
A Hierarchical Framework for Optimal and Scalable Process
Scheduling in Plant Operations

Ajit Umesh Deshpande Mayank Baranwal

Abstract— Process scheduling problems are often modeled as
mixed-integer nonlinear programs (MINLPs) with a large num-
ber of constraints. While meta-heuristics, such as the simulated
annealing (SA) algorithm or the genetic algorithm (GA) have
been extensively employed to obtain high-quality solutions to
MINLPs, their capabilities are limited by the large number
of combinatorial constraints and the time required to obtain
these solutions. In view of these limitations, this paper presents
a hierarchical approach that leverages the capabilities of the
satisfiability modulo theory (SMT) for constraint satisfaction
and the relative CPU-time competitiveness of the SA algorithm
in configuring meta-heuristics for optimal process scheduling
subjected to static and temporal constraints. The framework
has access to a high-fidelity simulator of the plant, but not the
mathematical model. Besides addressing the “hard” operational
constraints, our framework also accommodates for “soft” con-
straints, such as generating schedules that are contiguous and
avoid frequent switching between two operational modes.

I. INTRODUCTION

Optimal scheduling in process industries is of vital im-
portance given the competing nature of different activities
over time and extremely tight profit margins [1], [2], [3].
Interplay between physical (operational) and economic con-
straints further aggravate the complexity of such optimization
problems. The problem entails determining the most efficient
way to produce a set of products from the raw materials
given the input receiving rates, physical constraints involving
flow of materials in and out of a receiving/processing unit,
costs incurred for material flow and production, and quality-
dependent profit generation. Of course, it would be ideal to
produce only the highest quality products, however, process-
ing constraints require that only a fraction of total demand
may be of the highest quality, while the low-quality material
is produced simultaneously in order to avoid wastage.

Recent advances in mathematical modeling and rapidly
growing computational power has witnessed Mixed In-
teger Non-Linear Programming (MINLP) as one of the
most widely explored methods for process scheduling prob-
lems [4], [5]. Despite their flexibility, MINLP models are
computationally difficult to be solved exactly. This is par-
tially addressed by resorting to linear models and con-
sequently using state-of-the-art Mixed Integer Linear Pro-
gramming (MILP) solvers, or using meta-heuristics, such
as the simulated annealing (SA) algorithm [6], [7] and the

A. Deshpande is with the Department of Electrical & Computer Engi-
neering Engineering at the University ofCalifornia, San Diego, CA 92093:
deshpande.ajit@alumni.iitgn.ac.in.

M. Baranwal is with the Division of Data & Decision Sciences,
Tata Consultancy Services Research, Mumbai, 400607 India e-mail:
baranwal.mayank@tcs.com.

genetic algorithm (GA) [8], [9]. The vanilla SA algorithm
is incapable of handling a large number of constraints, since
the constraints need to be added as a penalty to the true
objective function. On the other hand, the GA algorithm
is inherently computationally extensive. Recently, a Rein-
forcement Learning (RL) framework [10] was developed to
determine optimal ship out policies for process scheduling.
While the inference with RL framework is extremely fast,
the RL agent needs to be trained every time the parameter
of the models change, thereby limiting the capability of the
machine-learning models.

In this paper, we aim to leverage the competitive advantage
of SA algorithm over other methods in producing solutions
at a much faster rate especially in situations involving larger
time horizon. While the temporal constraints still need to
be addressed by augmenting them to the true objective
function, the time-invariant constraints are handled using the
satisfiability modulo theory (SMT) solver. The SMT solvers
are extremely efficient at producing feasible solutions and
thus significantly narrow down the search space for the SA
algorithm in our proposed hierarchical framework. We keep
our focus restricted to workflow paths which are acyclic in
nature. We further consider exact nonlinear constraints and
costs incurred while determining a feasible solution. The
main task of the proposed hierarchical SA algorithm is to
suggest a work schedule for operating the manufacturing
units without violating any constraints while maximizing
the productivity of the entire manufacturing plant. We also
present a delivery schedule involving a nonlinear delivery
cost for the finished product using a greedy approach and
verify its correctness to ensure maximum profit. Additionally,
we take into consideration the idea of contiguous scheduling
of the machines since frequent switching is considered
detrimental to the machine performance over time.

