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Abstract—This paper develops a novel Continuous-Time Accel-
erated Proximal Point Algorithm (CAPPA) for `1-minimization
problems with provable fixed-time convergence guarantees. The
problem of `1-minimization appears in several contexts such
as Sparse Recovery (SR) in Compressed Sensing (CS) theory
and sparse linear and logistic regressions in machine learning.
Most existing algorithms for solving `1-minimization problems
are discrete-time, inefficient and require exhaustive computer-
guided iterations. CAPPA alleviates this problem on two fronts:
(a) it encompasses a continuous-time algorithm that can be
implemented using analog circuits; (b) it outperforms Locally
Competitive Algorithm (LCA) and finite-time LCA (recently
developed continuous-time dynamical systems for solving SR
problems) by exhibiting provable fixed-time convergence to
optimal solution. Consequently, CAPPA is better suited for fast
and efficient handling of SR problems.

Index Terms—Compressed Sensing, Lyapunov methods, Opti-
mization methods, Signal reconstruction

I. INTRODUCTION

Sparse Recovery (SR) or reconstruction of sparse signals
from highly-undersampled linear measurements is fundamen-
tal to the theory of Compressed Sensing (CS) [1]. Unlike tradi-
tional sampling methods, coded measurements in CS require
fewer resources in terms of computational time and storage
by leveraging simultaneous acquisition and compression of a
signal. As a result, SR has applications in several domains,
including signal processing [1], [2], medical imaging [3], and
machine learning [4]. The major bottleneck in CS is the com-
putational effort required for reconstruction of original signal
from its compressed elements. For an observed measurement
y ∈ RM corrupted by some noise e ∈ RM , SR aims to find
a concise representation of a signal x ∈ RN specified as:

y = Φx + e,

where Φ ∈ RM×N is the measurement matrix (with M � N ),
and the original signal x is s-sparse, i.e., has no more than
s nonzero entries. SR therefore involves an under-determined
linear inverse problem, and a unique recovery is guaranteed
under certain properties on Φ. The problem of SR can be cast
as an equivalent convex optimization problem with sparsity-
inducing `1-penalty term given as [5]:

arg min
x∈RN

1

2
‖y −Φx‖22 + λ‖x‖1, (P)

where λ > 0 is a balancing parameter. The solution x∗ to (P)
is referred as the critical point. The critical point is unique
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for an s-sparse signal x, provided the measurement matrix Φ
satisfies the Restricted Isometry Property (RIP) with order of
2s [6]. While the relaxed optimization problem (P) is convex
and computationally tractable, real time SR or implementation
on low-power embedded platforms is impractical with most
iterative solvers [7]–[10]. While specialized convex solvers are
efficient at handling large scale SR problems, they lack strong
convergence guarantees about their running time [7], [8].
Subsequently, iterative thresholding schemes were proposed
with provable convergence guarantees on number of iterations
required to achieve specified accuracy [9]–[11]; however, at the
risk of computationally expensive iterations. Recently, several
continuous-time algorithms for SR in dynamic environments
have been developed [12]–[15]. Besides being implementable
on low-power embedded systems, continuous-time algorithms
provide novel insights into designing equivalent discrete-time
algorithms with accelerated convergence behavior [16], [17].

One such class of continuous-time algorithms, referred to
as the Locally Competitive Algorithm (LCA) was proposed in
[12]. LCA consists of coupled nonlinear differential equations
with a solution trajectory that converges to the minimizer
of (P) in steady state. Besides its guaranteed exponential
convergence as shown in [18], LCA was also implemented
on low-power embedded systems using simple operational
amplifiers [19]. LCA was later modified to guarantee finite-
time convergence to the critical point in [13]. Finite-time
convergence of LCA is related to the notion of finite-time
stability of continuous-time dynamical systems introduced in
[20]. In contrast to exponential stability, finite-time stability is
a concept that guarantees convergence of solutions in a finite
amount of time. However, while the convergence time is finite,
it depends upon the initial conditions and can grow unbounded
as the initial conditions go farther away from the equilibrium
point. In contrast, recent work has introduced the stronger
notion of Fixed-Time Stability (FxTS) [21] where the time
of convergence is uniformly bounded for all initial conditions.

