
be found near the center of the cube Cd for large values of d compared to near its boundary.

˝ In view of the general principle mentioned in Remarks (2.4) about sums of independent
random variables, the formula ∥X ∥2 “

řd
n“1 X2

n expressing ∥X ∥2 as the sum of d independent
and bounded variables suggests that one can expect sharp concentration of ∥X ∥2 around its
mathematical expectation d

3 .
That the preceding description is indeed correct is the subject of:
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(5.4). Theorem. If d P ℕ˚ and X dist
„ UniformpCdq, then for every ε ą 0,

P
ˆ
����


 X

?
d




2
´

1
3

���� ą ε
˙

ă 2e´2ε2d.

Remark. Here is a histogram depicting the sharp concentration around 1?
3 « 0.5773, of the

ratio ∥X ∥
?
d

(of the Euclidean norms to
?
d ) for 104 samples drawn independently and uniformly

randomly from the unit cube (5.1) in dimension d “ 103.

Without the scaling by 1?
d

, the histogram of ∥X ∥ corresponding to the preceding data becomes

sharply concentrated around
b

103

3 « 18.257 as shown below:

It should be evident from the latter figure that very few i.i.d. samples drawn from C103 lie anywhere
‘near’ the origin in ℝ103 .

Proof of Theorem (5.4). Fix ε ą 0. Since Exercise (5.3) shows that the components
tXn | n “ 1, . . . , du are independent and identically distributed random variables with X1

dist
„

UniformpC1q. Consequently, 1
dX

2
n P r0, 1

d s for each n. Hoeffding’s inequality (2.3) now shows
that

P
ˆ
���� ∥X ∥2

d
´

1
3

���� ą ε
˙

“ P

˜����� d
ÿ

n“1

X2
n
d

´
1
3

����� ą ε

¸

ď 2e
´ 2ε2

řd
n“1 d

´2
“ 2e´2ε2d. □

(5.5). Exercise. Let d P ℕ˚, and consider the unit cube Cd. At each corner (i.e., a point with
coordinates equal to 1 in magnitude) of the unit cube place a unit ball. The situation in d “ 2, 3
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are depicted below:

Place a ball centered at 0 P ℝd such that it tangentially grazes each of the 2d balls in the aforemen-
tioned array of balls (see e.g., the light cyan disk at the center of the left-hand figure). How does
the radius of this ball change with d?

Fix n P ℕ˚, and draw n samples independently from the unit cube Cd. On the one hand,
since the uniform distribution on the unit cube Cd is non-zero everywhere inside the cube, it
is quite natural to expect that, for a given ε ą 0, every point in the cube is within ε distance of
at least one of the samples (i.e., ε-dense), provided, of course, that n is sufficiently large. On the
other hand, observe that Theorem (5.4) asserts that i.i.d. samples from UniformpCdq exhibit tight
concentration at the corners of Cd for all large d. In view of these two opposing facts, a natural
question is how large would n have to be in order for the preceding “density” statement to hold?
The next result provides a probabilistic estimate of the number n in terms of the threshold ε;
we shall work with the ℓ8 distance for convenience, and for this purpose recall that for vectors
x, x1 P ℝd the ℓ8-distance between x and x1 is given by ρ8px, x1q :“ maxi“1,...,d

��xi ´ x1
i
��.

(5.6). Theorem ([BG05, Theorem 4.2]). Let d P ℕ˚. Fix a small number ε ą 0 such that
2 ¨ ε´1 P ℕ˚ and pick n P ℕ˚. Suppose that Xn is a collection of n i.i.d. UniformpCdq random
vectors, and define the event

Aε,n :“
␣

every point of Cd is within ρ8-distance of ε from Xn
(

.

Then
PpAε,nq ě 1 ´ p ε

2 q´d`1 ´ p ε
2 qd

˘n
ě 1 ´ p 2

ε qde´n¨p 2
ε q´d

.

Remark. It is instructive to note from the last inequality that the regime when it is meaningful is
when the estimate p 2

ε qde´n¨p 2
ε q´d

ă 1 holds, or equivalently, whenever n ą d ¨ p 2
ε qd ¨ lnp 2

ε q; the
right-hand side grows faster than exponentially in the number of dimensions d! The proof of
Theorem (5.6) involves the so-called ‘metric entropy’ argument, a mechanism that is extremely
versatile but provides tight estimates only asymptotically. The procedure begins by defining a
partition of the set under consideration in a way that the ‘diameters’ of the smaller subsets are
within a certain desired threshold. In view of the topological structure of Cd, smaller sub-cubes
become a natural choice (which is also the reason for picking the ρ8-metric in the theorem) for
the partitioning.

