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Abstract— This study develops a fixed-time convergent saddle
point dynamical system for solving min-max problems under
a relaxation of standard convexity-concavity assumption. In
particular, it is shown that by leveraging the dynamical systems
viewpoint of an optimization algorithm, accelerated conver-
gence to a saddle point can be obtained. Instead of requiring the
objective function to be strongly-convex–strongly-concave (as
necessitated for accelerated convergence of several saddle-point
algorithms), uniform fixed-time convergence is guaranteed for
functions satisfying only the two-sided Polyak-Łojasiewicz (PL)
inequality. A large number of practical problems, including
the robust least squares estimation, are known to satisfy
the two-sided PL inequality. The proposed method achieves
arbitrarily fast convergence compared to any other state-of-
the-art method with linear or even super-linear convergence,
as also corroborated in numerical case studies.

I. INTRODUCTION

In this paper, we study the problem of solving an opti-
mization problem of the form

min
x

max
y

F (x, y), (1)

where F is not necessarily convex in x and/or concave in
y. As discussed in [1], these problems appear in several
important applications, such as zero-sum games [2], network
optimization [3] and various domains of machine learning
(ML) including adversarial learning [1], [4] and fair ML
[5], to name a few. Most algorithms to solve such min-
max problems are designed and analyzed in the discrete-
time domain via iterative methods. However, in recent few
years, the study of continuous-time optimization (through
dynamical systems) methods has emerged as a viable alter-
native for studying optimization problems, see e.g., [6]. In
particular, such min-max problems are solved using saddle-
point dynamics (SPD). The continuous-time perspective of
optimization problems provides simple and elegant proof
techniques for the convergence of solutions to the equilib-
rium points using Lyapunov stability theory [7].

It is worth noticing that while there is much work on
continuous-time optimization, most of it addresses asymp-
totic or exponential convergence of the solutions to the
optimal point, i.e., convergence as time tends to infinity; for
an overview, see [6], [8]. Furthermore, the strong or strict
convexity-concavity of the objective function is a standard
assumption for exponential stability in min-max problems.
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In [6], the authors discuss the conditions under which the
SPD exhibits global asymptotic convergence. In [9], [10],
the authors show global exponential stability of the gradient-
based method for primal-dual gradient dynamics under a
strong convexity-concavity assumption. For convex optimiza-
tion (minimization) problems, as shown in [11], the condition
can be relaxed by assuming that the objective function
satisfies the Polyak-Łojasiewicz inequality (PL inequality),
i.e., the objective function is gradient dominated. The authors
in [12] (see also [13]) extend the notion of PL inequality for
min-max functions by introducing two-sided PL inequality,
which is a relaxation of convexity-concavity assumption
on the objective function. They study the problem in the
discrete-time domain and show the linear rate of convergence
(equivalent of exponential convergence in continuous time).

More recently, faster notions of stability of dynamical
systems, such as finite-time stability (see [14]) and fixed-time
stability (FxTS, see [15]) have become popular in designing
methods of solving optimization problems with an acceler-
ated convergence rate. Our prior efforts in this direction have
led to development of fixed-time convergent optimization
algorithms for various optimization problems [7], [16], [17].
This study shows that fixed-time convergence of SPD can
still be guaranteed without requiring the objective function
to be strongly-convex–strongly-concave. In particular, we
study the min-max problem under the relaxed two-sided
PL inequality and design modified SPD with fixed-time
convergence to the saddle point (i.e., the solution of the min-
max problem). To the best of the authors’ knowledge, this
is the first work on a fixed-time stable dynamical systems-
based algorithm for solving min-max problems under this
relaxed assumption. Moreover, the stronger requirement for
Lipschitzness [12], [13] of the objective function is further
relaxed to functions with bounded mixed-derivatives. Thus,
the proposed work extends naturally to a larger class of min-
max problems, while guaranteeing fastest uniform conver-
gence to the saddle point.

II. PROBLEM FORMULATION AND PRELIMINARIES

Notation: The set of reals is denoted by R. The Euclidean
norm of x ∈ Rn is denote by ∥x∥, and its transpose, by
x⊺. For a given function F : Rn × Rm → R, F ∗ denotes
the min-max value of the objective function and (x∗, y∗)
denotes the saddle point, i.e., F (x∗, y∗) = F ∗. The notation
f ∈ Ck(U, V ) is used for a function f : U → V , U ⊆
Rn, V ⊆ Rm which is k−times continuously differentiable.
For a multivariate function F ∈ C2(Rn × Rm,R), the



partial derivatives are denoted as ∇xF (x, y) ≜ ∂F
∂x (x, y) and

∇x,yF (x, y) ≜ ∂2F
∂x∂y (x, y), where x ∈ Rn, y ∈ Rm.

