
Constrained trajectory synthesis via quasi-interpolation

Siddhartha Ganguly1, Nakul Randad2, Debasish Chatterjee1, Ravi Banavar1

Abstract— In this article we introduce QuITO — Quasi-
Interpolation based Trajectory Optimization, a direct multiple
shooting algorithm to solve a class of constrained nonlinear
minimum energy optimal control problems. This technique is
based on the theory of approximate approximations – a quasi-
interpolation scheme. We parameterize the control trajectory
using the quasi-interpolation formula, and we discretize the
optimal control problem using the collocation points on a
uniform cardinal grid, thereby transcribing the optimal control
problem (OCP) into a nonlinear program (NLP). Several
examples are provided to show the numerical fidelity of the
algorithm.

Index Terms— optimal control, quasi-interpolation, direct
multile shooting, collocation

I. INTRODUCTION

Optimal control theory provides engineers with a powerful
tool for synthesising control in a constrained environment,
with the option to impose constraints at the synthesis stage
while optimizing an appropriate cost function. One of the
challenging tasks in this context is to design efficient numeri-
cal algorithms to solve constrained optimal control problems.
Typically there are two school of thoughts:

• The Pontryagin Maximum Principle (PMP) [14] gives
first-order necessary optimality conditions for optimal
control problems and induces the so-called numerical
indirect method which consists of determining the op-
timal control trajectory by numerically solving a two-
point-boundary-value-problem (TPBVP), see [2].

• Direct methods view the optimal control problem
through the glasses of approximation and optimization
and discretizes the control problem itself, transcribing it
into a nonlinear program. This whole class of trajectory
synthesis methods goes by the name of collocation [13].

Using the first approach, i.e., the classical PMP, it is often
difficult to deal with a general class of problems involving,
for example, state constraints or mixed state-control con-
straints. On the other hand, most of these difficulties gets
eliminated when we deal with OCPs via the direct method
while compromising accuracy in certain cases [24]. The
feature here is the underlying approximation scheme, which
reduces the burden of searching admissible trajectories in
some function space to some finite dimensional vector space,
via a nonlinear program. It is evident that the ensuing error
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estimate that the approximation scheme can provide is of
utmost importance.

Perhaps one of the most well known class of direct meth-
ods for solving constrained optimal control problems are the
pseudospectral or the orthogonal collocation methods [22].
Broadly, there are three types of collocation points namely
– Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR) and
Legendre-Gauss-Lobato (LGL), one can choose to discretize
the problem [8], with the employment of a viable approxi-
mation scheme at the level of only control or both control
and state variables. Pseudospectral collocation methods em-
ploy global/local orthogonal polynomials to approximate the
states/control. The system dynamics and the constraints are
enforced at the collocation points. These algorithms essen-
tially rely on Hilbert space methods [6], and the convergence
results of the interpolation techniques are L2-based. There
are a few recent results [10], [11] that provide local L∞

convergence results for a class of optimal control problems.
While the L2-based interpolation methods provides ac-

curate approximations, they suffer from certain defects,
for example Gibbs’s phenomenon. We are interested in an
alternative L∞ approximation procedure. To this end, we
establish a direct multiple shooting method with control
parameterization via approximate approximations (see §III-A
for details, a book-length treatment can be found in [19]),
which provides approximation guarantees in the L∞-norm.

Our contributions

The primary contributions of this article are:
1) We establish a direct multiple shooting method (we will

call it QuITO — Quasi-Interpolation based Trajectory
Optimization) leveraging control parameterization by
means of a quasi-interpolation scheme,

2) We record several benchmark numerical examples to
show the effectiveness of the QuITO algorithm.

Our purpose herein is to serve a source of preliminary ideas
which will be further developed in our subsequent works.