Proof of Theorem (5.6). We subdivide the unit cube Cd into p 2
ε qd many small cubes of

edge length ε such that the small cubes
␣

C 1
k

ˇ

ˇ k “ 1, . . . , p 2
ε qd

(

are either mutually disjoint or
overlap only along their faces; consequently, the set of overlaps is of zero volume in Cd. Observe
that if each of these small cubes C 1

k-s contains at least one element of Xn, then the event Aε,n
holds. The probability that a particular small cube C 1

i contains a uniformly sampled vector from
Cd is p ε

2 qd in view of (5.2), which means that none of the samples in Xn lies in this particular small
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cube with probability PpXn X C 1
i “ ∅q “

`

1 ´ p ε
2 qd

˘n due to independence. There are p 2
ε qd

many small cubes, which means that the probability that at least one of the small cubes does not
intersect with Xn is

P

˜

p 2
ε qd
ď

i“1
tXn X C 1

i “ ∅u

¸

ď

p 2
ε qd
ÿ

i“1
PpXn X C 1

i “ ∅q “ p ε
2 q´d`1 ´ p ε

2 qd
˘n.

To wit, the probability of the complement of the event Aε,n is at most p ε
2 q´d`1 ´ p ε

2 qd
˘n, and

the first inequality follows. The second one follows immediately from the first in view of the fact
that p1 ´ aqn “ en lnp1´aq ď e´an for a P s0, 1r. □

§6. Two applications

«We study two important applications of the concentration phenomenon in data science and
optimization. The first application in §6.1 — the Johnson-Lindenstrauss lemma — is a story
of positivity, while the second application in §6.2 is a caveat.

§6.1. The Johnson-Lindenstrauss lemma. The Johnson-Lindenstrauss lemma has be-
come an extremely useful tool in data science today. We shall derive a basic version of this lemma
using the results we have developed in §4.

The Johnson-Lindenstrauss lemma concerns the matter of orthogonally projecting a finite
set of points from a high-dimensional Euclidean space into reasonably low dimensional subspaces
while maintaining the mutual separation between the points within given tolerance margins. This
is the subject of the following:

(6.1). Theorem (Johnson-Lindenstrauss Lemma). Fix d P ℕ˚, let N P ℕ˚, and pick ε, η P s0, 1r.
Fix an integer k ě 4

ε2 ln
` 2N 2

η
˘

. Suppose that x1, . . . , xN P ℝd. If k ď d, then choose a k-
dimensional subspace L of ℝd uniformly randomly from the family of all k-dimensional subspaces
of ℝd, and let xLi :“ πLpxiq denote the orthoprojection of xi on L for each i. Then

P
ˆ

p1 ´ ηq∥xm ´ xn∥ ď

c

d
k


xLm ´ xLn



 ď p1 ` ηq∥xm ´ xn∥ for all m, n
˙

ě 1 ´ ε.

(6.2). Remarks. Several points need commentary:
˝ Theorem (6.1) asserts, in rough and broad strokes, that if L is a subspace of a high-dimensional

ambient Euclidean space and if txi | i “ 1, . . . , Nu is a family of vectors in the ambient space,
then the mutual distances between the vectors are roughly preserved under the orthogonal
projection to the subspace. The probabilityP concerns the joint event of all the mutual distances
— the qualifier ‘for all m, n’ is inside the probability.

˝ The numbers ε, η are ‘tolerances’. Of course, the orthogonal projection operation introduces
errors in the mutual distances; for one, vectors are liable to shrink under orthoprojection. The

number ηmeasures the error between the mutual distances
b

d
k


xLn ´ xLm



 and ∥xn ´ xm∥ that
we are happy to accept. The number ε denotes the probability of violation of the (joint) event
under consideration, and p1 ´ εq stands for the confidence with which the mutual distances
are preserved.

˝ The dimension d of the ambient Euclidean space is irrelevant insofar as the dimension of the
subspace L is concerned — it does not influence the lower bound of k in any way.

˝ Theorem (6.1) is most spectacular in the large d regime. Let us take a look at some numerics.
Suppose that d “ 106, that we are happy with η “ 10´1 and ε “ 0.05, and that there
are N “ 50 points in the d-dimensional space. Then k should be at least, roughly, 17350.



The Concentration Phenomenon 27

Next suppose that dim “ 109 while maintaining the rest of the preceding parameters. Then
k ě 17350 once again.

A (sketch of a) proof of Theorem (6.1) will be given after extracting the basic inequality that
lies at the heart of it, and it is captured by the following:

(6.3). Lemma. Consider a random vector X dist
„ 𝔑p0, Idq and let L Ă ℝd be a subspace of dimension

k. If πLpXq is the orthogonal projection of X on L, then

(6.4) for ε P s0, 1r,

$

’

’

’

&

’

’

’

%

P
ˆ

c

d
k
∥πLpXq∥ ą

∥X ∥
1 ´ ε

˙

ď e´ε2 k
4 ` e´ε2 d

4 and

P
ˆ

c

d
k
∥πLpXq∥ ă ∥X ∥p1 ´ εq

˙

ď e´ε2 k
4 ` e´ε2 d

4 .