In this paper, min-max problems are considered that can
be formulated as saddle-point problem for a given F : Rn×
Rm → R. Formally, this can be stated as

min
x∈Rn

max
y∈Rm

F (x, y). (2)

A point (x∗, y∗) is called as local saddle-point of F (as
well as local optimal solution of (2)), if there exist open
neighborhoods Ux ⊂ Rn and Uy ⊂ Rm of x∗ and y∗,
respectively, such that for all (x, y) ∈ Ux × Uy , one has

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗). (3)

The point (x∗, y∗) is global saddle-point if Ux = Rn and
Uy = Rm. The main problem considered in this paper is as
follows.

Problem 1. Given a function F and a user-defined time 0 <
T < ∞, design a dynamical system-based algorithm to solve
(2) such that the equilibrium point of the dynamical system is
a solution (x∗, y∗) of the problem (2) and the trajectories of
the dynamical system reach (x∗, y∗) within the user-defined
time T for each initial condition (x(0), y(0)) ∈ Rn × Rm.

First, we provide an overview of stability theory of dy-
namical systems that are used later in our analysis. Consider
the system

ẋ = h(x), (4)

where x ∈ Rn, h : Rn → Rn and h(0) = 0. Assume that
the solution to (4) exists, is unique, and continuous for any
x(0) ∈ Rn, for all t ≥ 0.

Definition 1 ([15]). The origin is said to be a fixed-time
stable equilibrium of (4) if it is Lyapunov stable and there
exists T < ∞ such that lim

t→T
x(t) = 0 for each x(0) ∈ Rn.

Lemma 1 ([15]). Suppose there exists a positive definite
function V ∈ C1(D,R), where D ⊂ Rn is a neighborhood
of the origin, for system (4) such that

V̇ (x) ≤ −pV (x)α − qV (x)β , ∀x ∈ D \ {0}, (5)

with p, q > 0, 0 < α < 1 and β > 1. Then, the origin of
(4) is FxTS with settling time (time of convergence) T ≤

1
p(1−α) +

1
q(β−1) .

The local strong or strict convexity-concavity assumption
is very commonly used in literature for showing asymptotic
convergence of saddle-point dynamics to the optimal solution
of (2) (see, e.g., [6]). Authors in [6] use the following
nominal saddle-point dynamics (SPD):

ẋ = −∇Fx(x, y), ẏ = ∇Fy(x, y). (6)

and show asymptotic convergence to the saddle-point
(x∗, y∗) under the strong and strict convexity-concavity
assumption.

In the context of minimization problems, the requirement
of strong convexity for accelerated optimization can be

relaxed to a class of potential non-convex functions satisfy-
ing PL inequality [11]. The notion of gradient-dominance
or Polyak-Łojasiewicz (PL) inequality has been explored
extensively in optimization literature to show exponential
convergence. A function f : Rn → R is said to satisfy
PL inequality, or is gradient dominated, with µf > 0 if
1
2∥∇f(x)∥2 ≥ µf (f(x) − f∗) for all x ∈ Rn, where
f∗ = f(x∗) is the value of the function at its minimizer
x∗. It is easy to show that if a function f : Rm → R is
strongly convex, then the function g : Rn → R, defined as
g(x) = f(Ax), A ∈ Rn×m, then g may not be strongly
convex if the matrix A is not full row-rank. On the other
hand, as shown in [11, Appendix 2.3], g still satisfies PL
inequality for any matrix A. Below, an example of an
important class of problems is given for which, the objective
function satisfies PL inequality (see [11] for more examples
on useful functions that satisfy PL inequality).

Example 1 (Least squares). Consider the problem

min
x∈Rn

f(Ax) = ∥Ax− b∥2, (7)

where x ∈ Rn, A ∈ Rn×n and b ∈ Rn. Here, the function
f(x) = ∥x − b∥2 is strongly-convex, and hence, g(x) =
∥Ax− b∥2 satisfies PL inequality for any matrix A.

The objective function in (7) satisfies PL inequality but
need not be strongly convex for any matrix A. This is an
important class of functions in machine learning problems.
Similarly, a notion of PL inequality for min-max functions
is introduced in [12] and is termed two-sided PL inequality.