II. PRIOR WORK

Process scheduling problems and their variants have
been extensively studied using constraint reformulation in
MILPs/MINLPs, such as the Reformulation Linearization
Technique (RLT) [11], or through meta-heuristics, such as
the SA algorithm [6], [7], the GA [8], [9] and more recently
the RL algorithm [10]. Our work is primarily based on the
plant model described in [10], which essentially concerns
with process scheduling in an oil refinery [12]. The motive of
the work in [12] is to maximize the utilization of the refinery
units subjected to different types of constraints, including but
not limited to resource constraints, constraints pertaining to

the time allowed between overhauling of a particular unit,
capacity constraints and contiguity constraints.

In this paper, we propose a hierarchical framework involv-
ing the SMT solver, the SA algorithm and a greedy ship out
heuristic to produce contiguous and feasible schedules for
maximizing the utilization (and the revenue thereof) of the
refinery units for the plant model described in [10]. The SA
algorithm [13] was initially formulated to tackle classical op-
timization problems such as the travelling salesman problem.
Various implementations of the SA algorithm have been de-
scribed in [14]. Extensive work on constrained optimization
using penalty in the SA algorithm has later been described
in [15]. The approach of combining the SMT solver with
the SA algorithm for Web Service Composition planning
has been proposed in [16]. Due to the competitive edge
of the SA algorithm in terms of its computational overhead,
the SA algorithm was extensively employed for scheduling
problems and its variants. The job shop scheduling problem,
which aims to minimize the time needed to complete a task
involving a set of jobs to be completed serially in the least
amount of time has been tackled using the SA algorithm
by [17]. The problem considered in this paper, on the other
hand, consists of an acyclic graph as the plant model but the
graph does have fairly complex connections amongst nodes
especially considering that the materials used have different
degree in terms of their quality. Moreover, it is required to
maximize the reward of production over a fixed time horizon.

III. PROBLEM FORMULATION AND PLANT MODEL FOR
SIMULATION

Fig. 1. Flow diagram of the plant.

The manufacturing plant model considered for the simu-
lation is shown in Figure 1. We aim to optimize the process
schedule for this simulation to maximize the total profit. This
model was also used in [10] for analysis of the simulation
results. The flow diagram consists of two receiving stations
R1 and R2. Raw materials of two different qualities are
received at these stations. The simulator consists of three
machines used for processing of these raw materials. M1
processes material from R1 and M2 from R2. The machine H
is a hybrid unit and can process a mixture of materials from
both R1 and R2. Raw materials processed by these machines
are stored at dispatch units D1, D2 and D3. The finished
products are shipped from the dispatch units according to

the shipping schedule with an objective to maximize the total
profit.

The flow quantities in the simulation model are updated
using dynamic mass-balance equations with each node (unit)
being described by a state corresponding to the amount of
material contained in that unit. We use {si[t]} to denote the
amount of material present at various nodes at any instant t,
whereas r1[t] and r2[t] depict the amount of material received
at the nodes R1 and R2, respectively, at the t th instant. Finally,
the ship out quantities at the t th instant are denoted by
d1[t],d2[t] and d3[t] corresponding to the units D1,D2 and D3,
respectively. For the receiving node R1, the update equation
at time instant t for the states in the simulation model is
given by:

s1[t] = s1[t −1]+ r1[t −1]−u1[t −1]−u3[t −1] (1)

The state-update equation for the receiving unit R2 can be
similarly obtained. For machine M1, and shipping node D1
the update equations are described in (2) and (3) respectively.

s3[t] = s3[t −1]+u1[t −1]−u5[t −1] (2)
s6[t] = s6[t −1]+u5[t −1]−d1[t −1] (3)

The state update equations for the remaining nodes can
also be derived using the principle of mass balance. The
remaining nodes in the simulation model will have the
following state update equations

s2[t] = s2[t −1]+ r2[t −1]−u2[t −1]−u4[t −1] (4)
s4[t] = s4[t −1]+u3[t −1]+u4[t −1]−u6[t −1] (5)

s7[t] = s7[t −1]+u6[t −1]−d2[t −1] (6)
s5[t] = s5[t −1]+u2[t −1]−u7[t −1] (7)
s8[t] = s8[t −1]+u7[t −1]−d3[t −1] (8)

