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Abstract

We exhibit a new Pontryagin maximum principle for discrete time
optimal control problems under constraints on the frequency spec-
trum of the optimal control trajectories in addition to constraints on
the states and the controls actions pointwise in time.

Optimal control under constrained spectrum

Consider a discrete-time control-affine system described by:
xt+1 = ft(xt) + gt(xt) ut for t = 0, . . . ,T − 1, (1)

where the states xt ∈ Rd and the controls ut ∈ Rm, and ( ft)T−1
t=0 and

(gt)
T−1
t=0 are two families of smooth maps. In the context of (1), consider

the following constrained optimal control problem:

minimize
(ut)

T−1
t=0

T−1∑
t=0

ct(xt, ut)

subject to


controlled dynamics (1),
xt ∈ St for t = 0, . . . ,T,
ut ∈ Ut for t = 0, . . . ,T − 1,
F(u0, . . . , uT−1) = 0,

(P)

with the following data:

1 T ∈ N∗ is fixed;
2 Rd ×Rm 3 (ξ, µ) 7−→ ct(ξ, µ) ∈ R is smooth, convex in µ for each t;
3 St is a subset of Rd and Ut is a convex, compact and non-empty
subset of Rm;

4 F : RmT −→ R` is a given linear map on the control trajectory
u0, . . . , uT−1 for some ` ∈ N∗, defined as:

F(u0, . . . , uT−1) =

T−1∑
t=0

F̃tut = 0 for
(
F̃t

)T−1
t=0 ⊂ R`×mT . (F)

Remark. Band-pass constraints on the discrete Fourier transform (i.e.,
frequency spectrum,) of the control trajectories are expressible in the
form (F). Standard versions of the Pontryagin maximum principle
cater to constraints on the control actions, but do not include
constraints on the control frequencies — the latter cannot be expressed
as constraints on the control actions pointwise in time. The
Hamiltonian in the new Pontryagin maximum principle has an
additional term compared to the standard versions, and it plays a rôle
in the Hamiltonian maximization condition.

Theorem

Let
(
(x∗t )

T
t=0, (u

∗
t )

T−1
t=0

)
be an optimal state-action trajectory for (P) with

F as defined in (F). Define the Hamiltonian
R ×R` ×Rd × N ×Rd ×Rm 3 (ν, ϑ, ζ, s, ξ, µ) 7−→

Hν,ϑ(ζ, s, ξ, µ) B 〈ζ, fs(ξ) + gs(ξ) µ〉 − νcs(ξ, µ) −
〈
ϑ, F̃sµ

〉
∈ R.

(2)
Then there exist

•a trajectory
(
ηf

t
)T−1

t=0 ⊂ Rd,
•a sequence

(
ηx

t
)T

t=0 ⊂ Rd, and
•a pair

(
ηC, η̂u) ∈ R ×R`,

satisfying the following conditions:

1 non-negativity condition
ηC ∈

{
0, 1

}
;

2 non-triviality condition
the adjoint trajectory

(
ηf

t
)T−1

t=0 and the pair
(
ηC, η̂u) do not

simultaneously vanish;

3 state and adjoint system dynamics

x∗t+1 =
∂

∂ζ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t
)

for t = 0, . . . ,T − 1,

ηf
t−1 =

∂

∂ξ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t
)
− ηx

t for t = 1, . . . ,T − 1,

where ηx
t ∈ R

d lies in the dual cone of a tent qx
t (x
∗
t ) of St at x∗t ;

4 transversality conditions
∂

∂ξ
HηC,η̂u (

ηf
0, 0, x∗0, u

∗
0
)
− ηx

0 = 0 and ηf
T−1 = −η

x
T,

where ηx
0 lies in the dual cone of a tent qx

t (x
∗
0) of S0 at x∗0 and η

x
T lies

in the dual cone of a tent qx
t (x
∗
T) of ST at x∗T;

5 Hamiltonian maximization condition
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t
)
= max

µ∈Ut
HηC,η̂u (

ηf
t, t, x∗t , µ

)
for t = 0, . . . ,T − 1;

6 frequency constraints
F
(
u∗0, . . . , u

∗
T−1

)
= 0.

Remark. The assertions (1) - (6) together constitute a well-defined
two point boundary value problem with 4 giving the entire set of
boundary conditions. Newton-like methods may be employed to solve
this (algebraic) two point boundary value problem.

LQ optimal control problems

Define a linear time-invariant incarnation of (1):
xt+1 = Axt + But, t = 0, . . . ,T − 1, (3)

where the states xt ∈ Rd, the control actions ut ∈ Rm, and the system
matrix A ∈ Rd×d and the control matrix B ∈ Rm×m are known.
Consider the following finite horizon LQ problem for the system (3)
with constraints on the frequency spectrum of the control trajectory,
where the goal is to reach a specified final state x̂ ∈ Rd from a given
initial state x0 = x.

minimize
(u)T−1

t=0

T−1∑
t=0

(
1
2
〈xt,Qxt〉 +

1
2
〈ut, Rut〉

)
subject to


controlled dynamics (3),∑T−1

t=0 F̃tut = 0,
x0 = x, xT = x̂.

(LQ)

Applying our Theorem to get first order necessary conditions of opti-
mality of

(
(x∗t )

T
t=0, (u

∗
t )

T−1
t=0

)
, we arrive at the following conditions:

There exist ηC ∈
{
0, 1

}
, η̂u ∈ R`, a sequence of adjoint variables(

ηf
t
)T−1

t=0 , such that η
C, η̂u, and

(
ηf

t
)T−1

t=0 are not simultaneously zero, and

x∗t+1 = Ax∗t + Bu∗t for t = 0, . . . ,T − 1,
ηf

t−1 = A>ηf
t − η

CQx∗t for t = 1, . . . ,T − 1,
ηCRu∗t = B>ηf

t − F̃>t η̂u for t = 0, . . . ,T − 1,∑T−1
t=0 F̃tu∗t = 0,

x∗0 = x, and x∗T = x̂.

The adjoint variables are free at the boundary, i.e., ηf
0 and ηf

T−1 are
arbitrary.
Remark. The optimal state-action trajectories

(
(x∗t )

T
t=0, (u

∗
t )

T−1
t=0

)
that

satisfies the assertions of Theorem 1 with ηC = 1 are called normal and
the ones with ηC = 0 are called abnormal extremals.

Corollary

Consider the problem (LQ). If the underlying system (A, B) in (3) is
controllable, T > d, and the number of frequency constraints ` satisfies
`+d > mT , then all the optimal state-action trajectories are abnormal.
Conversely, all the optimal state-action trajectories are normal when
the reachability matrix

(
B . . . AT−1B

)
and the frequency constraints

matrix FD−1 have independent rows. a

aFor more details, see https://arxiv.org/abs/1708.04419
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