Definition 2 (Two-sided PL inequality). A continuously
differentiable function F : Rn × Rm → R is said to satisfy
two-sided PL inequality if there exist constants µ1, µ2 > 0
such that for all x ∈ Rn and y ∈ Rm,

∥∇xF (x, y)∥2 ≥ 2µ1(F (x, y)−min
x

F (x, y)), (8a)

∥∇yF (x, y)∥2 ≥ 2µ2(max
y

F (x, y)− F (x, y)). (8b)

Below, we give an example of an important class of
functions that are not strongly convex-concave but satisfy
two-sided PL inequality.

Example 2 (Robust Least Squares). Consider the problem

min
x

max
y

F (x, y) := ∥Ax− y∥2M − λ∥y − y0∥2M , (9)

where M ∈ Rn×n is a positive semi-definite matrix and
∥x∥M :=

√
x⊺Mx. It can be easily shown that F is not

strongly convex in x and when M is not full rank, it is not
strongly concave in y. This is an important class of functions
used in formulating least squares under uncertain data [18].

Per the results in [11], we propose the result on quadratic-
growth of the function F under two-sided PL inequality.

Lemma 2. Let F : Rn × Rm → R be a function satisfying
the two-sided PL inequality with modulii µ1, µ2 > 0. Then



for all (x, y) ∈ Rn × Rm, the following hold

∥∇xF (x, y)∥ ≥ µ1∥x− x(y)∥ (10a)
∥∇yF (x, y)∥ ≥ µ2∥y − y(x)∥, (10b)

where x(y) := argminx F (x, y), y(x) := argmaxy F (x, y).

The proof is given in Appendix I.

III. MAIN RESULTS

In this section, we present the main results on asymptotic
stability of the nominal SPD (6) and FxTS of a modified
SPD (defined later) to the saddle-point (x∗, y∗). To this end,
we make the following assumption on the function F .

Assumption 1. There exist µ1, µ2 > 0 such that the function
F ∈ C1,1(Rn×Rm,R) satisfies the two-sided PL inequality
with µ1, µ2, and there exists 0 ≤ c < min{µ1

2 , µ2

2 } such
that the gradients ∇xF (x, ·) and ∇yF (·, y) are Lipschitz
continuous with constant c, for all (x, y) ∈ Rn × Rm.

Remark 1. Lipschitz continuity of ∇xF (x, y) w.r.t. y,
and of ∇yF (x, y) w.r.t. x with constant c translates to
∥∇x,yF (x, y)∥ ≤ c. This is far less restrictive than requiring
all first-order derivatives to be Lipschitz continuous, as
required in the analysis reported in [12], [13]. For instance,
consider the function F (x, y) := x2+x4−y2−y4. Although,
the partial derivatives ∇xF (·, y) and ∇yF (x, ·) are not
Lipschitz continuous, the function satisfies Assumption 1.

We now analyze the stability of the nominal-SPD.

Theorem 1. Consider the SPD (6) and assume that the
function F satisfies Assumption 1. Then, the saddle-point
(x∗, y∗) is an asymptotically stable equilibrium of (6).

Proof. Consider the SPD under PL inequality and a can-
didate Lyapunov function V : Rn × Rm → R defined as
V (x, y) := 2(maxy F (x, y)−minx F (x, y)). Per Definition
2, it holds that

V (x, y) ≤ 1

µ1
∥∇xF (x, y)∥2+ 1

µ2
∥∇yF (x, y)∥2 ≤ 1

µ
∥∇F (x, y)∥2,

where µ = min{µ1, µ2}. Thus, it holds that V (x∗, y∗) =
0. Also, it can be readily shown that V (x, y) > 0 for all
(x, y) ̸= (x∗, y∗), i.e., V is positive definite. Note that V
can be re-written as

V =

(
max

y
F (x, y)−F (x∗, y∗)

)
+

(
max

y
F (x, y)−F (x, y)

)
(
F (x∗, y∗)−min

x
F (x, y)

)
+
(
F (x, y)−min

x
F (x, y)

)
,

Let y(x) = argmaxy F (x, y) and x(y) = argminx F (x, y).
The time derivative of V reads

V̇ =2∇xF (x, y(x))ẋ−∇xF (x, y)ẋ−∇yF (x, y)ż

− (2∇yF (x(y), y)ż −∇xF (x, y)ẋ−∇yF (x, y)ẏ)

=− ∥∇F (x, y)∥2 + 2(∇xF (x, y(x))−∇xF (x, y))ẋ

+ 2(∇yF (x(y), y)−∇yF (x, y))ż

≤− ∥∇F (x, y)∥2 + 2

µ1
c∥∇xF∥∥y(x)− y∥

+
2

µ2
c∥∇yF∥∥x(y)− x∥.