Consequently, for ε P s0, 1r,

(6.5) P
ˆ

p1 ´ εq
c

k
d
∥X ∥ ď ∥πLpXq∥ ď

c

k
d

1
p1 ´ εq

∥X ∥
˙

ě 1 ´ 2
`

e´ε2 k
4 ` e´ε2 d

4
˘

.

(6.5) is the key probabilistic inequality that drives the Johnson-Lindenstrauss Lemma (Theo-
rem (6.1)) and the engine behind establishing Lemma (6.3) will be the probability estimates in
Theorem (4.1):

Proof of Lemma (6.3). First pick an orthonormal basis on L and then extend the basis to
ℝd by picking orthonormal vectors by means of the Gram-Schmidt technique. The transforma-
tion from the original orthonormal basis on ℝd to this new basis is via an orthogonal matrix; since
𝔑p0, Idq is spherically symmetric, the distribution of X as represented in the new basis remains
unchanged, and we continue to denote this random vector by X .

Let us establish the first inequality in (6.4). It is clear that, by construction, πLpXq
dist
„

𝔑p0, Ikq. Theorem (4.1), therefore, applies to the random vector πLpXq, giving the estimates

(6.6)

$

’

’

&

’

’

%

P
ˆ

∥πLpXq∥ ą

c

k
1 ´ ε

˙

ď e´ε2 k
4 , and

P
´

∥πLpXq∥ ă

b

kp1 ´ εq
¯

ď e´ε2 k
4 .

Since both the first estimate of Theorem (4.1) and the second estimate in (6.6) hold, we have

P
ˆ

∥X ∥
a

dp1 ´ εq
ě 1

˙

ě 1 ´ e´ε2 d
4

and

P
ˆ

c

1 ´ ε
k

∥πLpXq∥ ď 1
˙

ě 1 ´ e´ε2 k
4 .

If two events have large probabilities, then their intersection has large probability as well. Indeed,
if A1, A2 Ă Ω are events satisfying PpA1q ě 1 ´ p1 and PpA2q ě 1 ´ p2 for p1, p2 P s0, 1r, then
obviously PpΩ ∖ A1q ď p1 and PpΩ ∖ A2q ď p2, and this leads to the (standard) estimate (a
variant of the so-called union bound)

(6.7) PpA2 X A2q “ 1 ´ P
`

Ω ∖ pA1 X A2q
˘

“ 1 ´ P
`

pΩ ∖ A1q Y pΩ ∖ A2q
˘

ě 1 ´ PpΩ ∖ A1q ´ PpΩ ∖ A2q ě 1 ´ p1 ´ p2.

In the present case an application of the preceding inequality gives us

P
ˆ

∥X ∥
a

dp1 ´ εq
ě

c

1 ´ ε
k

∥πLpXq∥
˙

“ P
ˆ

c

d
k
∥πLpXq∥ ď

∥X ∥
1 ´ ε

˙

ě 1´
`

e´ε2 d
4 `e´ε2 k

4
˘

.
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The other inequality follows from similar considerations and is left as Exercise (6.8). Applying
(6.7) on these two inequalities gives us (6.5) at once. □

(6.8). Exercise. Establish the second inequality in Lemma (6.3) in complete detail.

Sketch of a proof of Theorem (6.1). It should be clear that one needs to get a sense of
the family RPpk; dq of all k-dimensional subspaces of ℝd, the real projective space because
the ‘probability’ in Theorem (6.1) is on this family.

Step 1. To this end, let n, k be positive integers satisfying k ă n. Consider the set of all
k-dimensional subspaces of ℝn. From a fixed such subspace we can pick k linearly independent
vectors in ℝn that span the subspace, and concatenate them to form an n ˆ k matrix. It is readily
observed that a suitable permutation of the rows of this matrix brings the k linearly independent
rows to the top of the matrix, and, since the upper k ˆ k submatrix has rank k, a multiplication
on the right by a suitable non-singular k ˆ k matrix brings it to the form in which the top k ˆ k

submatrix is precisely the k-dimensional identity, i.e., to the form
ˆ

Ik
Z

˙

for some Z P ℝpn´kqˆk.

More formally, let α be a subset of t1, . . . , nu containing k elements, and let the set of n ˆ k
matrices with the k independent rows corresponding to the elements in α be denoted by Uα. If A
is an arbitrary element of Uα, then we permute the rows of A to bring all k linearly independent
rows to the top, multiply a suitable k ˆ k matrix (depending on A) on the right of the resulting

matrix to arrive at the form
ˆ

I
ZA

˙

for some ZA P ℝpn´kqˆk, and finally stack the columns of ZA

on top of each other in a predefined way to map ZA into ℝkpn´kq. The composite, denoted by
φα, is a smooth bijection from the set Uα into ℝkpn´kq. For each k-element subset of t1, . . . , nu,
therefore, this mapping φα : Uα ÝÑ ℝkpn´kq is a chart map in the language of smooth manifolds,
and the union of the Uαs as α varies over all k-element subsets of t1, . . . , nu covers the set RPpk; nq.
Of course, the dimension of RPpk; nq is kpn ´ kq.