II. PROBLEM STATEMENT

Let us consider a nonlinear time-varying controlled system
on a fixed time interval [t0, tf ], t0 < tf , modeled by the
ordinary differential equation

ẋ(t) = f
(
x(t)

)
+G

(
x(t)

)
u(t) for a.e. t ∈ [t0, tf ], (II.1)

with the following data:
((II.1)-a) x(t) ∈ Rd is the vector of states and
((II.1)-b) u(t) ∈ Rm is the control action at time t.
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Assume that the pair of boundary values
(
x(t0), x(tf)

)
lie

in a given closed subset of S ⊂ Rd × Rd, i.e.,(
x(t0), x(tf)

)
∈ S ⊂ Rd × Rd, (II.2)

and that the control input u is constrained to take values in
a given nonempty compact, convex subset U ⊂ Rm, i.e.,

u ∈ U := {u ∈ L∞ |u(t) ∈ U for a.e t ∈ [t0, tf ]} (II.3)

A control u is feasible if it is measurable,1 satisfies the
control constraint (II.3), and the corresponding solution x(·)
of (II.1) satisfies (II.2). Over these feasible controls, we
consider the following minimization problem:

minimize
u

J(x, u) :=
∫ tf

t0

∥u(t)∥2 dt

subject to


dynamics (II.1),
hj
(
x(t)

)
≤ 0 for all t ∈ [t0, tf ], j = 1, . . . , r0,

u ∈ U ,(
x(t0), x(tf)

)
∈ S ⊂ Rd × Rd,

(OCP)
with the following data:
((OCP)-a) the maps ξ 7→ f

(
ξ
)
∈ Rd, and ξ 7→ G

(
ξ
)
∈

Rd×m are locally Lipschitz continuous.
((OCP)-b) For j = 1, . . . , r0 the function ξ 7→ hj

(
ξ
)
∈ R is

continuously differentiable with locally Lipschitz
continuous gradient and the map u 7→ hj ◦ x(·)
is convex for every j = 1, . . . , r0.

The map [t0, tf ] ∋ t 7→
(
x(t), u(t)

)
∈ Rd×U is an admis-

sible state-action trajectory if it satisfies all the constraints
of the (OCP), and J(x, u) is finite. Moreover, an admissible
state-action trajectory (x∗, u∗) is a local minimizer of (OCP)
provided that for some ϵ > 0 and for every admissible state-
action trajectory (x, u) satisfying ∥x − x∗∥∞ ≤ ϵ, we have
J(x∗, u∗) ≤ J(x, u).

Remark (II.4): (On the existence and regularity of (OCP))
Optimizer regularity is important for various reasons, one
of which is the choice of a particular approximation or
discretization scheme. Prior knowledge of the function space
where the optimizer belongs can greatly influence this
choice; for example one may employ an approximation
scheme where higher order error estimates and convergence
rates can be obtained. The rigorous study of optimizer regu-
larity has attracted a lot of attention since the work [9]. After
this, a sequence of optimizer regularity results were reported
in [4], [5], [23], for various state and control constrained
optimal processes. In particular, we lift a result from [7]
which asserts Lipschitz continuity of the optimal control
under hypotheses ((OCP)-a)-((OCP)-b) and an additional
hypothesis (see Section 3, data (H1)-(H4) in [7]).

Theorem (II.5) ( [7, Theorem 3.1]): Let (x∗, u∗) be a
normal extremal (see [7, Definition 2.1]) for the problem
(OCP). Assume (H1)-(H4), then u∗ is Lipschitz continuous.

1For us the word ‘measurability’ always refers to Lebesgue measurability,
and ‘a.e.’ will refer to almost everywhere relative to the Lebesgue measure.

III. MAIN RESULTS

The main focus of this section is the the control parame-
terized direct multiple shooting algorithm QuITO, which is
our primary result. Before doing so, we introduce briefly the
theory of approximate approximations.

A. Approximate approximations

Approximation of multivariable functions via quasi-
interpolation with data sites (hj)j∈Z on uniform or square
cardinal grid has been studied extensively in the past.
Approximate approximations as an approximate quasi-
interpolation scheme was introduced in the early 1990s in
[16]. The special feature of this procedure is that it is quite
accurate without being convergent in a rigorous sense, i.e.,
the approximation error does not converge to zero as the
mesh size say h tends to zero.