Using Lemma 2, we obtain that V̇ ≤
−
(
1− 2c

µ

)
∥∇F (x, y)∥2. Under Assumption 1, we

have ∥∇x,yF (x, y)∥ ≤ c and µ > 2c. We obtain that
V̇ (x, y) ≤ −αV (x, y), where α = (µ − 2c) > 0. Thus,
(x∗, y∗) is asymptotically stable for (6). ■

Remark 2. As also noted in [19] for proximal flows under
PL inequality, it is not generally possible to show exponential
stability since, in general, the Lyapunov function V is not
upper-bounded by a quadratic error ∥x− x∗∥+ ∥y − y∗∥.

Inspired from [7], consider the following FxTS saddle-
point dynamics (FxTS SPD)[

ẋ
ẏ

]
= −c1

∇F (x, y)

∥∇F (x, y)∥
p1−2
p1−1

− c2
∇F (x, y)

∥∇F (x, y)∥
p2−2
p2−1

, (11)

where c1, c2 > 0, p1 > 2, 1 < p2 < 2, ∇F (x, y) ≜[
∇xF (x, y)⊺ −∇yF (x, y)⊺

]⊺
. Note that (6) is a special

case of (11) with c1 = 1, c2 = 0 and p1 = 2. The following
result can be readily stated for (11).

Theorem 2. Suppose the function F satisfies Assumption 1.
Then, the trajectories of (11) converge to the saddle-point
in a fixed time T < ∞ for all (x(0), y(0)) ∈ Rn × Rm.

The proof is given in Appendix II.

Remark 3. Note that the difference between the proposed
FxTS-SPD (11) and the nominal-SPD (6) are the exponents
p1 > 2 and 1 < p2 < 2. In the particular (limiting) case
of p1 = p2 = 2, the modified SPD reduces to the nominal-
SPD. Intuitively, compared to the asymptotic convergence
condition V̇ ≤ −αV , terms V β and V α in (17) dominate
the linear term V when it is large and small, respectively,
resulting in accelerated convergence for both small and large
initial distance from the equilibrium point. Thus, the FxTS-
SPD achieves faster convergence from any initial condition.

IV. NUMERICAL CASE STUDIES

We now present numerical experiments on robust least
square estimation, as well as study convergence behavior for
a toy example. While continuous-time algorithms are useful
from the point of view of analysis, these algorithms are
implemented in an iterative, discrete-time manner. For the
sake of implementation, we use forward-Euler discretization
for both the FxTS-SPD and the nominal-SPD with timescale
separation [2], i.e., the gradient ascent dynamics is dis-
cretized at a faster rate than the gradient descent dynamics.
The algorithms were implemented using PyTorch 0.4.1 on a
16GB Core-i7 2.8GHz CPU.

We first present the convergence analysis of the pro-
posed FxTS-SPD on a simple two-dimensional nonconvex-
nonconcave function that satisfies the two-sided PL inequal-
ity. In particular, we consider evaluating the saddle point
of the example function F (x, y) = x2 + 3 sin2 x sin2 y −
4y2 − 10 sin2 y. We also compare the convergence behavior
of the FxTS-SPD against the nominal-SPD (without gra-
dient normalization). Figure 1 represents snapshots of the



Fig. 1. Snapshots of the trajectories of the FxTS-SPD (magenta) amd the nominal-SPD (black) at various iterations.

trajectories of the FxTS-SPD (magenta) amd the nominal-
SPD (black) at various iterations. The two trajectories are
initialized at (2,2) and (-2,-2), respectively. Recall that both
initializations are symmetric for the test function. It can
be seen that the FxTS-SPD converges to the unique saddle
point (0, 0) of F (x, y) by the end of 70 iterations, while
the nominal-SPD continues to require further computations
and does not converge even by the end of 150 iterations.
It can further be observed that the paths traversed by both
these optimization algorithms are identical (assuming they
start from the same initial conditions). This reaffirms the
fact that while the two algorithms traverse the same curve,
the proposed FxTS-SPD traverses the curve much faster than
its nominal counterpart. Thus, this clever reparameterization
of the curve through gradient normalization significantly
expedites the optimization process1.