Step 2. If ℝd is the ambient space, then we need a mechanism to equip the family RPpk; dq

with a probability measure. It turns out that RPpk; dq is a compact metric space under the
natural Hausdorff metric between the unit balls of two such subspaces, and this particular metric
is invariant under the group of orthogonal transformations on ℝd. These facts lead to, after
appealing to the appropriate (and somewhat abstract) results, the fact that there exists a unique
probability measure on the Borel subsets of RPpk; dq that is invariant relative to the action of the
aforementioned orthogonal transformations.18

Step 3. It is not important to describe this probability measure as long as one can sample
from it. To this end, observe that if k ă n (which is our premise), then sampling k vectors from
the standard normal distribution on ℝd produces k linearly independent vectors with probability
1, and their linear span is a k dimensional subspace. Moreover, the standard normal distribution
is invariant under orthogonal transformations on ℝd. Consequently, the uniqueness statement
in Step 2 implies that k-dimensional subspaces produced in this way is effectively sampling from
the distribution mentioned in Step 2.

The remainder of the proof is delegated to the following (slightly nontrivial) Exercise. □

(6.9). Exercise. Complete the remainder of the proof of Theorem (6.1) starting from the final
statement of Step 2.

18This is the sketch part. . .
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§6.2. The scenario approach in robust optimization. Consider the robust optimiza-
tion problem

(6.10)

minimize
x

cpxq

subject to

$

’

&

’

%

gpx, ξq ď 0 for each ξ P Ξ,
x P S,
S ˆ Ξ Ă ℝn ˆ ℝm closed and non-empty,

where c : ℝn ÝÑ r0,`8r is a continuous objective function and the mapping g is the stacked
vector function of continuous functions gi : ℝnˆΞ ÝÑ ℝ for i “ 1, . . . , p. We shall deliberately
refrain from generalizing to the setting of (6.10) beyond the current stage, referring the reader
to [MCB20] for a discussion. The parameter ξ plays the role of uncertainty, and Ξ is the set of
possible uncertainties.

A standard optimization problem consists of the minimization of a certain objective function
subject to certain constraints; the point of departure of (6.10) from such a standard optimiza-
tion problem is the presence of the family Ξ of uncertainties in the constraints: each constraint
gpx, ξq ď 0 corresponding to ξ P Ξ must be satisfied by a solution of (6.10). Problems such
as (6.10) arises in a plethora of situations in engineering; we refer the reader to [BTEN09] for a
comprehensive discussion and a treatment of such problems and robust optimization in general.

If, on the one hand, Ξ is a finite set, then we have a finite family of constraints in (6.10). On
the other hand, if Ξ is uncountable, e.g., Ξ is compact interval with non-empty interior, then the
corresponding family of constraints in (6.10) is infinite. Such optimization problems are known
to be hard, and are known as semi-infinite programs. Observe that the larger the set Ξ is, the
smaller is the feasible set of (6.10); indeed, if Ξ1,Ξ2 Ă Ξ are finite sets and Ξ1 Ă Ξ2, then the
value of the problem with Ξ1 as the set of uncertainties is smaller than that with Ξ2 as the set of
uncertainties; in this sense the behavior of the value is monotone non-decreasing.

(6.11). Remark. Standard minmax problems of the form

inf
xPS

sup
θPΘ

Cpx, θq

where C : ℝn ˆ ℝm ÝÑ r0,`8r is a continuous objective function, S Ă ℝn is the (closed) set
of optimization variables, Θ Ă ℝm is a (closed) set of uncertainties, can be readily recast in the
language of (6.10) by means of the introduction of a slack variable. Indeed, it is an easy exercise
to note that the value of the optimization problem

minimize
t,x

t

subject to

#

Cpx, θq ´ t ď 0 for each θ P Θ,
pt, xq P r0,`8r ˆ S,

which is of the form (6.10), is identical (in the sense of having equal values) to that of the minmax
problem indicated above.

(6.12). Exercise. Argue that the objective function c in (6.10) being independent of ξ is no loss of
generality, and in fact, it suffices to consider c to be linear.

A popular technique in robust optimization is known as the scenario approach. It
consists of selecting randomly and independently a finite subset ξ1, . . . , ξN from the set Ξ of
uncertainties, and adjoining the corresponding constraints to the original robust optimization
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problem. For instance, in the context of (6.10) one constructs the optimization problem

(6.13)

minimize
x

cpxq

subject to

$

’

&

’

%

gpx, ξkq ď 0 for each k “ 1, . . . , N,
x P S,
S ˆ Ξ Ă ℝn ˆ ℝm closed and non-empty,

after obtaining N samples ξ1, . . . , ξN from Ξ. Clearly, (6.13) serves as a surrogate of (6.10) in some
sense although the value of (6.13) is a random variable.19 Indeed, if all the elements of Ξ could be
sampled in the aforementioned fashion, then there would be no difference between (6.10) and
(6.13). Even if sampling all the elements of Ξ is not possible, as long as N is sufficiently large, it is
natural to expect that the value of (6.13) would be close to that of (6.10) in some probabilistic
sense.