In this paper, we present Continuous-Time Accelerated
Proximal Point Algorithm (CAPPA) for solving SR problem in
a fixed-time. Tools from Fixed-Time Stability theory are lever-
aged to demonstrate global fixed-time convergence of CAPPA
to the critical point. Thus, CAPPA exhibits faster convergence
as compared to finite-time LCA in [13] since the time of
convergence is uniformly bounded for all initial conditions.
To this end, the result presented in Lemma 4 translate the
RIP condition into an equivalent Lipschitz-gradient and strong
convexity condition on the smooth part of the convex objective
in (P). Our primary results are presented in Theorem 1, where
we show that the underlying proximal map is a contraction
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around the critical point, and Theorem 2, in which the fixed-
time convergence of CAPPA is shown.

II. PRELIMINARIESA. Notation

We use R to denote the set of real numbers, C1 to denote
the space of continuously differentiable functions, ‖ · ‖ to
denote the Euclidean norm, unless otherwise specified, and 〈·〉
to denote the standard inner product on RN . The p−norm is
denoted by ‖·‖p. While Lemma 2 holds for any proper, closed,
lower semi-continuous (lsc) convex functions f, g with f ∈ C1,
we use f(x) and g(x) to denote the functions 1

2‖y −Φx‖2
and λ‖x‖1, respectively. Here, x ∈ RN , y ∈ RM represent
the s-sparse signal and the measured signal, respectively, and
Φ ∈ RM×N denotes the measurement matrix.

B. Fixed-Time Stability

Consider the system:

ẋ(t) = h(x(t)), (1)

where x ∈ RN , h : RN → RN and h(0) = 0. Assume
that the solution of (1) exists and is unique. As defined in
[20], the origin is said to be a finite-time stable equilibrium
of (1) if it is Lyapunov stable and finite-time convergent, i.e.,
for all x(0) ∈ D \ {0}, where D is some open neighborhood
of the origin, limt→T (x(0)) x(t) = 0, where T (x(0)) < ∞.
The authors in [21] presented the following result for FxTS
where the time of convergence does not depend upon the initial
condition, i.e., the settling-time function T does not depend
on the initial condition x(0).
Lemma 1 ([21]). Suppose there exists a positive definite
continuously differentiable function V : Rd → R for system
(1) such that V̇ (x(t)) ≤ −aV (x(t))p − bV (x(t))q with
a, b > 0, 0 < p < 1 and q > 1. Then, the origin of (1)
is FxTS, i.e., x(t) = 0 for all t ≥ T , where the settling time
T satisfies T ≤ 1

a(1−p) + 1
b(q−1) .

C. Mathematical preliminaries

We need the following lemmas for proving our main result.

Lemma 2 ([22, Ch.2 Proposition 2.2]). Let f : RN → R, f ∈
C1 be a proper, closed convex function, and g : RN → R ∪
{∞} be another proper, closed, lsc convex function (possibly
non-smooth). Then, x∗ ∈ RN is a minimizer of the sum f(·)+
g(·) if and only if

〈∇f(x∗),x− x∗〉+ g(x)− g(x∗) ≥ 0, ∀x ∈ RN . (2)

Lemma 3 ([23]). For every c ∈ (0, 1), there exists ε =
log(c)

log( 1−c
1+c )

>0 such that
(

1−c
1+c

)1−α
> c, ∀α ∈ (1− ε, 1)

⋃
(1,∞).

D. Restricted Isometry Property

Unique solution of (P) is guaranteed under some assump-
tions on the matrix Φ. One such assumption is the Restricted
Isometry Property (RIP) [6], defined as follows.
Definition 1. Matrix Φ ∈ RM×N is said to satisfy the order-
s RIP for some postive integer s with constant δs > 0 if for
every s-sparse vector x ∈ RN , the following holds true

(1− δs) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs) ‖x‖22.