The second set of experiments concern with the problem of
robust least square (RLS) estimation 2. The RLS minimizes
the worst case residual given the bounded deterministic
perturbation δ on the noisy measurement vector y0 ∈ Rm,
and the measurement matrix A ∈ Rm×n. The RLS can be
formulated as:

min
x∈Rn

max
δ:∥δ∥≤ρ

∥Ax− y∥2, where δ = y0 − y.

We consider the soft formulation (see Example 2). Note that
for λ > 1, F (x, y) satisfies the two-sided PL inequality,
since F (x, y) can be written as a combination of an affine
function and a strongly-convex–strongly-concave function.
Within RLS estimation, we consider two scenarios: (a)
Synthetic dataset: We generate the measurement matrix A
with n = 1000 and m = 500 by sampling its rows from

1Full video available at: https://tinyurl.com/2wpmyf3h

a normal distribution N (0, In). The noisy measurement y0
is set to Ax∗ + ε for the true signal x∗ and an ε sampled
from N (0, 0.01). We use M = In, λ = 3 for this dataset. (b)
Aquatic toxicity dataset [20]: The dataset was used to predict
acute aquatic toxicity of 546 molecules towards Daphnia
Magna from 8 descriptors. Here, we set M = In, λ = 2.

Figures 2a and 2b depict the convergence behaviors of the
FxTS-SPD and the nominal-SPD for the two datasets, re-
spectively. We use distance ∥(xt, yt)−(x∗, y∗)∥2 to the limit
point (x∗, y∗) as a metric to compare rates of convergence.
In both the scenarios, the convergence rate of the FxTS-SPD
is orders of magnitude faster than the nominal-SPD.

V. CONCLUSIONS

In this paper, we proposed a method of solving a subclass
of nonconvex-nonconcave min-max problem within a fixed
amount of time. We showed our results under the relaxed
assumption of two-sided PL inequality, which is a weaker
condition as compared to the commonly used assumptions of
strong or strict convexity-concavity. Numerical case studies
illustrate significant improvement in convergence perfor-
mance compared to the nominal-SPD.
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APPENDIX I
PROOF OF LEMMA 2

Proof. For the sake of brevity, we only prove the first impli-
cation (10a). The proof for the second implication follows
similarly. Let us define hy(x) :=

√
F (x, y)− F (x(y), y).

Clearly, by definition, hy(x) ≥ 0 for all (x, y) ∈ Rn × Rm.
The partial derivative of hy(x) for all x ̸= x(y) is given by:

∇xhy(x) =
∇xF (x, y)

2
√

F (x, y)− F (x(y), y)

=⇒∥∇xhy(x)∥2 =
∥∇xF (x, y)∥2

4 (F (x, y)− F (x(y), y))
≥ µ1

2
, (12)

where the last inequality follows from the two-sided PL
inequality. For any point (x0, y) with x0 ̸= x(y), consider
solving the following differential equation:

dx(t)

dt
= −∇xhy(x(t)) with x(t = 0) = x0. (13)

Recall that hy(x) is a positive invex function bounded from
below by 0, while the derivative ∇xhy(x), too, is bounded
from below by a positive constant. Thus, it must be that by
moving along the path defined by (13), the trajectory will
eventually reach x(y) in some finite time T > 0. Thus,

hy(x0)− hy(x(T )) = −
x(T )∫
x0

⟨∇xhy(x), dx⟩

= −
T∫

0

〈
∇xhy(x),

dx

dt

〉
dt

=

T∫
0

∥∇xhy(x)∥2dt ≥
µ1

2
T, (14)
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where the last inequality follows from (12). Since, x(T ) =
x(y), i.e., hy(x(T )) = 0, it follows that T ≤ 2hy(x0)

/
µ1.

The length of the orbit x(·) defined by (13) starting at x0 is:

Ly(x0) :=

T∫
0

∥dx
/
dt∥dt =

T∫
0

∥∇xhy(x)∥dt ≥ ∥x0 − x(y)∥,

(15)

where the last inequality follows from the fact that the path-
length must be greater than or equal to straight line distance.
Revisiting (14), we obtain:

hy(x0)− hy(x(T )) =

T∫
0

∥∇xhy(x)∥2dt

(14)
≥

√
µ1

2

T∫
0

∥∇xhy(x)∥dt

(15)
≥

√
µ1

2
∥x0 − x(y)∥. (16)

Since hy(x(T )) = 0, (16) implies that F (x0, y) −
F (x(y), y) ≥ µ1

2 ∥x0 − x(y)∥2, which using the two-sided
PL inequality reduces to ∥∇xF (x0, y)∥ ≥ µ1∥x0 − x(y)∥,
implying component-wise quadratic growth. ■