While we shall not concern ourselves with the precise sense in which the two aforementioned
values would be close, being content to refer the reader to [Ram18, MCB20] instead, the interest-
ing observation at this stage consists of the behavior of the value of (6.13) as the dimension m of
the set Ξ of uncertainties increases. We have, in the preceding sections, studied several situations
in high dimensions in which independent and identical distributed samples tend to ‘congregate’
on particular regions of the space. In particular, we have witnessed in Chapter 5 that independent
samples generated uniformly randomly from the unit cube Cm tend to ‘congregate’ towards the
corners of the cube as m becomes large. Such behavior of the samples may lead to adverse effects
in the values of the robust optimization problem (6.13) even when N appears to be ‘large’.

As an illustration, consider the following numerical example:

(6.14)

minimize
t,x

t

subject to

#

x∥ξ ∥8 ´ ∥ξ ∥2
8 ´ t ď 0 for all ξ,

pt, xq P ℝ ˆ r0, 1s, ξ P r´1, 1sm,

This problem is so simple that it can be solved by hand. Indeed, it is not difficult to see (cf. Remark
(6.11)) that the value of the problem (6.14) is identical to the value of the minmax problem

V› :“ min
xPr0,1s

sup
ξPr´1,1sm

`

x∥ξ ∥8 ´ ∥ξ ∥2
8

˘

.

It follows at once that for each fixed x P r0, 1s, any ξ with ∥ξ ∥8 “ x
2 maximizes

`

x∥ξ ∥8´∥ξ ∥2
8

˘

,
the corresponding maximum value being x2

4 ; therefore, minxPr0,1s
x2

4 “ 0 is the value of this
minmax problem and of (6.14). Moreover, we note that

V̌ :“ min
xPr0,1s

min
ξPr´1,1sm

`

x∥ξ ∥8 ´ ∥ξ ∥2
8

˘

“ ´1

is the worst possible (in a reasonable sense) estimate of the value V› because the first term in the
objective is always non-negative.

Let us see what the scenario approach tells us in the context of (6.14). The approach itself
consists of

˝ fixing a positive integer N ,
˝ sampling N times identically and uniformly randomly from Ξ :“ r´1, 1sm to generate

the samples ξ1, . . . , ξN , and

19We shall ignore technicalities concerning why the value is a bona fide random variable.
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˝ in analogy with (6.13), solving the problem

(6.15)

minimize
t,x

t

subject to

#

x∥ξk∥8 ´ ∥ξk∥2
8 ´ t ď 0 for all k “ 1, . . . , N,

pt, xq P ℝ ˆ r0, 1s, ξk P r´1, 1sm.

We denote the value of the optimization problem (6.15) by V›pN,mq, thereby making explicit
the dependence of the value on both the number of samples N and the dimension m of the set Ξ
of uncertainties; it should be clear that V›pN,mq is a random variable.

The following data-set forV›pN,mq was recorded from one numerical experiment, where we
recall that the true value of the problem is V› “ 0 and the worst possible estimate is V̌ “ ´1:20

V›pN,mq

Number of samples (N )

dim (m) 10 102 103 104 105

2 ´0.0808521 ´0.0027655 ´0.0024113 ´0.00006952 ´5.8517 ˆ 10´6

3 ´0.514566 ´0.0155123 ´0.0166664 ´0.00071971 ´0.000470249
5 ´0.479553 ´0.18534 ´0.0740244 ´0.0262403 ´0.00899445

10 ´0.443152 ´0.127072 ´0.291861 ´0.147158 ´0.0690109
20 ´0.827773 ´0.567134 ´0.499702 ´0.436 ´0.264414
50 ´0.920135 ´0.850023 ´0.782451 ´0.646217 ´0.671429

100 ´0.924552 ´0.933968 ´0.862346 ´0.819696 ´0.763204
200 ´0.946027 ´0.95713 ´0.938177 ´0.896738 ´0.887372

Observe that the best results are (naturally!) obtained when the dimension m is 2 and the number
of samples N is large; e.g., V›p105, 2q almost equal to the true value 0. Here is a figure depicting
Ξ “ r´1, 1s3 with 105 points sampled independently and uniformly randomly from it; the
density of the samples is noteworthy:

While the preceding numbers correspond to one particular experiment, the behavior illustrated
above is typical: As the number of samples N decreases for a fixed m, the corresponding value
deviates progressively more from the true value 0; if N is held fixed, then the corresponding value
falls away from 0 as m increases (i.e., the error increases). A matrix plot of the values computed
for a different (and larger) set of experiments in which the vertical axis depicts the dimensions