We now provide relevant results on approximate approx-
imations pertinent to our work. For simplicity, we restrict
ourselves in the realm of data distributions with regular
centers [17]. Let u : R −→ R be the object of approximation,
i.e., the approximand. The idea behind the quasi-interpolation
scheme is to represent the approximand u as the sum of
scaled and shifted basis functions. For a fixed step size h > 0,
given a shape parameter D ∈]0,+∞[, and every x ∈ R the
approximants have the general form

Mh,Du(x) :=
1

D1/2

∑
m∈Z

u(xm)ψ

(
x− xm

h
√
D

)
, (III.6)

where the data points/sites xm := hm are specified on a
cardinal square grid. The generating function ψ(·) belongs
to a certain class of nice functions with sufficient smoothness
attributes. The parameter D influences the width and thereby
the decay rate of the generating functions (consider the
Gaussian functions, where D is the variance). The linear
combination of dilated shifts of ψ forms an approximate
partition of unity i.e.

D−1/2
∑
m∈Z

ψ
(
(ξ −m)/

√
D
)
≈ 1.

Notice that this is a point of departure from the plain quasi-
interpolants, where the generating function forms an exact
partition of unity.

Theorem (III.7): [17] Consider a function u ∈ Cr+1(R),
the set of r + 1 times continuously differentiable functions
and data sites {xm : m ∈ Z} ⊂ R. Let the continuous
generating function ψ satisfies the moment condition of order
r:
∫
R ψ(y) dy = 1,

∫
R y

αψ(y) dy = 0, for all α, 1 ≤ [α] <
r; where α is a multi-index, [α] is the length of the multi-
index, along with the decay condition: |ψ(x)| ≤ cK

(
1 +

|x|
)−K/2

, x ∈ R, where cK is some constant, K > r + 2.
Then

∥u−Mh,Du∥∞ = O
(
hr+1

)
+∆0(ψ, h,D), (III.8)

where the term ∆0(ψ, h,D) is called the saturation error.
Remark (III.9): We can also derive an L∞ estimate in

a similar fashion when the function u belongs to class
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of Lipschitz continuous functions. This estimate is useful
from the convergence viewpoint as we are working with
Lipschitz continuous optimal controls (Theorem (II.5)), see
[19, Chapter 2] for more details.
We now summarize the key features of approximate approx-
imations:

• On the right hand side of the L∞ error estimate (III.8),
the first term converges to zero as h goes to zero. The
second term ∆0(ψ, h,D) is called the saturation error,
which can be reduced to an arbitrary small number by
controlling the shape parameter D.

• For any u in an appropriate class of functions Mh,Du
approximates u arbitrarily well upto some manageable
saturation error. This is known as pseudo convergence.

• An upper bound on h and a lower bound on D can be
obtained (in some cases precise formulas can be given,
see [18]), see [19, Chapter 2] and [19, Chapter 3, Table
1] for precise error estimates, and relevant data.

• The approximant Mh,Du of u in (III.6) employs an
infinite sum to perform the approximation. However, in
applications, the summation can be truncated, since the
generating functions are chosen to decay fast, see [19,
Chapter 2, Section 2.3.2] for more details.

Our approximation engine will be the following one-
dimensional summation:

Mh,Du(x) :=
1√
D

∑
|m|<+∞

u(mh)ψ

(
x−mh

h
√
D

)
,

(III.10)
where the generating function ψ needs to satisfy the moment
and the decay conditions. One of the most common choice
is the Gaussian kernel ψG(x) := e−x2/D/

√
πD . Finally, we

remark that there are several other choices (see §IV-B) we
have at our disposal for the generating function, which can
provide higher order error estimates; we refer readers to [18,
Lemma 2.6].

B. QuITO: The direct multiple shooting method

We now provide the main result of this article – a direct
multiple shooting method to solve the constrained optimal
control problem (OCP) numerically. Fix a small number h >
0, and choose as basis functions the elements of the set

Xh :=
{
e−(x−mh)2/Dh2∣∣hm ∈ Ω,m ∈ Z

}
,

where Ω is an open domain containing [t0, tf ] the time
horizon. The approximating functions are linear combination
of scaled and shifted Gaussian kernels ψG centered at the
grid points {mh ∈ Ω}. Note that the discretization points
are
(
mih

)
i∈F, where F ⊂ Ω is a finite set. These discretiza-

tion points are uniformly spaced throughout the grid. We
approximate the control trajectory t 7→ u(t) using the quasi-
interpolant (III.10) in the form of an approximant uA of the
control u defined by:

uA(t) ≈ Mh,Du(t) :=
1√
D

∑
i∈ F

u
(
mih

)
ψ

(
t−mih

h
√
D

)
.