Using the notion of RIP, we can state the following result,
which shows Lipschitz continuity and strong-monotonicity of
F = ∇f , where f = 1

2‖y − Φx‖22 (latter is equivalent to
strong-convexity of f ).
Lemma 4. Let F : RN → RN be defined as gradient of
1
2‖y −Φx‖22, given as

F(·) := (ΦᵀΦ) (·)−Φᵀy, (3)

for any given y ∈ RM , where Φ satisfies order 2s RIP with
δ2s > 0 for some s ∈ Z+. Then
(i) F is Lipschitz continuous on the space of s-sparse vectors

in RN with modulus ‖Φ‖2
√

(1 + δ2s);
(ii) For any s-sparse x1,x2 ∈ RN

〈F(x1)− F(x2),x1 − x2〉 ≥ (1− δ2s)‖(x1 − x2‖22.

Proof. From the definition of F, it follows that for any s-
sparse x1,x2 ∈ RN ,

F(x1)− F(x2) = ΦT (Φ(x1 − x2))

⇒ ‖F(x1)− F(x2)‖2 ≤ ‖Φ‖2‖Φ(x1 − x2)‖2, (4)

where the last inequality follows from the submultiplicative
inequality of matrix-vector product and the fact that 2-norm
of a matrix is same as that of its transpose. Since x1,x2 are
s-sparse, x1−x2 is at most 2s-sparse. Thus, from (4) and the
right-hand side of the RIP, it follows that
‖F(x1)− F(x2)‖2 ≤ ‖Φ‖2

√
(1 + δ2s)‖(x1 − x2)‖2,

i.e., F is Lipschitz with modulus ‖Φ‖2
√

(1 + δ2s). Again
from the definition of the operator F, it follows that
〈F(x1)− F(x2),x1 − x2〉 = ‖Φ(x1 − x2)‖22
〈F(x1)− F(x2),x1 − x2〉 ≥ (1− δ2s)‖x1 − x2‖22, (5)

where the last inequality follows directly from RIP. �

III. MAIN RESULTS

We now present the fixed-time stable dynamical system
designed for CAPPA to find the solution of (P) using a
proximal flow approach. It is shown that the solution of the
modified Proximal Dynamical System (PDS) converges to its
equilibrium point (which is also the solution of (P)) within a
fixed time.

A. Modified Proximal Dynamical System

The PDS for the problem (P) is given as

ẋ = −(x− proxηg (x− η F(x))), (6)

where F is defined as in (3). It has been shown that under
certain conditions on F, the solution x∗ of (6) exponentially
converges to the optimal solution of (P) (see, e.g., [24]).
Using this, we define a modification of this PDS so that the
convergence can be guaranteed within a fixed time. Consider
the modified PDS:

ẋ = −κ1
x− z(x)

‖x− z(x)‖1−α1
2

− κ2
x− z(x)

‖x− z(x)‖1−α2
2

,

z(x) = proxηg (x− η F(x))

= sign(x− η F(x)) ·max (|x− η F(x)| − ηλ, 0)

(7)

where η > 0, α1 ∈ (0, 1), α2 > 1, κ1, κ2 > 0 and g(x) =
λ‖x‖1. Here F(·) is as defined in (3), and denotes the gradient
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∇f of the function f(x) = 1
2‖y−Φx‖22 for a fixed y, while

the operators |·|,max and sign are applied element-wise. Note
that the equilibrium point of (7) and the solution of (P) are
the same (see [25, Proposition 12.26]) and the fact that for
any equilibrium point x̄ of (7), x̄ = z(x̄). We assume that Φ
satisfies order 2s RIP with δ2s > 0.