20Bob Hanlon provided the seed code that was employed in this experiment on Mathematica; the relevant page is
https://mathematica.stackexchange.com/questions/246128/list-of-constraints-in-minimize.

https://mathematica.stackexchange.com/questions/246128/list-of-constraints-in-minimize
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m “ 2, 3, 5, 10, 20, 50, 100, 200 from top to bottom, and the horizontal axis depicts the number
of samples N “ 10, 2p10q, 102, 2p102q, 103, 2p103q, 104, 2p104q, 105, 2p105q from left to right, is
shown below:

10 2(10) 10
2

2(10
2 ) 10

3
2(10

3 ) 10
4

2(10
4 ) 10

5
2(10

5 )

2

3

5

10

20

50

100

200

-0.97

-0.78

-0.58

-0.39

-0.19

-0.01

In this context, we remind the reader that the optimal value of (6.14) is V› “ 0 and the worst
possible estimate of (6.14) is V̌ “ ´1.

Whether such behavior of the values of semi-infinite programs under the scenario approach
are satisfactory or not is difficult to assess unilaterally and uniformly across the spectrum of
robust optimization problems (6.10), and such conclusions are best left to the judgment of the
practitioners concerned. However, it is undeniable that the main culprit in the preceding example
is our reliance on i.i.d. samples despite with the fact that i.i.d. samples of high dimensional random
vectors tend to concentrate with high probability around certain regions of the space leaving the
rest of the space unexplored; this feature leads to a preference for certain (typically thin) regions
of the sample space of the algorithm, and unless the optimizers are in these thin sets, the quality
of approximation may be low. The preceding observations clearly point to the fact that there
is still scope to develop general, computationally feasible, and tight approximation schemes in
robust optimization problems, especially in high dimensions; one such approximation method
[DACC22] involving better (non-i.i.d.) sampling techniques has recently been reported.

It is important to ponder whether it is indeed relevant to consider the uncertainty to take
values in some high-dimensional space. Here is an example from control theory that should strike
a chord immediately: Consider a finite horizon robust optimal control problem

(6.16)

inf
u

sup
w

N´1
ÿ

t“0
c
`

xptq, uptq
˘

` cF
`

xpN q
˘

subject to

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xpt ` 1q “ f
`

xptq, uptq, wptq
˘

,
xp0q “ x̄,
uptq P 𝕌 for each t,
wptq P 𝕎 for each t,
u :“

`

up0q, up1q, . . . , upN ´ 1q
˘

,
w :“

`

wp0q, wp1q, . . . , wpN ´ 1q
˘

,

where N is a pre-specified positive integer playing the role of the control horizon, 𝕌 Ă ℝm is a
non-empty set of admissible control actions, 𝕎 Ă ℝp is a non-empty set of uncertainties, the
mapping ℝd ˆℝm ˆℝp Q px, u, wq ÞÑ f px, u, wq P ℝd describing the dynamics of the process is
continuous, as are the cost-per-stage function c : ℝd ˆℝm ÝÑ r0,`8r and the final cost function
cF : ℝd ÝÑ r0,`8r. The task of the control sequence u in (6.16) is to minimize the worst case
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cost accrued due to the sequence w of uncertainties and/or disturbances that affect the dynamical
system described by f . Such uncertainties may arise due to modeling inaccuracies, exogenous
noise, etc.21 The epithet robust refers to the fact that the control guards against the worst case
performance due to such uncertainties.

The optimal control problem (6.16) is, in general, difficult to solve analytically except in
the simplest of cases, and even numerical algorithms for solving it are hard to arrive at. It is not
difficult to see that (6.16) is a robust optimization problem with the uncertainty variable w and
the sequence u of control actions playing the role of the decision variables, and one often attempts
to solve (6.16) via the scenario approach when the set 𝕎 of uncertainties admits a reasonably
concrete description, such as polytopes, ellipsoids, etc. Samples from 𝕎N are drawn in an i.i.d.
fashion and the resulting (random) sampled minmax problem is solved as a surrogate of (6.16).
One realizes immediately that whenever N is large, the dimension of the set 𝕎N is pN , and the
concentration phenomenon is liable to influence the resulting programs in dramatic ways.

21There is a somewhat subtle point at play here. While guarding against uncertainties in the model — parametric or
otherwise — is a good idea in general (and is the central tenet of robust control) and is generally accepted as standard
practice, treating the exogenous noise from the worst case view point typically leads to conservative designs. Unless the
applications are safety-critical, it may be better to avoid conservative designs and opt instead for a stochastic model of the
noise. In such a situation, the objective function is usually replaced by the expected value (with respect to the probability
distribution of the underlying model for the random noise process) of a finite sum of cost functions over the random
part of each wt ; semi-infinite programs arise naturally once again when worst case effects with respect to the modeling
uncertainty part of the wt -s are considered in this setting.
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Appendix A. Asymptotics of Laplace integrals: the principal term

This appendix contains a fundamental result on the asymptotics of Laplace integrals. A
proof may be found in the cited reference.