A. Constraints and Production Costs

Each edge in the simulation model that connects two
different units represents transfer of materials through these
channels. Correspondingly, the edge weights {ui[t]} represent
whether the channel is active (1) or closed (0) at the t th

instant. The model is subjected to following operational
constraints:

• There cannot be a simultaneous inflow and outflow
from the machines, i.e., u1[t] · u5[t]= u2[t] · u7[t] =
max(u3[t],u4[t]) ·u6[t] = 0 at each time instant t.

• Each area or node can hold at most Smax number of
units at any instant. Any overflow from the edges or
nodes is considered as a loss to the units.

• Ship out quantities from each shipping node at any
instant is an integer belonging to the set {0,1, . . . ,dmax}
where dmax is the maximum holding constraint at an
instant in time. The integrality constraint is synonymous
with the fact that partially finished products are not
acceptable.

• To establish contiguity in the operation of the machines,
we force the edge values to be a certain value (0 or 1) for
a randomly generated duration of time before it switches
again. This helps in reducing the frequent switching of

machines which eventually contributes to the longevity
of the plant.

The costs incurred in the production are listed below
• Raw material cost of both high and low quality material
• Cost of running the machine and transferring the mate-

rial is a ·ui[t] for instant t and edge i.
• Shipping cost is non-linearly related to the number

of units shipped together. The nonlinear dependence
ensures that it is profitable for a plant to ship quantities
out in large batches. Let d[t] be the number of units
shipped together, the cost of shipping assumes the form

β0 +β1 ·
(

1− e−β2d[t]
)
, (9)

where β0,β1 and β2 are appropriate cost coefficients.
The revenue earned per unit is g1 for pure high quality
product, g3 for pure low quality product and g2 for any
mixture.

IV. PRELIMINARIES

A. Annealing Algorithm

Our approach is based on the SA algorithm, which was
essentially developed for modeling a thermodynamic pro-
cess. In an annealing algorithm, the temperature of a system
is gradually decreased from an initial temperature T0. In a
surrounding of decreasing temperatures starting from T0, the
system reaches equilibrium at an energy E at temperature T
with probability given by the Boltzmann distribution

P(E = k) =
1

Z(T)
exp

(
− k

kbT

)
, (10)

where Z(T) is a normalization function and kb is the Boltz-
mann constant. The algorithm proposed in [18] (also known
as the Metropolis algorithm) used the probabilistic distri-
bution to simulate attainment of equilibrium of atoms at a
temperature. In this algorithm, given the current energy state
E0, a random energy state E is chosen as: If E < E0, the
system moves to the new state. If, however, E ≥ E0, the new
state is still chosen with a probability proportional to

exp
{
−E −E0

kbT

}
. (11)

By repeating this procedure over multiple iterations, the
system reaches equilibrium. Later, [13] described a process
to further reduce the temperature each time the equilibrium
is attained at a particular temperature, and continue the
Metropolis algorithm at successively reduced temperatures
until the system reaches the lowest temperature. The algo-
rithm is referred to as the simulated annealing algorithm. The
rate at which the initial temperature is successively reduced
to lower temperatures is known as the annealing schedule.

B. General Implementation of Simulated Annealing

The simulated annealing algorithm can be implemented
for optimization of a large class of functions (possibly
discontinuous) using the following steps:

1) Initialize the temperature to T0 and the system to a
random state in the search space where the function
value is E0.

2) Select another point in the search space and evaluate
the value of the function. Let this value be E.

3) Compare the two function values and let E - E0 = ∆E.
4) Choose a random real number P in the range (0,1). If

P ≤ exp
(
−∆E

T

)
(where T is the current temperature),

move the system to the new state E.
5) Repeat steps 2, 3 and 4 until the system reaches a state

where the function value satisfies the constraints or the
termination criterion has reached.