B. Convergence analysis of CAPPA

Next, we prove an intermediate result on the contraction
property of proximal flows.
Theorem 1. For every η ∈

(
0, 2(1−δ2s)
‖Φ‖22(1+δ2s)

)
, there exists c ∈

(0, 1) such that
‖z(x)− x∗‖2 ≤ c‖x− x∗‖2,

for all s-sparse x ∈ RN , where x∗ ∈ RN is a solution of (P),
z(x) := proxηg (x− η F(x)) and F is as defined in (3).

Proof. From [25, Proposition 12.26], for any given x ∈ RN

〈z(x)− (x− η F(x), q − z(x)〉 ≥ η (g(z(x))− g(q)) (8)

for all q ∈ RN . In particular, for q = x∗ and after making
some re-arrangements, (8) reads:

〈z(x)− x,x∗ − z(x)〉 ≥ η (g(z(x))− g(x∗))

+ η F(x)ᵀ (z(x)− x∗) (9)

Furthermore, from Lemma 2, it follows that
η (g(z(x))− g(x∗)) ≥ η F(x∗)ᵀ(x∗ − z(x)). (10)

Using (9) and (10), we obtain that
〈x− z(x),x∗ − z(x)〉 ≤ η 〈F(x∗)− F(x), z(x)− x∗〉,

which can be rewritten as
〈x−z(x),x∗−z(x)〉 ≤η 〈F(x∗)−F(z(x),z(x)−x∗〉

+ η 〈F(z(x))−F(x),z(x)−x∗〉. (11)

From Lemma 4, the first term in the right hand side of (11)
can be upper bounded as follows:
η 〈F(x∗)−F(z(x), z(x)−x∗〉 ≤ −η(1− δ2s)‖x∗−z(x)‖2.

(12)
Using the Cauchy–Schwarz inequality and again from
Lemma 4, the second term in the right hand side of (11) can
be upper bounded as follows:
η 〈F(z(x))−F(x), z(x)−x∗〉 ≤ λL‖x−z(x)‖‖x∗−z(x)‖,

(13)
where L :=‖Φ‖2

√
1+δ2s. Using Cauchy’s inequality, the right

hand side of (13) can further be upper bounded as follows:

ηL‖x−z(x)‖‖x∗−z(x)‖≤ 1

2
‖x−z(x)‖2+

(ηL)2

2
‖x∗−z(x)‖2

and so, (13) results into:

η 〈F(z(x))−F(x),z(x)−x∗〉 ≤ (ηL)2

2
‖x∗−z(x)‖2

+
1

2
‖x−z(x)‖2. (14)

Using (12) and (14), the right hand side of (11) can be upper
bounded as follows:

〈x−z(x),x∗−z(x)〉 ≤ − η µ ‖x∗−z(x)‖2 +
1

2
‖x−z(x)‖2

+
η2L2

2
‖x∗ − z(x)‖2, (15)

where µ := (1− δ2s). Furthermore, the left hand side of (15)
can be rewritten as:

〈x− z(x),x∗ − z(x)〉 =
1

2
‖x− z(x)‖2 +

1

2
‖x∗ − z(x)‖2

− 1

2
‖x− x∗‖2. (16)

Using (15) and (16), we obtain that
‖x− z(x)‖2 + ‖x∗ − z(x)‖2 − ‖x− x∗‖2 ≤ ‖x− z(x)‖2

+η2L2‖x∗ − z(x)‖2 − 2ηµ‖x∗ − z(x)‖2,

which simplifies to
‖z(x)− x∗‖2 ≤ c̄‖x− x∗‖2, (17)

with c̄ = 1/(1 + 2ηµ− η2L2). Note that c̄ ∈ (0, 1), since by
assumption, η ∈

(
0, 2µL2

)
and so, (17) can be rewritten as

‖z(x)− x∗‖ ≤ c‖x− x∗‖,

where c :=
√
c̄ ∈ (0, 1). �

We are now ready to present our main result.
Theorem 2. For every η ∈

(
0, 2(1−δ2s)
‖Φ‖22(1+δ2s)

)
, there exists ε >

0 such that the solution x∗ ∈ RN of (P) is a globally fixed-
time stable equilibrium point of (7) for any α1 ∈ (1− ε, 1)∩
(0, 1) and α2 > 1.