(A.1). Theorem ([Zor16, §19.2.4, p. 612, Theorem 1]). Consider the integral

(A.2) Fpλq :“
ż b

a
f ptqeλgptq dt,

where ´8 ă a ă b ă `8, the functions f, g : ra, bs ÝÑ ℝ are continuous, and λ ą 0 is a
parameter. Suppose that maxtPra,bs gptq is attained at a unique point t› P ra, bs. Moreover, assume
that

˝ f pt›q ‰ 0 and
˝ f ptq “ f pt›q ` Opt ´ t›q as t Ñ t› on ra, bs.

(A.1)-a) If g is twice continuously differentiable on a neighborhood of t›, and t› “ awith dg
dt pt›q ‰

0, then

Fpλq “
f pt›q

´
dg
dt pt›q

¨ eλgpt›q ¨ λ´1`1 ` Opλ´1q
˘

as λ Ñ `8.

(A.1)-b) If g is thrice continuously differentiable on a neighborhood of t›, and t› P sa, br with
d2g
dt2 pt›q ‰ 0, then

Fpλq “

d

2π

´
d2g
dt2 pt›q

¨ f pt›q ¨ eλgpt›q ¨ λ´ 1
2
`

1 ` Opλ´ 1
2 q
˘

as λ Ñ `8.

(A.1)-c) If g is thrice continuously differentiable on a neighborhood of t›, and t› “ a with
dg
dt pt›q “ 0 and d2g

dt2 pt›q ‰ 0, then

Fpλq “

d

π

´2 d2g
dt2 pt›q

¨ f pt›q ¨ eλgpt›q ¨ λ´ 1
2
`

1 ` Opλ´ 1
2 q
˘

as λ Ñ `8.

Appendix B. The Gamma function and Stirling’s formula

Recall that the Gamma function is22

(B.1) Γpλq :“
ż `8

0
sλ´1e´s ds for λ ą 0.

It is representable as a Laplace integral (A.2) in a natural way:

Γpλ ` 1q “

ż `8

0
e´seλ ln s ds for λ ą 0,

and introducing the new variable s “ λt, we arrive at

Γpλ ` 1q “

ż `8

0
e´λt ¨ eλ ln λ`λ ln t ¨ λ dt “ λλ`1

ż `8

0
eλpln t´tq dt.

Defining s0,`8r Q t ÞÑ gptq :“ ln t ´ t P ℝ, we find that g has a unique maximizer t› “ 1 on
the interval s0,`8r, and d2g

dt2 p1q “ ´1. Then Theorem (A.1)-b) shows that

Γpλ ` 1q “
?

2πλ ¨

´λ
e

¯λ
¨
`

1 ` Opλ´ 1
2 q
˘

as λ Ñ `8.

22See https://mathworld.wolfram.com/GammaFunction.html for details.

https://mathworld.wolfram.com/GammaFunction.html
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Since Γpn ` 1q “ n! for n P ℕ˚, we get Stirling’s formula23

(B.2) n! “
?

2πn ¨

´n
e

¯n
¨
`

1 ` Opn´ 1
2 q
˘

as n Ñ `8.

Appendix C. The Hamming metric: sundry facts

The Hamming metric ρ0 encountered in (3.1) gives rise to metric balls and spheres of inter-
esting shapes in a natural way, and in this appendix we take a quick look at a few of them. Let
d P ℕ˚ and observe that the definition of the Hamming distance between two points has the
following natural analog on ℝd: for x, x1 P ℝd,

ρ0px, x1q “
��tn “ 1, . . . , d | xn ‰ x1

nu
�� ,

i.e., it is the number of disagreements in the entries of x and x1. Naturally, ρ0 takes values in
t0, 1, . . . , du. The closed Hamming ball of radius r ě 0 centered at y P ℝd is the set

Bd0ry, rs :“
␣

x P ℝd ˇ
ˇ ρ0px, yq ď r

(

and the Hamming sphere of radius r1 P ℕ centered at y P ℝd is the set

𝕊d
0ry, r1s :“

␣

x P ℝd ˇ
ˇ ρ0px, yq “ r1

(

.

It does not make sense to talk about the Hamming sphere of radius r1 ą d in ℝd, although the
closed balls do not suffer from this issue with the definition. Note that Bd0ry, rs “ y ` Bd0r0, rs
and 𝕊d

0ry, r1s “ y ` 𝕊d
0r0, r1s.

Let us look at some examples of the Hamming ball and sphere.
˝ If d “ 1, then

– B1
0r0, 0s “ t0u, B1

0r0, rs “ ℝ for all r ě 1;
– 𝕊1

0r0, 0s “ t0u, 𝕊1
0r0, 1s “ ℝ1 ∖ t0u.