Note that
(
u(mih)

)
i∈F are the unknown coefficients corre-

sponding to the the control approximation. We solve the ODE
(II.1) in each time interval for t ∈ [mih,mi+1h], starting
with a guess initial value ηi

ẋi
(
t, ηi, u(mih)

)
= f

(
xi(t, ηi, u(mih))

)
+G

(
xi(t, ηi, u(mih))

)
u(mih)

xi
(
mih, ηi, u(mih)

)
= ηi for all t ∈ [mih,mi+1h], i ∈ F.

The problem of joining trajectories together at each ηi which
is ensured by the continuity/defect condition

ηi+1 = xi
(
mi+1h, ηi, u(mih)

)
, (III.11)

is left to the off-the-shelf nonlinear programming (NLP)
solver. Thus the continuous time optimal control problem
(OCP) can be transcribed into the following NLP

minimize(
u(mih)

)
i∈F

Jd

subject to



x0 = η0,

condition (III.11),
hj
(
mih, ηi

)
≤ 0, i ∈ F,

u(mih) ∈ U,(
η0, ηN

)
∈ S ⊂ Rd × Rd,

(NLP1)

where Jd is the discrete quadrature approximation of the
cost in (OCP) and N is the final point of the finite set F.

IV. NUMERICAL EXPERIMENTS

This section contains a library of numerical experiments
showcasing the effectiveness of the QuITO scheme.

A. Bryson-Denham Problem

Consider the well-studied benchmark Bryson-Denham
system [3]:

minimize
u

∫ 1

0

u(t)2 dt

subject to



(
ẋ1(t)

ẋ2(t)

)
=

(
0 1

0 0

)(
x1(t)

x2(t)

)
+

(
0

1

)
u(t),

x1(0) = 0 and x2(0) = 1,

x1(1) = 0 and x2(1) = −1,

x1(t) ≤ 1
9 for all t ∈ [0, 1],

(IV.12)
the analytical solution of the problem (IV.12) can be found in
[3]. The problem is challenging from a numerical viewpoint
because of the presence of the path constraint x(t) ≤ 1/9.
For the numerical simulations we parameterize the control
using the expression (III.10) with the basis function ψG, and
we fix the step size h = 0.02 and, D = 5. The numerical
solution obtained by using the QuITO algorithm is given
in Fig.1 along with the analytic solution for reference. The
closeness of the QuITO solution with the analytical solution
is noteworthy.
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Fig. 1: Time evolution of state and action trajectories with
active path constraint on t 7→ x1(t).

B. Robot Motion Planning

Consider the problem of planning an optimal path for a
robot [20] in an environment with obstacles, given by

minimize
u

∫ tf

0

(
u1(t)

2 + u2(t)
2
)
dt

subject to



ẋ1(t) = x3(t), ẋ2(t) = x4(t),

ẋ3(t) = u1(t), ẋ4(t) = u2(t),(
x(0), x(tf)) ∈ S,
0 ≤ x1(t) ≤ 80, 0 ≤ x2(t) ≤ 80,

|x3(t)| ≤ 10, |x4(t)| ≤ 10,

802 ≥
(
x1(t)− 40

)2
+
(
x2(t)− 20

)2 ≥ 102,

802 ≥
(
x1(t)− 45

)2
+
(
x2(t)− 65

)2 ≥ 102,

with S := (40 5)⊤ × (55 70)⊤ and tf = 10. Fig.2 shows
forbidden circular discs that the robot must avoid during
its motion. For the numerical simulations we parameterize
the control using the expression (III.10) with the following
higher order Laguerre polynomial based basis function

t 7→ η6(t) :=
1√
π

(
15

8
− 5

2
|t|2 + 1

2
|t|4
)
e−|t|2 , (IV.13)

which gives an approximation of order O(h6) [18]. The
associated quasi-interpolant is given by

M6
h,Du(t) :=

1

π
√
D

∑
i∈F

u(mih)·(
15

8
− 5

2

|t−mih|2

h2D
+

1

2

|t−mih|4

h4D2

)
e−

|t−mih|2

Dh2 .