Proof. Consider the candidate Lyapunov function V : RN →
R defined as follows:

V (x) :=
1

2
‖x− x∗‖2,

where x∗ is the unique equilibrium point of the proposed (7). It
is clear that V is positive definite and radially unbounded. Note
that x∗ is also the unique minimizer of the sum f(·) + g(·).
The time-derivative of V along the solution of (7), starting
from any s-sparse x(0) ∈ RN \ {x∗}, reads:

V̇ = −κ1
〈x− x∗,x− z(x)〉
‖x− z(x)‖1−α1

− κ2
〈x− x∗,x− z(x)〉
‖x− z(x)‖1−α2

= −κ1
〈x− x∗,x− x∗〉
‖x− z(x)‖1−α1

− κ2
〈x− x∗,x− x∗〉
‖x− z(x)‖1−α2

− κ1
〈x∗ − z(x),x− x∗〉
‖x− z(x)‖1−α1

− κ2
〈x∗ − z(x),x− x∗〉
‖x− z(x)‖1−α2

. (18)

Using the Cauchy–Schwarz inequality, (18) translates to:

V̇ ≤ −
(
κ1

‖x− x∗‖2

‖x− z(x)‖1−α1
+ κ2

‖x− x∗‖2

‖x− z(x)‖1−α2

)
+

(
κ1
‖x− x∗‖‖x∗ − z(x)‖
‖x− z(x)‖1−α1

+ κ2
‖x− x∗‖‖x∗ − z(x)‖
‖x− z(x)‖1−α2

)
.

(19)

From Theorem 1, for η∈
(
0, 2(1−δ2s)/(‖Φ‖2(1+δ2s))

)
,

‖x− z(x)‖ ≤ ‖x− x∗‖+ ‖x∗ − z(x)‖ ≤ (1 + c)‖x− x∗‖, (20)

holds for all s-sparse x ∈ RN , where c ∈ (0, 1). Similarly,
‖x− z(x)‖ ≥ (1− c)‖x− x∗‖, (21)

also holds for all x ∈ RN . Using (20), (21) and Theorem 1,
the right hand side of (19) can further be upper bounded as

V̇ ≤−
(

κ1‖x− x∗‖2

((1+c)‖x− x∗‖)1−α1
+

κ2‖x− x∗‖2

((1+c)‖x− x∗‖)1−α2

)
+

(
cκ1‖x− x∗‖2

((1−c)‖x− x∗‖)1−α1
+

cκ2‖x− x∗‖2

((1−c)‖x− x∗‖)1−α2

)
= −s1‖x− x∗‖1+α1 − s2‖x− x∗‖1+α2 , (22)

Authorized licensed use limited to: University of Illinois. Downloaded on October 02,2020 at 04:45:47 UTC from IEEE Xplore.  Restrictions apply. 



1070-9908 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LSP.2020.3027490, IEEE Signal
Processing Letters

IEEE SIGNAL PROCESSING LETTERS 4

0 20 40 60 80 100 120 140

10
0

10
2

5 10 15 20 25 30 35
18

19

20

21

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

CAPPA

LCA

FT

(a) (b) (c)

Fig. 1. Comparison of the proposed CAPPA, LCA and and the finite-time LCA for N = 400,M = 200, s = 20 (a) Error ‖x(t)− xfmin‖
with time for various initial conditions. (b) Reconstruction SNR for various values of ASNR. (c) Wall-clock time for various ASNR.
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Fig. 2. Comparative analysis of the proposed CAPPA, LCA and and the finite-time LCA for varying sizes of sparse vector and measurement
matrix (a) RSNR for various values of N . (b) Wall-clock time for various values of N . (c) RSNR for various values of the ratio N

M
.