˝ If d “ 2, then
– B2

0r0, 0s “ t0u, for every r P r1, 2r we haveB2
0r0, rs “ tpx1, x2q P ℝ2|x1 “ 0 or x2 “ 0u,

i.e., the union of the two axes, and B2
0r0, rs “ ℝ2 for each r ě 2;

– 𝕊2
0r0, 0s “ t0u, 𝕊2

0r0, 1s “ B2
0r0, 1s ∖ t0u, 𝕊2

0r0, 2s “ ℝ2 ∖ B2
0r0, 1s.

˝ If d “ 3, then
– B3

0r0, 0s “ t0u, for every r P r1, 2r the set B3
0r0, rs is the union of the three axes, for each

r P r2, 3r the set B3
0r0, rs is the disjoint union of the pairs x1-x2, x1-x3, and x2-x3 of axes,

and B3
0r0, rs “ ℝ3 for every r ě 3;

– 𝕊3
0r0, 1s “ B3

0r0, 1s ∖ t0u, 𝕊3
0r0, 2s is the disjoint union of the x1-x2, x1-x3, and x2-x3

planes with the corresponding pairs of axes removed from them, 𝕊3
0r0, 3s is the set ℝ3

with the unions of the three x1-x2, x1-x3, and x2-x3 planes removed.

Appendix D. Nonsmooth Lagrange multiplier rule

Let d P ℕ˚. We recall two definitions central to nonsmooth calculus. Recall first that a
mapping f : ℝd ÝÑ ℝ is Lipschitz continuous of rank L near a given point x P ℝd if for
some ε ą 0 we have��f px1q ´ f px2q

�� ď L∥x1 ´ x2∥ for all x1, x2 P Bdpx, εq.

23See https://mathworld.wolfram.com/StirlingsApproximation.html for details.

https://mathworld.wolfram.com/StirlingsApproximation.html
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The generalized derivative of a Lipschitz continuous function f : ℝd ÝÑ ℝ in the direction
v P ℝd is

f ˝px; vq :“ lim sup
ℝdQyÑx

tÓ0

f py ` tvq ´ f pyq
t

.

The (Clarke) generalized gradient pBC f qpxq of f at x P ℝd is the unique compact convex sub-
set of the dual pℝdq‹ ofℝd (and canonically identified withℝd in view of the Riesz representation
theorem) whose support function is the generalized derivative f ˝px; ¨q. Accordingly,

ξ P pBC f qpxq ô f ˝px; vq ě xξ, vy for all v P ℝd,

f ˝px; vq “ max
ξPpBC f qpxq

xξ, vy for all v P ℝd.

Naturally, the generalized gradient is equal to the ordinary gradient at points of differentiability.
We denote the convex hull of a non-empty set S Ă ℝd by copSq.

The following theorem is essential to the computation of (Clarke) generalized gradients in
finite dimensions:

(D.1). Theorem ([Cla13, Theorem 10.27]). Let x P ℝd and let f : ℝd ÝÑ ℝ be a function
Lipschitz continuous near x. Let E be any subset of zero measure in ℝd, and let Ef denote the set of
points at which f is non-differentiable. Then

pBC f qpxq “ co
!

lim
nÑ`8

∇f pxnq

ˇ

ˇ

ˇ
xn R E Y Ef and xn ÝÝÝÝÑ

nÑ`8
x
)

.

We need the following basic nonsmooth Lagrange multiplier rule for equality constrained
optimization problems; it appears as [Cla13, Theorem 10.47] in the context of a minimization
problem.24

(D.2). Theorem. Let d, d1, d2 P ℕ˚. Consider the optimization problem
maximize

x
f pxq

subject to

$

’

&

’

%

gpxq “ 0,
hpxq ď 0,
x P ℝd,

where f : ℝd ÝÑ ℝ, g : ℝd ÝÑ ℝd1 , and h : ℝd ÝÑ ℝd2 are Lipschitz continuous maps.
Suppose that x› solves the preceding optimization problem. Then there exists a triplet pη, λ1, λ2q P

t0, 1u ˆ ℝd1

ˆ ℝd2 satisfying the nontriviality condition pη, λ1, λ2q ‰ p0, 0, 0q, the positivity
and complementary slackness conditions

λ2 ě 0, xλ2, hpx›qy “ 0,
and the stationarity condition

0 P BC
`

η ¨ f ` xλ1, gy ` xλ2, hy
˘

px›q.

The number η P t0, 1u is the abnormal multiplier; it attains the value 0 when the constraints
of the optimization problem in (D.2) are so tight that the cost does not play any role in the
determination of the optimizers.

24Since this result deals with first-order necessary conditions, it does not matter whether a maximization is involved
or a minimization.
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set of uncertainties, 32
shell, 2, 19, 20
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stationarity condition, 14, 36
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