(IV.14)

We choose h = 0.2, D = D(h) := 2M | log h|/π2 (see [18])
depending on h and M which is fixed to be 3. The numerical
solution obtained by employing the QuITO algorithm is
given in Fig.2. The challenging aspect of this problem stems
from the presence of multiple path constraints that are active
over the course of the robots trajectory.

0 20 40 60 80

0

10

20

30

40

50

60

70

80

Fig. 2: Optimal trajectory of the robot for the obstacle
avoidance maneuver with active circular path constraints.

C. Rayleigh problem
Although the setting of this article is for minimum energy

problems we provide some numerical results involving lin-
ear quadratic costs in control and state variables, to show
that a result more general may be possible and will be
reported in subsequent articles. We consider the Rayleigh
problem [1] with (RP-a) control and (RP-b) mixed state-
control constraints. This problem is known to be numerically
stiff [15] and the solution exhibits a limit cycle with the
perturbation parameter p = 0.14. Another layer of difficulty
comes from the mixed state-control constraint, which is
known to be burdensome [12] to deal with, specially from
trajectory optimization viewpoint. Consider the following
optimal control problem

minimize
u

∫ tf

0

(
u(t)2 + x1(t)

2
)
dt

subject to



ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)
(
1.4− px2(t)

2
)

+4u(t),(
x1(0) x2(0)

)⊤
= (−5 − 5)⊤,(

x1(tf) x2(tf)
)⊤

= (0 0)⊤,{
(RP-a) |u(t)| ≤ 1,

(RP-b) u(t) + x1(t)
6 ≤ 0.

Fix tf = 4.5 and p = 0.14. We parameterize the control
using the expression (III.10) with the basis function η6 in
§IV-B, and we fix the step size h = 0.05 and D = 5. The
numerical solution obtained using QuITO with only control
constraint (RP-a) is given in Fig.3 and the results with only
mixed state-control constraints (RP-b) is given in Fig.4 . We
compare our results with the ICLOCS2 solver [21] with LGR
pseudospectral collocation and no mesh refinements. See [1],
[15] for a clinical comparison with the QuITO solution.

D. Van der Pol Oscillator
We consider the following state constrained optimal con-

trol problem which is known to be difficult numerically
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Fig. 3: Time evolution of state and action trajectories with
active control constraints (RP-a).
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Fig. 4: Time evolution of state and action trajectories with
active mixed constraints (RP-b).

because of the nonlinearity of the Van der Pol dynamics,
possibility of singular solutions [15], and the presence of
state constraints. Consider the following OCP [1]:

minimize
u

∫ tf

0

(
⟨x(t), Qx(t)⟩+ ⟨u(t), Ru(t)⟩

)
dt

subject to


ẋ1(t) = x2(t),

ẋ2(t) =
(
1− x21(t)

)
x2(t)− x1(t) + u(t),(

x1(0) x2(0)
)⊤

= (1 0)⊤, −x2(t) + p ≤ 0,

where Q is a 2 × 2-identity matrix, and the control weight
is chosen to be R = 1, and fix tf = 5. We parameterize the
control using the expression (III.10) with the basis function
ψG and we choose p = −0.4, h = 0.05, and D = 5.
The numerical solution obtained by employing the QuITO
scheme is given below in Fig.5.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

-0.4

-0.3
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-0.1

0

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

0

0.5

1

Fig. 5: Time evolution of state and action trajectories with
active state constraints

V. CONCLUSION AND DISCUSSION

This article introduced QuITO – a direct trajectory opti-
mization algorithm based on approximate approximation to
address certain class of optimal control problems. We provide
a library of numerical examples to show the proficiency
of the proposed algorithm. Our aim here is not to deal
with very general classes of problems, but to report our
preliminary investigations, through showcasing the efficiency
of the proposed algorithm via several linear and nonlinear
moderately high dimensional constrained OCPs. We do not
tackle with nonsmooth OCPs in this article, e.g, minimum
time, and fuel problems; these cases needs specific detailed
attention from the numerical side – for example mesh
refinement; our findings on these topics will be reported
elsewhere. Our future work involves proving a convergence
result, exploring the aforementioned directions and develop
a commercial trajectory optimization toolbox based on the
QuITO algorithm.
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