APPENDIX II
PROOF OF THEOREM 2

Proof. Consider the Lyapunov candidate

V (x, y)=

(
max

y
F (x, y)−F (x∗, y∗)

)
+

(
max

y
F (x, y)−F (x, y)

)
(
F (x∗, y∗)−min

x
F (x, y)

)
+
(
F (x, y)−min

x
F (x, y)

)
,

and take its time derivative along (11) to obtain

V̇ =2∇xF (x, y(x))ẋ−∇xF (x, y)ẋ−∇yF (x, y)ż

− (2∇yF (x(y), y)ż −∇xF (x, y)ẋ−∇yF (x, y)ẏ).

Substituting the dynamics from (11) and performing routine
calculation, we obtain

V̇ =− c1
∥∇F (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

− c2
∥∇F (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

− 2c1 (∇xF (x, y(x))−∇xF (x, y))
⊺ ∇xF (x, y)

∥∇F (x, y)∥
p1−2
p1−1

− 2c2 (∇xF (x, y(x))−∇xF (x, y))
⊺ ∇xF (x, y)

∥∇F (x, y)∥
p2−2
p2−1

+ 2c1 (∇yF (x(y), y)−∇yF (x, y))
⊺ ∇yF (x, y)

∥∇F (x, y)∥
p1−2
p1−1

+ 2c2 (∇yF (x(y), y)−∇yF (x, y))
⊺ ∇yF (x, y)

∥∇F (x, y)∥
p2−2
p2−1

.

Now, under Assumption 1, using Lipschitz continuity of the
gradients ∇xF and ∇yF , we obtain

V̇ ≤− c1
∥∇F (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

− c2
∥∇F (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

+ 2cc1
∥∇xF (x, y)∥∥x− x(y)∥

∥∇F (x, y)∥
p1−2
p1−1

+ 2cc2
∥∇xF (x, y)∥∥x− x(y)∥

∥∇F (x, y)∥
p2−2
p2−1

+ 2cc1
∥∇yF (x, y)∥∥z − y(x)∥

∥∇F (x, y)∥
p1−2
p1−1

+ 2cc2
∥∇yF (x, y)∥∥z − y(x)∥

∥∇F (x, y)∥
p2−2
p2−1

,

where c = supx,y ∥∇x,yF (x, y)∥. Using Lemma 2, we can
further upper-bound the RHS of V̇ as

V̇ ≤− c1
∥∇F (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

− c2
∥∇F (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

+
2cc1
µ1

∥∇xF (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

+
2cc2
µ1

∥∇xF (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

+
2cc1
µ2

∥∇yF (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

+
2cc1
µ2

∥∇yF (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

.

Thus, it follows that

V̇ ≤− c1
∥∇F (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

− c2
∥∇F (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

+
2cc1
µ1

∥∇F (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

+
2cc2
µ1

∥∇F (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

=− c1

(
1− 2c

µ1

)
∥∇F (x, y)∥2

∥∇F (x, y)∥
p1−2
p1−1

− c2

(
1− 2c

µ2

)
∥∇F (x, y)∥2

∥∇F (x, y)∥
p2−2
p2−1

.

Let α1 = c1

(
1− 2c

µ1

)
, α2 = c2

(
1− 2c

µ2

)
, β1 = 2 − p1−2

p1−1

and β2 = 2− p2−2
p2−1 to obtain

V̇ ≤ −α1∥∇F (x, y)∥β1 − α2∥∇F (x, y)∥β2 .

Per Assumption 1, it holds that α1, α2 > 0. Finally, using
two-sided PL property, we obtain that

V (x, y) ≤ 1

µ1
∥∇xF (x, y)∥2 + 1

µ2
∥∇yF (x, y)∥2

≤ 1

µ
∥∇F (x, y)∥2,

where µ = min{µ1, µ2}. Thus, it holds that

V̇ (x, y) ≤ −a1V (x, y)b1 − a2V (x, y)b2 , (17)

where a1 = α1(µ)
β1
2 , a2 = α2(µ)

β2
2 , 0 < b1 = β1

2 < 1

and b1 = β2

2 > 1. Thus, per Lemma 1, it holds that V → 0
within a fixed time T < ∞. Using the positive-definiteness
of the function V , it holds that the solutions (x(t), y(t)) of
(11) converge to the saddle point (x∗, y∗) within time T . ■
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