C. Satisfiability Tests

The Boolean satisfiability problem (SAT) is used in our
work to map feasible regions of the process scheduling
problem to form a neighbourhood that is utilized by the SA
algorithm. Satisfiability tests are designed to accept Boolean
constraints in the conjunctive normal form and return all
the acceptable values of the variables as a solution set. This
solution set is generated using an exhaustive search method
or more efficient algorithms such as the Schöning’s random
walk. In our work, we use these satisfiability tests to evaluate
the search space for the SA algorithm.

V. PROPOSED HYBRID APPROACH

A. Constraint Modeling using SMT

Let M be the length of the planning horizon. Our objective
is to obtain an operation schedule and a shipping schedule
such that they do not violate any constraints and generate
as large a profit as possible. The operation schedule can be
fully explained using the set of arrays ui’s for each edge
in the model, whereas the shipping schedule is represented
using an array di for i ∈ {1,2,3} corresponding to each
shipping node. The primary constraints in the plant model are
simultaneous inflow/outflow constraints and the maximum
edge occupancy constraints. For instance, the constraint that
u1 and u5 cannot both be active (1) simultaneously is a
simultaneous inflow/outflow constraint. This constraint is
formulated as:

u1[i] ·u5[i] = 0, ∀i ∈ 1,2, . . . ,M. (12)

The constraint that the total material transported through the
edges u1 and u2 should not exceed the material received at
r1 is a maximum edge occupancy constraint. The maximum
edge occupancy constraint is formulated as:

M

∑
t=1

(r1[t]− (u1[t]+u3[t]))≥ 0. (13)

The maximum edge occupancy constraints corresponding to
other nodes can be modeled in a similar manner. Simulta-
neous inflow/outflow constraints remain consistent for any
input sequence and threshold limits, since they are only
dependent on the plant design. Hence, we can reduce the
search space of the SA algorithm by evaluating a set of
possible ui’s apriori which do not violate the simultaneous
inflow/outflow constraints.

We determine these possible ui’s using the SMT
solver [19]. These possible ui’s would be the search space
out of which we will be choosing different points as
neighbours during the implementation of the SA algorithm.
Subsequently, we describe an objective function that the SA
algorithm will minimize. This function is defined as

Objective =−Reward+EdgeCost+ShippingCost+Penalty
(14)

This is expressed mathematically as follows

P =
M

∑
t=1

[
− (g3 ·d1[t]+g2 ·d2[t]+g1 ·d3[t])

+
7

∑
k=1

uk[t]+
3

∑
k=1

(
β0 +β1(1− e−β2dk[t]

)]
+ y · count

where y is the penalty for each constraint violation and
“count” is the number of constraint violations using a par-
ticular set of ui for that iteration.

We use the penalty as a hyperparameter for tuning and
proceed to find the value of the penalty that gives a minimum
value of the objective function. We also keep a track of
the number of constraint violations during each iteration to
confirm that a feasible solution is attainable for some value of
y. For evaluation of the objective in equation (6), the shipping
policy is described in the next section.

B. Heuristic for Optimal Shipout

The sequences u5, u6 and u7 represent the number of
processed units reaching the nodes D1, D2 and D3, respec-
tively. Each shipping unit is subjected to a maximum holding
constraint of dmax units, while it is profitable to ship products
out in large batches due to the exponential nature of the
reward function. Hence, we resort to a greedy approach
for determining the optimal ship out policy. The greedy
approach also ensures that the SA algorithm is concerned
with optimizing just the ui’s while the sequences d1, d2 and
d3 get fixed accordingly. The greedy ship out policy for the
plant model can be described as stated below:

• For each shipping node, keep a count of the number of
units produced after each time instant.

• As soon as the total units reaches dmax for any node
at time instant k, set di[k] = dmax for that particular
shipping node i. The default value for di[j] is 0 for
all time instants j unless it is specifically set using the
policy.

• At the end of the planning horizon, if the number of
units stored at a shipping unit is nonzero, the units are
shipped all at once at the end of the horizon.