with s1, s2 chosen accordingly. From Lemma 3, it follows that
there exists ε(c)= log(c)

log( 1−c
1+c )

>0 such that (22) results into:

V̇ ≤ −
(
a1(α1)V γ1(α1) + a2(α2)V γ2(α2)

)
,

with a1(α1) := 2γ1(α1)q1(α1)> 0 for any α1 ∈ (1−ε(c), 1)∩
(0, 1), where γ1(α1) := 1+α1

2 ∈ (0.5, 1) and a2(α2) :=
2γ2(α2)q2(α2)>0 for any α2>1, where γ2(α2) := 1+α2

2 > 1.
The proof can be concluded using Lemma 1. �

IV. NUMERICAL EXPERIMENT

We now present numerical experiments performed using
MATLAB R2018a on an Intel Xeon E3-1245 desktop (3.4
GHz). Euler discretization with constant step-size dt = 10−4

is used. The matrix Φ ∈ RM×N is drawn from a normal
Gaussian distribution (and normalized to make every column
with unit norm), and the noise e is chosen as additive white
Gaussian noise of varying signal-to-noise ratio (SNR). The
parameters for CAPPA are chosen as a1 = 0.1, a2 = 1.1, k1 =
k2 = 50, λ = 0.05, η = 0.4. We compare the performance of
the proposed scheme with the nominal LCA scheme as well
as the finite-time variant of the LCA scheme in [13]. The
parameters for LCA and finite-time LCA (denoted as FT in
the figures), are same as in [13]. We use the MATLAB function
fmicon to compute an estimate of x∗ (denoted as xfmin)
for the sake of comparison, since the true value of x can never
be recovered in the presence of noise e.

Fig. 1a shows the evolution of the error vector ‖x(t) −
xfmin‖ with time for various initial conditions for the pro-
posed CAPPA, the LCA and the FT methods for N =
400,M = 200, s = 20 [13]. It is clear that CAPPA converges
to the optimal solution within a fixed time irrespective of the
initial conditions, and has a faster convergence as compared
to LCA or FT.

CAPPA is also robust to measurement noise due to inherent
robustness properties of FxTS systems. This is captured in
Fig. 1b by plotting reconstructed signal-to-noise ratio (RSNR),
defined as RSNR(x) = −10 log10

(‖Φx∗−Φx‖
‖Φx∗‖

)
, averaged

over 100 trials, against varying levels of actual SNR (ASNR),
defined as ASNR= −10 log10

( ‖e‖
‖Φx∗‖

)
. The corresponding

run-times (in wall-clock time) for the three algorithms are
shown in Fig. 1c. It can be observed that CAPPA is not only
an order of magnitude faster than the LCA and FT methods,
the quality of reconstruction of the signal is also better.

We further evaluate CAPPA for large N . Figs. 2a and
2b depict the RSNRs and wall-clock times, respectively, for
various values of N with fixed ratios N

M = 2 and N
s .

CAPPA scales efficiently as N is increased in comparison to
the LCA and the FT methods, while still ensuring superior
RSNR as compared to the other two methods. The final set
of experiments explores performance of CAPPA for different
ratios of N

M for fixed values of ASNR= 20dB, N = 1024, and
M
s = 10, while M is varied. These numerical studies show

that CAPPA is capable of handling large values of N , as well
as large ratios of N

M while being able to reconstruct the signal
with better SNR in a reasonable computational time.

V. CONCLUSION AND FUTURE WORK

In this paper, we present CAPPA algorithm for addressing
the problem of Sparse Recovery under RIP condition on the
measurement matrix. The proposed algorithm exhibits fixed-
time convergence to the unique critical point of (P). Compared
to LCA (or its finite-time modification), CAPPA is shown to
achieve faster convergence in numerical experiment, both in
number of iterations, as well as in wall-clock time. It is shown
in [26] that discrete-time implementation of LCA resembles
the soft iterative thresholding methods for SR, which encour-
ages us to explore equivalent discrete-time versions of CAPPA.
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