In order to verify that our greedy policy for ship out
is indeed optimal and yields the minimum shipping cost
for a given sequence of ui’s, we compare it with the the
Genetic Algorithm in Section VI. It is observed that the
batch-sizes of shipped out quantities are the same using both
the greedy approach, as well as the GA algorithm, though the
time instants at which these batches are shipped may vary.
Moreover, since the shipping cost in (9) is time-invariant, it

Fig. 2. A sample sequence for ui with contiguous scheduling.

can be concluded that the greedy policy of shipping is indeed
optimal.

C. Designing Contiguous Schedule

For the purpose of contiguous scheduling of the machines
and to reduce their switching frequency, we restrict the
number of switching instants to at most four for each ui.
Consequently, each ui spanning over a time-horizon of length
M is fragmented into contiguous segments of lengths L1, L2,
L3, L4 and L5, such that (a) there would be no switching
of operations during a contiguous interval spanned by {Lk},
and (b) the continuous segments sum up to the length of the
planning horizon, i.e.,

L1 +L2 +L3 +L4 +L5 = M. (15)

We use a random generator to generate {Lk} with sum of
elements equal to M. Next, we choose a feasible point in
the search space suggested by the SMT solver and repeat
it over a contiguous segment of length L1. This process is
repeated until the sequence of ui’s over all Lk’s, 1 ≤ k ≤ 5
gets fixed. The process of contiguous scheduling is illustrated
in Figure 2. The above fragmentation scheme results in a
feasible solution with a fairly contiguous nature which is then
iteratively optimized using the SA algorithm. The overall
algorithm is described in Algorithm 1.

VI. RESULTS

We now benchmark the proposed SMT+SA approach
against the vanilla SA algorithm, the reinforcement
learning algorithm, and the surrogate optimization
(surrogateopt) framework in MATLAB for solving
general MINLPs. All our algorithms are implemented on
an Intel i7 − 7700HQ @ 2.80GHz machine. We use the
receiving schedule and simulation model plant parameters,
as suggested in [10]. The receiving schedule is designed
to operate the plant for 20 days. Hence, the length of the
receiving unit arrays at both the nodes R1 and R2 is 20.
Moreover, dmax and Smax are set to 5. The cost coefficients
are chosen as g1 = 1.8, g2 = 1.2, g3 = 1, β0 = 1, β1 = 0.5
and β2 = 1, respectively. The receiving schedules of the
two receiving stations are shown in Figures 3a and 3b. We
assume, with no loss of generality, that the node R1 receives
the low quality material, while R2 receives the high quality
raw material.

The search space for the SA algorithm is established using
the SMT solver. For the constraints specified in Section III-
A, the SMT solver produces 72 distinct feasible points of the
form (u1,u2, . . . ,u7), where each ui is a 0 or 1, as opposed to
128 (27) possible combinations. Besides narrowing down the

(a) (b) (c)
Fig. 3. Receiving schedule at nodes (a) R1 and (b) R2. Greedy shipout policy at node D1 (c).

Algorithm 1: SA for Process Scheduling
Data: Receiving schedule R, Selling price of

produced units, Maximum inventory dmax and
holding capacity Smax

• Initialize: the starting temperature T0, iter and α .
• Use SMT solver for hard constraints to determine

the neighbourhood of possible solutions N .
• Select a random point from N and evaluate the

initial objective function value.
while iteration ≤ iter do

• Select another point in N .
• Evaluate the objective value P for this point

if P ≥ old objective then
Change optimal point S to the new point.

else
• Evaluate the probability p = exp

(
−∆E

T

)
,

where ∆E is the difference in objective
• Choose a random real n between 0 and 1.

if n ≥ p then
Change the optimal point S to the new
point

else
Remain with the old point as the optimal
point S

T = T0 −αT0
iteration = iteration + 1

Determine the greedy ship out policy for the optimal
point S

search space, the SMT solver also benefits the SA algorithm
by making it explore the space of only feasible solutions.
After tuning the coefficient for the penalty term in the SA
objective, the proposed algorithm achieves the best reward
of 28.6 with zero constraint violations. In comparison, the
reward obtained in [10] is around 29, however, the RL
algorithm in [10] does not account for contiguous operation
of machines. We further compare the greedy ship out policy
with the optimum shipping policy obtained using the GA
in order to minimize the shipping costs for fixed {ui}’s.
The shipping schedules for both the algorithms are shown in
Figure 3c for the nodes D1. The accumulation of reward over

Fig. 4. Accumulation of reward over time.

time is plotted in Figure 4. We also compared our approach
with the vanilla SA algorithm (without SMT reduction).
After suitable tuning of the cost function coefficients, the
vanilla SA algorithm resulted in a reward of 24.8, however,
at the expense of discontiguous schedules and nearly 1.7x
increase in runtime. The increase in runtime is attributed
to the fact that the vanilla SA algorithm does not benefit
from working with the otherwise reduced search space
generated by the SMT solver. Figures 5a and 5b represent
the schedules generated by the vanilla SA algorithm and the
SMT+SA (ours). It can be seen that our approach produces
contiguous schedule for smooth operation of machines. In-
terestingly, the surrogate optimization based MINLP solver
surrogateopt could not return a feasible solution, let
alone a sub-optimal solution, despite being executed for more
than 5k epochs. The results are summarized in Table I.

A shipping batch distribution of 2 and 5 is suggested by
both the algorithms. Our algorithm suggests a batch of 5 to
be shipped at time instant 11 while the genetic algorithm
suggests the same at time instant 20. Likewise, the batch of
2 is shipped at instants 20 and 16 for the two algorithms.
Since the shipping cost is time-invariant, we can conclude
that the shipping policy is the same according to both the
algorithms. In a similar way, we can observe the shipping
schedules from node D2 and D3. For both these shipping
nodes, the batches suggested for shipping are the same by
both the algorithms.

To exhibit the effect of contiguity on machine operations,
we compare the machine schedules for a receiving schedule

(a) (b) (c)
Fig. 5. Machine operation for 20 days generated by (a) vanilla SA: Discontiguous, (b) SMT+SA: Contiguous. (c) Contiguous operation for 50 days.

TABLE I
COMPARISON OF SEVERAL APPROACHES

Method Run-time Cost Contiguous

Simulated Annealing 165.10s 24.8 No
Reinforcement Learning Unknown 29 No

SA+SMT (Ours) 96.34s 28.6 Yes
surrogateopt Infeasible Infeasible Infeasible

lasting 50 time instants. The machine schedules with and
without contiguous scheduling are shown in Figures 5b and
5c. For comparison, the reward with contiguous scheduling
is 112.2 and without contiguous scheduling is 124.8. The
number of switches overall in the plant pipelines are 4 with
contiguous scheduling but increases to 27 without contiguous
scheduling. The difference in the two rewards is around
12.5. Both contiguous and non-contiguous solutions can
be utilized according to our need. The advantage of using
the proposed SMT+SA framework is that we can obtain
solutions for both scenarios without having to compromise
on the computational advantage of the SA algorithm.

VII. CONCLUSION

The hierarchical SA algorithm used in this paper is shown
to be effective for optimizing process scheduling, especially
with problems involving multiple nonlinear constraints. The
technique involved in this work uses a SMT solver to satisfy
the time-invariant constraints which are fixed for a particular
plant design. The dynamic constraints are handled directly
by the SA algorithm. The proposed approach, through its
inherent construct, also results in contiguous operation of
the machines and thus, avoids incessant switching. The
proposed algorithm is able to nearly achieve the benchmark
solution provided by the RL algorithm despite the additional
constraint of generating a contiguous machine schedule. In
future, we aim to extend this approach to a broader class of
combinatorial optimization problems.

REFERENCES

[1] C. Vassiliadis and E. Pistikopoulos, “Maintenance scheduling and
process optimization under uncertainty,” Computers & Chemical En-
gineering, vol. 25, no. 2-3, pp. 217–236, 2001.

[2] A. Legarretaetxebarria, M. Quartulli, I. Olaizola, and M. Serrano,
“Optimal scheduling of manufacturing processes across multiple
production lines by polynomial optimization and bagged bounded
binary knapsack,” International Journal on Interactive Design and
Manufacturing (IJIDeM), vol. 11, no. 1, pp. 83–91, 2017.

[3] G. P. Georgiadis, A. P. Elekidis, and M. C. Georgiadis, “Optimization-
based scheduling for the process industries: from theory to real-life
industrial applications,” Processes, vol. 7, no. 7, p. 438, 2019.

[4] N. Sahinidis and I. E. Grossmann, “Minlp model for cyclic multiprod-
uct scheduling on continuous parallel lines,” Computers & chemical
engineering, vol. 15, no. 2, pp. 85–103, 1991.

[5] C. A. Floudas and X. Lin, “Mixed integer linear programming in
process scheduling: Modeling, algorithms, and applications,” Annals
of Operations Research, vol. 139, no. 1, pp. 131–162, 2005.

[6] M. DiNatale and J. A. Stankovic, “Applicability of simulated annealing
methods to real-time scheduling and jitter control,” in Proceedings
16th IEEE Real-Time Systems Symposium. IEEE, 1995, pp. 190–
199.

[7] C. Gallo and V. Capozzi, “A simulated annealing algorithm for
scheduling problems,” Journal of Applied Mathematics and Physics,
vol. 7, no. 11, pp. 2579–2594, 2019.

[8] P.-C. Wang and W. Korfhage, “Process scheduling using genetic
algorithms,” in Proceedings. Seventh IEEE Symposium on Parallel and
Distributed Processing. IEEE, 1995, pp. 638–641.

[9] I. A. Chaudhry and M. Usman, “Integrated process planning and
scheduling using genetic algorithms,” Tehnički Vjesnik–Technical
Gazette, vol. 24, no. 5, pp. 1401–1409, 2017.

[10] S. Wagle and A. A. Paranjape, “Use of simulation-aided reinforcement
learning for optimal scheduling of operations in industrial plants,” in
2020 Winter Simulation Conference (WSC). IEEE, 2020, pp. 572–
583.

[11] H. D. Sherali and W. P. Adams, “A reformulation-linearization tech-
nique (rlt) for semi-infinite and convex programs under mixed 0-1 and
general discrete restrictions,” Discrete Applied Mathematics, vol. 157,
no. 6, pp. 1319–1333, 2009.

[12] T. M. Alkhamis and J. Yellen, “Refinery units maintenance
scheduling using integer programming,” Applied Mathematical
Modelling, vol. 19, no. 9, pp. 543–549, 1995. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0307904X9500032F

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[Online]. Available: https://science.sciencemag.org/content/220/4598/
671

[14] S. P. Brooks and B. J. Morgan, “Optimization using simulated
annealing,” Journal of the Royal Statistical Society: Series D (The
Statistician), vol. 44, no. 2, pp. 241–257, 1995.

[15] B. W. Wah, Y. Chen, and T. Wang, “Simulated annealing with asymp-
totic convergence for nonlinear constrained optimization,” Journal of
Global Optimization, vol. 39, no. 1, pp. 1–37, 2007.

[16] J. Skaruz, A. Niewiadomski, and W. Penczek, “Combining smt
and simulated annealing into a hybrid planning method,” Studia
Informatica. System and information technology, vol. 19, no. 1-2, p.
43–48, May 2019. [Online]. Available: https://czasopisma.uph.edu.pl/
studiainformatica/article/view/231

[17] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, “Job shop
scheduling by simulated annealing,” Oper. Res., vol. 40, pp. 113–125,
1992.

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[19] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

https://www.sciencedirect.com/science/article/pii/0307904X9500032F
https://science.sciencemag.org/content/220/4598/671
https://science.sciencemag.org/content/220/4598/671
https://czasopisma.uph.edu.pl/studiainformatica/article/view/231
https://czasopisma.uph.edu.pl/studiainformatica/article/view/231

	Introduction
	Prior Work
	Problem Formulation and Plant Model for Simulation
	Constraints and Production Costs

	Preliminaries
	Annealing Algorithm
	General Implementation of Simulated Annealing
	Satisfiability Tests

	Proposed Hybrid Approach
	Constraint Modeling using SMT
	Heuristic for Optimal Shipout
	Designing Contiguous Schedule

	Results
	Conclusion
	References

